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Abstract—Performance variability, stemming from non-

deterministic hardware and software behaviors or deterministic 

behaviors such as measurement bias, is a well-known phenome-

non of computer systems which increases the difficulty of com-

paring computer performance metrics. Conventional methods 

use various measures (such as geometric mean) to quantify the 

performance of different benchmarks to compare computers 

without considering variability. This may lead to wrong conclu-

sions. In this paper, we propose three resampling methods for 

performance evaluation and comparison: a randomization test 

for a general performance comparison between two computers, 

bootstrapping confidence estimation, and an empirical distribu-

tion and five-number-summary for performance evaluation. The 

results show that 1) the randomization test substantially im-

proves our chance to identify the difference between performance 

comparisons when the difference is not large; 2) bootstrapping 

confidence estimation provides an accurate confidence interval 

for the performance comparison measure (e.g. ratio of geometric 

means); and 3) when the difference is very small, a single test is 

often not enough to reveal the nature of the computer perfor-

mance due to the variability of computer systems. We further 

propose using empirical distribution to evaluate computer per-

formance and a five-number-summary to summarize computer 

performance. We illustrate the results and conclusion through 

detailed Monte Carlo simulation studies and real examples. Re-

sults show that our methods are precise and robust even when 

two computers have very similar performance metrics. 

Keywords— Performance of Systems; Performance attributes; 

Measurement, evaluation, modeling, simulation of multiple-

processor systems; Experimental design 

I.  INTRODUCTION 

Traditionally, computer researchers have used the geometric 
mean (GM) of performance ratios of two computers running a 
set of selected benchmarks to compare their relative perfor-
mances. This approach, however, is limited by the variability of 
computer systems which stems from non-deterministic hard-
ware and software behaviors [1][12], or deterministic behaviors 
such as measurement bias [20]. The situation is exacerbated by 
increasingly complicated architectures and programs. Wrong 
conclusions could be drawn if variability is not handled cor-
rectly. Using a simple geometric mean cannot describe the per-
formance variability of computers. 

Recently, computer architects have been seeking advanced 
statistical inferential tools to address the problem of perfor-
mance comparisons of computers. The two common statistical 
approaches of comparing two populations (e.g., two comput-
ers) are the hypothesis test and confidence interval estimation. 
As we know, most of the parametric tests such as t-tests require 

population distribution normality [11]. Unfortunately, comput-
er performance measurements are often not normally distribut-
ed but either skewed or multimodal. Figure 1 shows 400 meas-
urements of execution time from SPEC2006 benchmarks run-
ning on a commodity computer (Intel Core i7 CPU 
960@3.20GHz, 1 processor with 4 cores, 10GB DDR3 
RAM(1333 MHz)). We can see that the distributions of per-
formance measures for the benchmarks are non-normal; 
benchmarks “gcc” and “mcf” are skewed to the right, while 
“bzip2” is multimodal. 

In this paper, we propose three statistical resampling meth-
ods [14] to evaluate and compare computer performance. The 
first is a randomization test used to compare the performance 
between two computers; the second is a bootstrapping confi-
dence interval method for estimating the comparative perfor-
mance measurement, i.e. speedup, through a range; and the 
third is an empirical distribution method to evaluate the distri-
butional properties of computer performance. The basic idea of 
resampling methods, as the name implies, is to resample the 
data iteratively, in a manner that is consistent with certain con-
ditions (e.g. the general performance of two computers is 
equal.). Specifically, we first resample the data according to the 
purpose of each method. Second, for each iteration, we calcu-
late the statistic of interest, such as the ratio of geometric 
means between two computers. Third, we repeat the previous 
two steps a number of times. Then the distribution of the calcu-
lated statistic is used as an approximation of the underlying 
distribution of the statistic under the assumed condition. Hence, 
the resampling methods set us free from the need for normal 
data or large samples so that Central Limit Theorem can be 
applied [19]. Note that the proposed three methods all follow 
the three steps described above. However, the resampling and 
calculating steps within each iteration are different according to 
the individual purpose for each method. 

In summary, the main contributions of this paper can be 
listed as follows:  

First, we propose and implement a randomization test [8] 
for testing the performances of two computers, which provides 
an accurate estimate of the confidence of a comparison when 
the performances of two computers are close to each other.  

Second, we propose and implement a bootstrapping-based 
confidence interval estimation method [6] to estimate the con-
fidence interval of the ratio of geometric means between two 
computers. As a result, we show that the confidence interval of 
the ratio of the geometric means between two computers can 
reliably summarize the comparative performance between them 
in the context of performance variation.    



Third, as a generic framework, the proposed method can di-
rectly be applied to arithmetic and harmonic means. We 
demonstrate that the arithmetic mean is very sensitive to outli-
ers while geometric and harmonic means are much more stable.  

Fourth, we point out that a single test is not enough to re-
veal the nature of the computer performance in some cases due 
to the variability of computer systems. Hence, we suggest using 
empirical distribution to evaluate computer performance and 
use five-number-summary to summarize the computer perfor-
mance.  

The remainder of this paper is organized as follows. We 
provide a motivating example to demonstrate the different re-
sults that can be generated from a t-test and the proposed 
resampling methods in Section 2. Then we describe the de-
tailed algorithms of the proposed randomization test and confi-
dence interval estimation in Sections 3 and 4 respectively. We 
suggest using an empirical distribution and five-number-
summary to compare computer performances in Section 5. Sec-
tion 6 presents the experimental results on data measured from 
our lab computers and collected from SPEC.org. Section 7 ex-
plains the sample size selection. We demonstrate the applica-
bility of the proposed resampling methods on Arithmetic and 
Harmonic Means in Section 8. Related work is described in 
Section 9. Finally, we conclude the paper in Section 10. 

II. MOTIVATION EXAMAPLE 

In this section, we show an example of comparing two 
computers based on t-test and the proposed resampling meth-
ods. Table 1 lists the configurations of the computers. The data 
is available on [26]. Figure 2 shows the empirical distributions 
of geometric mean for two computers. The horizontal axis 
shows the SPEC ratio. The blue dash line is the empirical dis-
tribution of geometric means for the NovaScale computer, 
while the red solid line is the one from IBM. The vertical dash 
line shows the geometric mean from the raw data. The basic 
idea of using an empirical distribution is to see the distribution 
of a statistic (e.g. geometric mean of computer performance). 
We can see many useful distributional properties from the em-
pirical distribution, such as the center, mode, variation, and 
range of the statistic. The details of empirical distribution are 
described in Section 5. From Figure 2, although the two distri-

butions overlap, the geometric mean of computer A (red solid 
curve) is well above that of computer B (blue dash curve). As 
shown in Table 2, the t-test does not detect the difference be-
tween two computers while the randomization test does. This 
implies that the randomization test is more powerful at detect-
ing the difference even when there is an overlap between two 
distributions. The bootstrap interval also shows the ratio of 
geometric means is significantly below one (blue dashed curve 
against red solid curve) which implies that computer A runs 
faster than computer B. 

III. STATISTICAL PERFORMANCE COMPARISON VIA 

RANDOMIZATION TEST 

Statistical inference is based on the sampling distributions 
of sample statistics which answers the question: “if we recol-
lect the data, what will the statistic be?” A sampling distribu-
tion of a statistic (e.g. geometric mean) can be well approxi-
mated by taking random samples from the population. Tradi-
tional parametric tests assume the sampling distribution has a 
particular form such as a normal distribution. If the distribu-
tional assumption is not satisfied, commonly there are no theo-
retical justifications or results available. On the other hand, the 
great advantage of resampling is that it often works even when 
there is no theoretical adjustment available. The basic idea of 
the randomization test [8] is as follows: in order to estimate the 
p-value (i.e. 1- confidence) for a test, we first estimate the sam-
pling distribution of the test statistic given the null hypothesis 
is true. This is accomplished by resampling the data in a man-
ner that is consistent with the null hypothesis. Therefore, after 
resampling many times, we can build up a distribution (called 
an empirical distribution) which approximates the sampling 
distribution of the statistic that we are interested in. Thus, we 
can estimate the p-value based on the empirical distribution. 

Suppose we have two computers A and B to compare over 
a benchmark suite consisting of n benchmarks. For each com-
puter, we ran the benchmarks m times and denote the perfor-
mance scores of A and B at their jth runs of the ith benchmark 
as ai,j and bi,j respectively. The hypotheses are specified below. 

 

Figure 1. Histograms of execution times for three SPEC benchmarks from 400 repeated runs of each benchmark on the commodity computer.  

Computer BComputer A

 

Figure 2. Density plots of the empirical distributions for the two computers. 
The Dotted lines are the geometric means. 

Table 1. Configurations of the two computers in Figure 2. 
 Configurations 

Middle (blue dashed line) NovaScale T860 F2 (Intel Xeon E5645, 2.40 GHz) 

Middle (red solid line) IBM System x3400 M3 (Intel Xeon E5649) 

Table 2. Test results for the example in Figure 2.  
T test                 p-value Randomization test p-

value 

95% Bootstrapping 

0.117 0.016 [0.974, 0.997] 

 



Null hypothesis: the general performance of A and B over 
n benchmarks are equivalent. 

Alternative hypothesis: we will use only one of the fol-
lowing three as our alternative hypothesis. 

H1a: the general performance of A is better than that of B.   

H1b: the general performance of B is better than that of A. 

H1c: the general performance of A is not the same as that of 
B.   

We proposed the randomization test as follows:  

1) For each benchmark i (i=1,…,n), we combine all the m 

performance scores from A and B into one list respectively. 
2) We randomly permute the list, for each benchmark, and 

assign the first m scores to computer A and the other m to B for 
the i

th
 benchmark.  

3) Calculate the ratio of the geometric mean of the perfor-
mance scores for computer A and B over n benchmarks.   

4) Repeat step 1-3 M times (M is usually a large number, 
e.g. 500), so we have M geometric mean ratios, denote as FM 
(i.e. the empirical distribution of geometric mean ratios under 
the null hypothesis) from M repetitions.  

5) Calculate gA|B, the ratio of the geometric mean of the per-
formance scores for computer A and B over n benchmarks on 
the original data. Then we calculate an empirical p-value based 
on FM and the alternative hypothesis as follows. If we use H1a, 
then the empirical p-value is the proportion of FM that is greater 
than or equal to gA|B.  If H1b is selected, then the empirical p-
value is the proportion of FM that is less than or equal to gA|B. If 
we use H1c, then the empirical p-value is the twice of the small-
er empirical p-value from H1a and H1b.  

Figure 3 illustrates the proposed randomization test under 
the alternative H1a. Note that the randomization test described 
above uses the geometric mean to evaluate the computer per-
formance. However, the proposed method can be easily modi-
fied to adopt other measures such as harmonic and arithmetic 
mean.  

IV. CONFIDENCE INTERVAL ESTIMATION BY 

BOOTSTRAPPING 

Due to the performance variability, the comparative per-
formance measure, such as the ratio of geometric means and 
speedups, between two computers varies on different meas-
urements. Hence, presenting a single numeric estimate cannot 
describe the amount of uncertainty due to the performance var-
iability. The basic idea of a confidence interval (CI) is to pro-
vide an interval estimate (which consists of a lower limit and 
an upper limit) on the statistic with some predetermined confi-
dence level, instead of giving a single estimate. The interpreta-
tion of a confidence interval is based on recollecting the data or 
repeating the experiment.  

Bootstrapping [6] is a commonly used statistical technique 
which quantifies the variability of a statistic, e.g. estimate a 
95% confidence interval of a statistic or its standard deviation, 
which are not yet available in theory [9]. The basic idea of 
bootstrapping is to use the sample as an approximation of the 
underlying population distribution, which is unknown, and 
resample the data with replacement (note that each observation 
can be sampled more than once). We proposed the following 
bootstrapping method to estimate the ratio of the geometric 
mean of the performance scores from two computers.  

1) For each benchmark i (i=1,…,n), we combine all the m 
execution times from computer A and B into one list respec-
tively.  

2) We randomly sample the list with replacement for each 
benchmark, and assign the first m scores to computer A and the 
other m to B for the ith benchmark.  

3) Calculate the ratio of the geometric mean of the execu-
tion times for computer A and B over n benchmarks.   

4) Repeat step 1-3 T times (T is usually a large number, e.g. 
500), so we have T geometric mean ratios, denote as HT from T 

repetitions. Let 
2/

TH and 
2/1 

TH be the α/2 and 1-α/2 percen-
tiles of HT respectively. Then, a two-sided (1-α)×100% boot-

strap confidence interval is
 2/12/ ,  

TT HH
. A one-sided (1-

α)×100% bootstrap confidence interval can be either 
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Figure 3.  Illustration of the proposed randomization test. 



 ,
TH  or   1, TH . The former one-sided confidence 

interval is explained as the ratio of GMs between computer A 

and B is at least 

TH

 with confidence (1-α)×100%, while the 
latter as the ratio of GMs between computer A and B is at most 

1

TH
 with confidence (1-α)×100%. Figure 4 illustrates the 

proposed bootstrapping method using an example. 

V. EMPIRICAL DISTRIBUTION AND FIVE-NUMBER-

SUMMARY 

Although the proposed randomization test demonstrates 
more precise than conventional t-test, when two computers 
show overlapped distributions and close geometric mean, a 
single test such as t-test and randomization test can’t identify 
their differences. Figure 5 shows three pairs of computers listed 
in Table 3. The p-values of both t-test and randomization test 
for all the three pairs are close to 1.0. For example, the p-values 
are 0.941 and 0.856 for t-test and randomization test respec-
tively for the two computers shown in Figure 5(a). Similar situ-
ations also apply to the pairs in Figure 5(b) and 5(c). This indi-
cates no performance differences could be identified by a sin-
gle test. On the other hand, an insignificant test result does not 
necessarily mean the two computers have the same perfor-
mance. For example, in Figure 5 we see that all three comput-
ers depicted by red solid lines have slightly higher geometric 
means than their competitors, but their performances are less 
consistent than the ones shown by blue dashed lines. Therefore 
in comparing performance, we need to consider the system 
variation effect especially when the means are close.         

Hence, we suggest using the empirical distribution of the 
geometric mean and its five-number-summary to describe of 
performance for a computer as follows: 

1) For each benchmark i (i=1,…,n), we randomly select one 
performance score.   

2) Calculate the geometric mean of the performance score 
for this computer. 

3) Repeat step 1-2 M times (M is usually a large number, 
e.g. 500), so that we have M geometric means, denoted as FG 

R(i.e. the empirical distribution of geometric mean) from M 
repetitions.  

4) Then calculate the five elements of the five-number-
summary of FG: minimum, first quartile (25th percentile, de-
noted as Q1), median, third quartile (75th percentile, denoted as 
Q3), and maximum. 

Detailed results will be shown in section VI.E. 

VI. EXPERIMENTAL RESULTS 

A. Monte Carlo Simulation Study on Statistical Power and 

False Discovery Rates (FDRs) 

In order to show the effectiveness of a testing method, we 
examine the statistical power (the ability to detect an effect, i.e. 
deviation from the null hypothesis) and the false discovery rate 
which is the probability of having type I error (i.e. rejecting the 
null hypothesis while the null hypothesis is true) of our pro-
posed method, t-test, and a recent proposed HPT approach [3]. 
A common way to evaluate and compare the statistical powers 
and false discovery rates (FDRs), which are defined below, of 
the tests is through Monte Carlo simulation study.   

Statistical power: the probability of rejecting the null hy-
pothesis while the null hypothesis is, in fact, not true. Note that 
we denote power as statistical power in this paper. 

False discovery rates: the probability of rejecting the null 
hypothesis while the null hypothesis is, in fact, true.  

Hence, ideally we would like the statistical power to be as 
large as possible and the FDR as small as possible. In real ex-
amples, we usually do not know the underlying truth. In order 
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Figure 4. Illustration of proposed bootstrapping confidence interval estimation. 

Table 3. Configurations of three pairs of computers in Figure 5. 
 Configurations 

Figure 5(a) (blue dashed line) PowerEdge R510 (Intel Xeon E5620, 2.40 GHz) 

Figure 5(a) (red solid line) IBM BladeCenter HS22 (Intel Xeon X5550) 

Figure 5(b) (blue dashed line) SuperServer 5017C-MF (X9SCL-F, Intel G850) 

Figure 5(b) (red solid line) Acer AW2000h-AW170h F1(Intel Xeon X5670)  

Figure 5(c) (blue dashed line) IBM System x3850 X5 (Intel Xeon E7-4820) 

Figure 5(c) (red solid line) IBM System x3690 X5 (Intel Xeon E7-2830) 

 



to investigate the properties of HPT, t-test, and randomization 
test we applied a Monte Carlo simulation study where the truth 
is known. Below are the settings for the Monte Carlo simula-
tion study on power and FDR for two imaginary computers X 
and Y that uses the following steps. 

a. For each benchmark running on computer X, we randomly 
select m (m=5 in this study) execution times without re-
placement (i.e. each execution time can be selected at most 
once) from the 1000 execution times measured from that 
benchmark running on computer A shown in Table 4. 

b. Then we randomly pick L (L is between 0 and 13) bench-
marks and add a constant 1.0 to all the execution times for 
the selected L benchmarks running on the real computer, 
and assign the sum to be the execution time of the bench-
marks running on Computer Y.  The reason that we use 
constant 1.0 in step b to make a difference between two 
computers is that the standard deviations of the perfor-
mance from all 13 benchmarks range from 0.012 to 0.91. 
Hence, adding 1.0 to any benchmark can guarantee that 
there is at least one standard deviation difference between 
computer X and Y. 

c. The HPT test, t-test, and our proposed randomization test 
are carried out on the data generated through steps a & b. 

d. Repeat steps a-c 100 times. 

Remarks: In step a, notice that the execution times for 
computer X and Y are selected from the same population (from 
the selected commodity computer). In step b, if L is greater 
than zero, then the truth is computer X has better performance 
than computer Y which has longer execution times for the L 
benchmarks. It is ideal if the test can detect the difference by 
rejecting the null hypothesis (i.e. the general performance of X 
is better than that of Y). Hence, P, the proportion of times 
(among 100 repetitions) a test rejects the null hypothesis, can 
be viewed as an approximate estimate of its power for nonzero 
L. On the other hand, when L is zero, that proportion, P, be-
comes an estimate of its FDR. 

In this study, we set the significance level at 0.05 and use 
the two-sided alternative hypothesis (H1c). Figure 6(a) shows 
the Monte Carlo simulation results (i.e. P, the proportion of 
times the null hypothesis is rejected) on HPT, t-test (TT) and 
the proposed randomization test (RT) using the execution time 
measurements from the selected computer as the underlying 
population. Notice that the first point (L=0), the value of P is an 
estimate of the FDR, which should be close to the specified 
significance level (here it is 0.05) for a good test. For other 
points (L=1,…,13), the value of P is an estimate of the power, 
which is supposed to be large for a good test. So we can see 
that our proposed randomization test has much higher power 
than the other two tests when L is between one and seven. 

 

(a)     (b) 

Figure 6. Results of Monte Carlo simulation study 1 (part (a)) and study 2 (part (b)) on statistical power and FDR.  

Computer BComputer A

 

(a)    (b)          (c) 

Figure 5. Density plots of the empirical distributions for three pairs of computers. The dot lines are the geometric means.  

95% bootstrapping confidence intervals geometric means HPT test

 

Figure 7. The 95% bootstrapping confidence intervals (boundaries of shaded region), measured ratios of geometric means performance speedups (solid line with-
in the confidence interval) and 0.95-speedups from HPT test (red lines) based on 100 random replications.  



Table 5. Results of pairwise comparison among four computers based on 100 

random replications. The numbers shown in the table are the number of times 
the null hypothesis is rejected at the significance level 0.01 (the numbers in 

the parenthesis are for the significance level at 0.05). 

Comparison B vs. 

A 

D vs. 

A 

C vs. 

A 

D vs. 

B 

C vs. 

B 

D vs. 

C 

HPT 100 

(100) 

100 

(100) 

5  

(91) 

90 

(99) 

100 

(100) 

99 

(100) 

T-test 100 

(100) 

100 

(100) 

91 

(100) 

100 

(100) 

100 

(100) 

100 

(100) 

RT 100 

(100) 

100 

(100) 

100 

(100) 

100 

(100) 

100 

(100) 

100 

(100) 

 

When L is greater than seven, all tests achieve perfect power. 
When L is zero, the FDRs for all tests are small and close to the 
specified significance level (here it is 0.05).  

Without losing generality, we also repeat the above de-
scribed Monte Carlo study by using the measurements from 
computer C shown in Table 4 running with PARSEC in step a. 
Figure 6(b) shows the Monte Carlo simulation results (i.e. the 
proportion of times the null hypothesis is rejected) on HPT, TT, 
and the proposed RT using execution time measured from an-
other computer as the underlying population. From this figure, 
similar observations can be made. When L is between 1 and 5, 
RT demonstrates stronger statistical power than HPT does. 
This is because, unlike our proposed RT, HPT is calculated 
using rank-based nonparametric tests (i.e. using Wilcoxon 
rank-sum test in Step 1 and Wilcoxon signed-rank test in Step 
2). In statistics it is well known that the statistical power for the 
nonparametric tests based on ranks are usually less likely to 
detect the effects due to the loss of some information on magni-
tude by ranking [10].  Regarding the t-test, we see it starts to 
have positive power when L is four and reaches the perfect 
power when L becomes seven. In fact, t-test shows higher 
power than the HPT when L is between four and seven. The 
reason is that the parametric tests are usually more efficient 
(i.e. higher power) than their nonparametric rank-based coun-
terparts which was used in the HPT method [21].   

Thanks to high performance computers, the proposed ran-
domization test (with M=500) takes an average CPU timing of 
0.41 seconds running on a regular Dell workstation with an 
Intel Xeon 2.66GHz processor for the above experiment. The 
algor  ithm is implemented as R language functions. 

B. Monte Carlo Simulation Study on Confidence Interval 

Like the Monte Carlo simulation in Section VI.A, we also 
investigate the property of the proposed bootstrapping confi-
dence interval and HPT speedup-under-test estimate from a 
simulation with known data generation mechanism. Below are 
the settings for the Monte Carlo simulation study on two imag-
inary computers X and Y. 

a. For each benchmark running on computer X, we randomly 
select m (m=5 in this study) execution times without re-

placement from the 1000 execution times measured  from 
that benchmark running on computer A shown in Table 4. 

b. Then we multiply all the execution times (all n bench-
marks) of computer X by a constant 2.0. We assign the 
new values as execution times for computer Y. 

c. The 95% speedups from HPT test and the proposed 95% 
bootstrapping confidence intervals are carried out on the 
data generated through step a & b. 

d. Repeat step a-c 100 times. 

Figure 7 shows the one hundred 0.95-Speedups from HPT 
test (red curves) and the proposed 95% bootstrapping confi-
dence intervals (blue curves on the boundaries with the grey 
region in the middle).  The black dashed line is the true ratio, 2, 
and the solid black line is the measured ratio of geometric 
mean. Note that the t-test confidence interval (t-interval), which 
is not shown in Figure 7, is much wider than the bootstrapping 
confidence interval and outside the range of the plot. This im-
plies our bootstrapping confidence interval is more accurate 
than t-interval. Based on Figure 7, we have the following re-
marks. 

1) Among all 100 bootstrapping confidence intervals, there 
are ninety-five intervals holding the true value, 2, which fol-
lows the pre-specified confidence level, 95%. 

2) We see that the 0.95-Speedups from HPT test are con-
sistently below the true value and the bootstrapping confidence 
intervals (lower than most of the lower limits of the bootstrap-
ping CIs). This is because of the low power for the rank-based 
nonparametric tests. 

3) The measured ratio of geometric mean varies around the 
true value 2 and falls within the bootstrapping CIs. This implies 
the ratio of geometric means is still a good estimate of compar-
ative performance between two computers.   

We also performed the above experiment on other com-
modity computers (listed in Table 4). The results are similar to 
Figure 7. The Bootstrapping method also runs fast in R. It takes 
an average time of 0.51 seconds running on a Dell workstation 

95% bootstrapping confidence intervals 

95% t-confidence interval 

HPT test  

 

Figure 8. The 95% bootstrapping confidence intervals (boundaries of shaded re-
gion), 0.95-speedups from HPT test (red lines) and 95% t-confidence interval 
(grey lines) on six pairwise comparisons among Computer A, B, C and D from 
100 replications.  

Table 4. Configurations of the four commodity computers. 
Computer Configurations 

A AMD Opteron CPU 6172 @ 2.10GHz,  2 processors, each with 

12 cores, with 12GB DDR3 RAM(1333 MHz) 

B Intel Core i7 CPU 960 @ 3.20GHz, 1 processor with 4 cores 

(Hyperthreading enabled), 10GB DDR3 RAM(1333 MHz) 

C Intel Xeon CPU X5355 @ 2.66GHz, 2 processors, each with 4 

cores, 16GB DDR2 RAM (533MHz) 

D Intel Xeon CPU E5530 @ 2.40GHz, 2 processor, each with 4 

cores, 12GB DDR3 RAM (1333MHz) 

 
 



equipped with an Intel Xeon 2.66GHz processor for the above 
experiment. 

C. Pairwise Comparison of Four Commodity Computers 

Here, we applied our methods, t-test and HPT on pairwise 
comparison of four computers denoted as A, B, C and D which 
are specified in Table 4. For each computer, we run 1000 times 
for each benchmark in PARSEC [2] and SPLASH-2 [25] and 
then measure the execution time. All benchmarks are using 
their 8-thread version. In order to mimic the reality and have a 
full evaluation, we randomly select 5 out of 1000 execution 
times (without replacement) for each benchmark and computer. 
Then we applied HPT, t-test, and our methods (RT) on the se-
lected sample which is a subset of the whole dataset. To avoid 
sampling bias, we repeat the experiment 100 times. 

Table 5 shows the Monte Carlo results (i.e. the number of 
times the null hypothesis is rejected based on 100 random repe-
titions) on t-test, HPT and proposed randomization test on all 
six pairwise comparisons among four computers. Based on 
Table 5, we have the following observations: 

1) In four pairwise comparisons (i.e. B vs. A, D vs. A, C vs. 
B and D vs. C), all methods have the same conclusions (i.e. 
reject the null hypothesis and conclude two computers have 
significantly different performance.)  

2) For comparing computer A and C, we see that HPT re-
jects the null hypothesis only 5 out of 100 times while our 
methods rejects the null in all 100 trials at significance level 

0.01. When we change the significance level to 0.05, the num-
ber of times the null hypothesis is rejected for HPT increases to 
91. T-test performs similar to randomization test, except it fails 
to reject the null hypothesis 9 times at significance level 0.01.  

3) For comparing computer B and D, we see that HPT re-
jects the null hypothesis 90 out of 100 times while both ran-
domization test and t-test reject the null in all 100 trials at sig-
nificance level 0.01. When we change the significance level to 
0.05, the number of times the null hypothesis is rejected for 
HPT increases to 99.  

For this experiment, we conclude that when the perfor-
mance difference between two computers is large

1
, all three 

tests will have the same significant conclusion. However, when 
performance gap between two computers is small, then the 
randomization test has the highest chance to detect the differ-
ence.  

Figure 8 shows the one hundred 0.95-Speedups from HPT 
test (red curves), the proposed 95% bootstrapping confidence 
intervals (blue curves on the boundaries with the grey region in 
the middle), and 95% t-confidence interval (gray lines).  We 
see that the speed-up estimates from HPT approach are smaller 
than the bootstrapping estimates most of the time, which con-
curs with the Monte Carlo simulation results in Figure 7. This 
confirms that the speed-up estimates of HPT are relatively con-
servative than the bootstrapping estimates. Regarding the t-
confidence interval, it is much wider than its bootstrapping 
counterpart, indicating that the bootstrapping method estimate 
is more precise than t-test. One interesting thing we found is 

                                                           
1 In practice, we can use the critical value (e.g. for 95% confidence level 

the critical value is about 1.96 for a large sample size) multiplied by the 
standard error of the statistic (e.g. the geometric mean ratio) as the thresh-
old. If the performance difference (e.g. the geometric mean ratio) is greater 
than the threshold, then it is considered "large". 

 

Figure 9. Illustration of five-number-summary on IBM BladeCenter HS22.  

Table 7. Configurations of another seven pairs of computers. 
Computer 1 Computer 2 

H1: Fujitsu, CELSIUS R570, Intel Xeon 

E5506   

H2: Fujitsu Siemens Computers, 

CELSIUS M460, Intel Core 2 Quad 

Q9550 

I1: Fujitsu, CELSIUS R570, Intel Xeon 

E5506   

I2: Sun Microsystems, Sun Fire X4450 

J1: Supermicro A+ Server 2042G-6RF, 

AMD Opteron 6136   

J2: Supermicro, Motherboard H8QI6-F, 

AMD Opteron 8435  

K1: Huawei RH2285,Intel Xeon E5645   K2: Fujitsu CELSIUS W380, Intel Core 

i5-660 

L1: Tyan YR190-B8228, AMD Opteron 

4238   

L2: Fujitsu CELSIUS W380, Intel Core 

i5-660 

M1: Tyan YR190-B8228, AMD Op-

teron 4180    

M2: Fujitsu Siemens Computers, 

CELSIUS M460, Intel Core 2 Quad 

Q9550 

N1: Fujitsu, CELSIUS M470, Intel 

Xeon W3503     

N2: Sun Microsystems, Sun Fire X4150 

 

Table 8. Comparative summary results on comparing another seven pairs of computers. 

 H1-H2 I1-I2 J1-J2 K1-K2 L1-L2 M1-M2 N1-N2 

GM Speedup 1.122 1.135 1.127 1.318 1.11 1.13 1.167 

HPT confidence 0.732 0.868 0.576 0.885 0.753 0.804 0.825 

HPT Speedup 0.950 0.928 0.944 0.962 0.94 0.908 0.932 

T confidence 0.849 0.896 0.878 0.975 0.814 0.872 0.891 

T-test CI [0.956,1.316] [0.973,1.325] [0.967,1.314] [1.037,1.675] [0.948,1.298] [0.963,1.325] [0.964,1.413] 

RT confidence >0.999 >0.999 >0.999 >0.999 >0.999 >0.999 >0.999 

Bootstrap CI [1.117,1.126] [1.13, 1.14] [1.117,1.138] [1.31,1.325] [1.109, 1.11] [1.127,1.132] [1.166,1.168] 

 

Table 6. Quantitative comparisons of 0.95-performance speedups obtained by HPT, the 95% confidence intervals obtained from t-test, and bootstrapping method. 
 A1-A2 B1-B2 C1-C2 D1-D2 E1-E2 F1-F2 G1-G2 

GM Speedup 3.339 3.495 1.698 3.259 1.984 1.675 1.27 

HPT Speedup 2.64 2.24 1.39 2.45 1.76 1.546 1.15 

T-interval [2.626,4.245] [2.364,5.167] [1.417,2.035] [2.540,4.182] [1.733,2.272] [1.429,1.964] [1.139,1.417] 

Bootstrap CI [3.326,3.352] [3.476,3.513] [1.696,1.700] [3.257,3.262] [1.983,1.986] [1.674,1.676] [1.268,1.273] 

 



that the HPT 0.95 speedup is very close to the lower bound of 
the 95% t-confidence interval. This implies that the HPT 
speedup estimate is conservative and tends to underestimate the 
true speedup value. 

D. SPEC CPU2006 Results 

Now we carry out another experiment using the data col-
lected from SPEC.org and have been used in Chen et al. [3]. 
Table 6 shows the comparative results of the 0.95-performance 
speedups obtained by HPT, 95% t-intervals, and the 95% boot-
strapping confidence intervals of the ratio of geometric means 
performance speedups. The first row shows the ratio of geo-
metric means performance speedups from the data. Interesting-
ly, we see that the bootstrapping CI holds the ratio of geometric 
means performance speedups from the data. The 0.95-
performance speedups obtained by HPT are all below the boot-
strapping CIs. The 95% t-intervals are much wider than the 
ones from bootstrapping method, indicating its relatively low 
precision for estimation compared with bootstrapping method. 
In addition, the HPT 0.95 speedups are close to the lower limits 
of the t-intervals.  

The above experiment shows that the HPT and our methods 
can identify the difference between each pair of computers, 
although the absolute Speedup numbers are different. Now we 
select another seven pairs of computers from SPEC.org [26] 
listed in Table 7 and perform the same experiment.  

The results are listed in Table 8. We see that HPT shows 
low confidence and conservative estimate of Speedups in all 
cases while our proposed RT method demonstrates high confi-
dence (>0.999). Similar as above results in Table 6, the 95% t-
intervals are wider than the ones from bootstrapping method. 
Again, the GM Speedup is in the range of bootstrapping confi-
dence intervals. 

E. Five-number-summary Results 

As we shown in Figure 5, the empirical distribution de-
scribed above fully embraces the variability of computer sys-
tems which stems from non-deterministic hardware and soft-
ware behaviors. However, sometimes it is desired to summa-
rize the results through a few numbers instead of the empirical 
distribution, which usually contains hundreds of numbers. This 
can be achieved through the five-number-summary of the em-
pirical distribution. Figure 9 illustrates the five-number-
summary on the IBM BladeCenter HS22. We know that the 

total area under the density curve is 100%. The first quartile 
(Q1), median, and the third quartile (Q3) cut the total area into 
four equal areas, which has 25% under curve area. Hence, five-
number-summary is a compact way to summarize the distribu-
tion of a random variable and it shows the following character-
istics of the distribution: 1) the range of data; 2) the range of 
the middle 50% of the data is Q3-Q1, which is called the Inter-
quartile range (IQR) in the statistics community; 3) the center 
of the distribution. Both the range and IQR are often used as 
measuring the variation of a random variable. Figure 10 shows 
the boxplots, which are the graphic presentation of five-
number-summary, of the computers listed in Table 3. Note that 
in boxplot, the bottom and the top of the boxplot are the mini-
mum and maximum. The bottom and top of the box are the Q1 
and Q3, respectively. The line inside the box is the median. 

VII. THE SAMPLING SIZE  

Due to the performance variability, we usually measure the 
performance score more than once for each benchmark. Hence, 
it remains a question that how many measurements (perfor-
mance scores) for each benchmark, m, we should take. Gener-
ally, the size of m depends on two factors:  

1) The size of the performance variability. If there is no per-
formance variability, then measuring once, m=1, gives an accu-
rate performance score. On the other hand, if the performance 
variability is large, then we need m be large to have a good 
estimation of performance.  

2) The quality of the statistical inference. Hypothesis test-
ing and estimation are the two major branches of statistical 
inference. A good test procedure should have a high probability 
to detect the deviation from the specified null hypothesis (i.e. 
high statistical power) when the null hypothesis is not true. On 
the other hand, the width of the confidence interval and the 
mean squared error (MSE) of an estimated parameter (e.g. 
speedup), gives us some idea about how uncertain we are about 
the unknown parameter. The smaller the width of a confidence 

 

       (a)       (b)          (c) 

Figure 10. Graphic representation of five-number-summaries corresponding 
to the computers in Figure 5.  

 

Figure 11. The sample size effect on the statistical power, MSE and the 
width of confidence interval under various sizes of m.  

Table 9. An illustration of choosing the sample size (m) based on the width of confidence interval. 

m 3 5 7 10 13 15 16 

Bootstrap CI [1.203, 1.228] [1.204, 1.223] [1.207, 1.227] [1.212, 1.228] [1.216, 1.231] [1.216 1.232] [1.217, 1.232] 

CI Width 0.0256 0.0198 0.0194 0.0166 0.0153 0.0155 0.0149 

 



interval (with fixed confidence level, e.g. 95%) and MSE, the 
more precise the estimate is. Hence, the statistical power, MSE 
and the width of confidence interval are widely used to exam-
ine the quality of statistical inference. 

Here, we redo the Monte Carlo simulation study on power, 
described in Section VI.A, with L=1 on the commodity com-
puter (AMD Opteron CPU 6172 @ 2.10GHz,  2 processors, 
each with 12 cores, with 12GB DDR3 RAM(1333 MHz)) using 
different sizes of m, m=3, 5, 7, 10, 15, 20, 30, 50, 100. The top 
panel of the proposed bootstrap estimate with different sizes of 
m. The vertical grey bar indicates the standard deviation of 
MSE. We see that the size of MSE (the smaller the MSE, the 
more accurate the estimate is) and its standard deviation de-
creases with the increase of m. Sometimes we may constrain 
the width of the confidence intervals. For example, we want to 
have a 95% confidence interval with width (i.e. upper limit – 
lower limit) no greater than 0.03. Notice that the smaller the 
width, the more consistency the estimate has. The bottom panel 
of Figure 11 shows the width of 95% confidence interval with 
different size of m. The vertical grey bar indicates the standard 
deviation of width. Similar to MSE, we see that the width of 
confidence interval decreases as m increases. 

The above study shows the statistical properties of the pro-
posed methods by increasing the size m. However, in practice 
we usually don’t know the truth. Hence, the power of the test 
and MSE are unknown. A common way to determine the size 
of m is by setting the width of the confidence interval in ad-
vance. Figure 12 shows the flowchart of selecting the size of m 
in practice based on the predetermined width of confidence 
interval ∆. Basically, we need specify an initial value of m, 
usually a small value like 3, and a threshold for the width of 
confidence interval ∆. Then we sample m measurements for 
each benchmark and computer. We calculate a bootstrapping 
confidence interval based on the sample data. If the width of 
confidence interval is greater than the threshold Δ, then we 
increase the size of m and sample more measurements for each 
benchmark and computer. Then we recalculate the confidence 
interval. We stop sampling when the width of confidence inter-
val is no greater than the predetermined threshold ∆. 

For the example below, we use two computers: A and C de-
scribed in section VI.C. We would like to find the size of m by 
restricting the width of the bootstrapping confidence interval of 
the ratio of geometric means performance speedups to be no 
greater than 0.015. Table 9 shows the bootstrapping confidence 
intervals and corresponding width with various sizes of m. We 
see that the sample size of m should be at least 16 under the 
restriction. 

VIII. APPLICABILITY TO OTHER MEANS 

As a generic framework, our proposed methods can be di-
rectly applied to arithmetic and harmonic means while the HPT 
framework cannot apply since it uses rank instead of any per-
formance metric. We applied the propose methods using these 
three means on an example in which we compare SPEC scores 
of two machines: IBM System x3500 M3 with Intel Xeon 
E5530, and CELSIUS R570 with Intel Xeon X5560, which are 
obtained from SPEC website [26]. Table 10 shows the confi-
dences and confidence intervals using three metrics on the ex-
ample. We see that both harmonic mean and geometric mean 
identify the difference between two computers while arithmetic 
mean cannot. This is because the arithmetic mean is subject to 
extreme values. For example, among 29 benchmarks, 
CELSIUS R570 has 25 benchmarks with a larger mean per-
formance score than their counterparts for IBM System x3500 
M3. However, IBM System x3500 M3 has much higher per-
formance scores in the libquantum and bwaves benchmarks 
than their counterparts in CELSIUS R570. If the two bench-
marks are eliminated from the data, then changes in the confi-
dence and confidence interval using the arithmetic mean are 
much larger than the ones using the geometric and harmonic 
means. 

IX. RELATED WORK 

Over decades, the debate over the method and metrics for 
computer performance evaluation has never ended [4][15][18]. 
Fleming and Wallace [10] argued that using geometric mean to 
summarize normalized benchmark measurements is a correct 
approach while arithmetic mean will lead to wrong conclusions 
in this situation. Smith [24], however, claimed that geometric 
mean cannot be used to describe computer performance as a 
rate (such as mflops) or a time by showing counter examples. 
Furthermore, John [16] advocated using weighted arithmetic 
mean or harmonic mean instead of geometric mean to summa-
rize computer performance over a set of benchmarks. Hennessy 
and Patterson [13] described the pros and cons of geometrics 
mean, arithmetic mean, and harmonic mean. Eeckhout [7] 
summarized that arithmetic and harmonic means can clearly 
describe a set of benchmarks but cannot apply the performance 
number to a full workload space, while geometric mean might 
be extrapolated to a full benchmark space but the theoretic as-
sumption cannot be proven. 

Relying on only a single number is difficult to describe sys-
tem variability stemming from complex hardware and software 
behaviors. Therefore, parametric statistic methods such as con-
fidence interval and t-test have been introduced to evaluate 
performance [17][1]. Nevertheless, Chen et al. [3] demonstrat-
ed that these parametric methods in practice require a normal 
distribution of the measured population which is not the case 
for computer performance. In addition, the number of regular 
benchmark measurements from SPEC or PARSEC is usually 
not sufficient to maintain a normal distribution for the sample 
mean. Therefore, Chen et al. [3] proposed a non-parametric 
Statistic Hypothesis Tests to compare computer performance. 
As demonstrated in the paper, our proposed resampling meth-
ods can identify smaller differences between two computers 
even in a situation where a single test is not enough to reveal it.  

Measuring

Bootstrapping 
CI

Is CI width 
greater than Δ?   

Input Δ and
initial m value

No
Stop

No

Yes Increase m
value

 

Figure 12. Flowchart of choosing the sample size based on the width of 
confidence interval.  



Oliveira et al. [22] applied quantile regression to the non-
normal data set and gained insights in computer performance 
evaluation that Analysis of variance (ANOVA) would have 
failed to provide. Curtsinger and Berger [5] proposed 
STABILIZER to control the layout effects by repeatedly ran-
domizing the layouts of code, stack, and heap objects in the 
sample space of memory configurations at runtime. Our ap-
proach considers different variation sources (non-deterministic 
or deterministic behaviors) for the fixed computer configura-
tions and handles the non-normality by using resampling tech-
nique such as boostrapping and permutation. 

Patil and Lilja [23] demonstrated the usage of resampling 
and Jackknife in estimating the harmonic mean of an entire 
dataset. Unlike their approach, we applied resampling methods 
on a more complicated situation - comparing two computers on 
multiple benchmarks with multiple measurements. Hence, the 
bootstrapping method in our paper is different from the one in 
[23]. Namely, we bootstrap the samples within each benchmark 
instead of on the entire dataset.  

X. CONCLUSION
i
 

We propose a randomization test framework for achieving a 
both accurate and practical comparison of computer architec-
tures performance. In the proposed test, we adopt within- 
benchmark-resampling which does not require a few distribu-
tional assumptions needed by parametric tests and HPT, such 
as the normality, independence and homogeneity assumptions 
between benchmarks.  

We also propose a bootstrapping confidence interval esti-
mation framework for estimating a confidence interval on a 
quantitative measurement of comparative performance between 
two computers. Like randomization test, the proposed boot-
strapping method relaxes the distributional assumptions re-
quired by parametric tests and HPT through within-benchmark-
resampling. We illustrate the proposed methods through both 
Monte Carlo simulations where the truth is known and real 
applications.  

Interestingly, even though geometric mean as a single num-
ber cannot describe the performance variability, we find that 
the ratio of geometric means between two computers always 
falls into the range of Boosted Confidence Intervals in our ex-
periments. This implies that geometric mean is still a good in-
dicator to quantify the performance difference between two 
computers. 

We also illustrate and compare the three metrics (geomet-
ric, arithmetic and harmonic means) on the motivating example 
and show that using arithmetic mean is sensitive to extreme 
values in the dataset. 

In cases where two computers have very close performance 
metrics, we propose using empirical distribution to evaluate 
computer performance and using five-number-summary to 
summarize the computer performance. 
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Table 10. Summary of comparing geometric, harmonic and arithmetic means 
on confidence and confidence interval (CI). 

 G-Mean H-Mean A-Mean 

Confidence >0.99 >0.99 0.492 

CI [0.913, 0.920] [0.887, 0.892] [1.019, 1.031] 

Confidence* >0.99 >0.99 >0.99 

CI* [0.882, 0.889] [0.881, 0.886] [0.880, 0.889] 

* Confidence and confidence interval after eliminating the libquantum and 

bewaves benchmarks. 
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