
Coterminous Locality and Coterminous Group Data Prefetching on

Chip-Multiprocessors

Xudong Shi1, Zhen Yang1, Jih-Kwon Peir1, Lu Peng2, Yen-Kuang Chen3, Victor Lee3, Bob Liang3

 1Computer & Information Science & Engineering 2Electrical & Computer Engineering
 University of Florida Louisiana State University

 Gainesville, FL 32611, USA Baton Rouge, LA 70803, USA
 {xushi, zhyang, peir}@cise.ufl.edu lpeng@lsu.edu

3Architecture Research Lab
Intel Corporation

Santa Clara, CA 95052, USA
{yen-kuang.chen, victor.w.lee, bob.liang}@intel.com

Abstract

Due to shared cache contentions and interconnect
delays, data prefetching is more critical in alleviating
penalties from increasing memory latencies and demands
on Chip-Multiprocessors (CMPs). Through deep analysis
of SPEC2000 applications, we find that a part of the
nearby data memory references often exhibit highly-
repeated patterns with long, but equal block reuse
distance. These references can form a coterminous group
(CG). Coterminous locality is introduced as that when a
member in a CG is referenced, the remaining members
will likely be referenced in the near future. Based on the
coterminous locality behavior, we implement a novel CG
data prefetcher on CMPs. Performance evaluations show
that the proposed prefetcher can accurately cover up to
40-50% of the total misses, and result in 50-60% of
potential performance improvement for several selected
workload mixes.

1. Introduction

 As VLSI circuit integration continues to advance with
deep submicron technology, billions of transistors will be
available in a single processor die with a clock frequency
exceeding 10 GHz. Because of limited Instruction-Level
Parallelism (ILP), design complexities, as well as high
energy/power consumptions, further expanding wide-
issued, out-of-order single-core processors with huge
instruction windows and super-speculative execution
techniques will suffer diminishing returns. It becomes a
norm that processor dies will contain multiple cores with

shared caches for a higher chip-level Instruction-Per-
Cycle (IPC) [25,27]. In a Chip-Multiprocessor (CMP),
however, contentions of shared resources significantly
hamper performance of individual threads and hinder
exploiting parallelism from multiple threads [14].
 Speculative data prefetching techniques become more
critical on CMPs for hiding the longer memory latency
problem from heavier cache contentions and limited
memory bandwidth. Traditional data prefetching based on
cache miss correlations [6,11] faces serious obstacles.
First, each cache miss often has several potential
successive misses and prefetching multiple successors is
inaccurate and expensive. Such incorrect speculations are
more harmful on CMPs, wasting memory bandwidth and
polluting critical shared caches. Second, consecutive
cache misses can be separated by few instructions. It
could be too late to initiate prefetches for successive
misses. Third, reasonable miss coverage requires long
history which translates to more power/area.
 For the purpose of accuracy and timeliness, stream-
based approaches dynamically identify repeated streams
of cache misses [8,9,31]. The hot-stream prefetcher [8,9]
profiles and analyzes sampled memory traces on-line to
identify frequently repeated sequence (hot streams). Hot
streams are prefetched by prefetching instructions inserted
into the binary. However, periodic profiling, analysis, and
binary code insertions incur execution overheads, which
may become excessive for streams with long reuse
distances. The temporal-stream prefetcher [31] identifies
recent streams that start with the current miss and
prefetches the most probable stream with repeated miss
sequences. However, a large FIFO buffer is required to
record the miss history for identifying streams.

1-4244-0054-6/06/$20.00 ©2006 IEEE

 In this paper, we propose a Coterminous Group (CG)
based data prefetching technique on CMPs to improve the
overall system performance. Our analysis of SPEC
applications shows that adjacent traversals of various data
structures, such as arrays, trees and graphs, often exhibit
temporal repeated memory access patterns. A unique
feature of these nearby accesses is that they exhibit a long
but equal reuse distance. We define such a group of
memory references as a Coterminous Group (CG) and the
highly repeated access patterns among members in a CG
as coterminous locality. The CG-prefetcher identifies and
records highly repeated CGs in a small buffer for accurate
and timely prefetches for members in a group.
 The paper makes three main contributions. First, we
demonstrate the severe cache contention problem with
various mixes of SPEC2000 applications, and describe the
necessities and the challenges of data prefetching on
CMPs. Second, we discover the existence of coterminous
groups in these applications and quantify the highly
repeated coterminous locality among members in a CG.
Third, based on coterminous group, we develop a new
prefetching scheme, CG-prefetcher, and present a realistic
implementation by integrating the CG-prefetcher into the
memory controller. Full system evaluations have shown
that the proposed CG-prefetcher can accurately prefetch
the needed data in a timely manner on CMPs. It generates
about 10-40% extra traffic to achieve 20-50% of miss
coverage in comparison with 2.5 times more extra traffic
by a correlation-based prefetcher with a comparable miss
coverage. The CG-prefetcher also shows better IPC
improvement than the correlation-based or the stream-
based prefetchers.
 The remainder of this paper is organized as follows.
Section 2 describes the severe cache contention problems
on CMPs. Section 3 shows the coterminous group and
coterminous locality. Section 4 develops the basic design
of the memory-side CG-prefetcher. Section 5 presents the
simulation methodology. This is followed by performance
evaluations in Section 6. Related work is given in Section
7 followed by a brief conclusion in Section 8.

2. Cache Contentions on CMPs

 Figure 1 shows the IPCs of a set of SPEC2000
workloads that are running independently, or in parallel
on 2- or 4-core CMPs. The first three groups are 4-
workload mixes of Art/Mcf/Ammp/Twolf, Art/Mcf
/Vortex/Bzip2, and Twolf/Parser/Vortex/Bzip2. The first
group consists of workloads with heavier L2 misses; the
second group mixes workloads with heavier and lighter
L2 penalties; and the third group has workloads with
lighter L2 misses. For each group, the workloads are
ordered by high-to-low L2 miss penalties from left to
right in their appearance. We also run nine 2-workload
mixes, also ranging from high-to-low L2 miss penalties,

including Art/Mcf, Mcf/Mcf, Mcf/Ammp, Art/Twolf,
Mcf/Twolf, Mcf/Bzip2, Twolf/Bzip2, Parser/Bzip2, and
Bzip2/Bzip2. Detailed descriptions of the simulation
model and workload selection will be given in Section 5.
 Significant IPC reductions can be observed on
individual workloads when they run in parallel, especially
for the workload mixes with high contentions on shared
caches. For example, when Art/Mcf/Ammp/Twolf are
running on four cores, the individual IPCs drop from
0.029, 0.050, 0.132, and 0.481 to 0.022, 0.026, 0.043, and
0.181 respectively. Instead of accumulating the overall
IPCs on four cores, the IPC is dropped to only 40% from
0.69 to 0.27. Similar effects of various degrees can also
be observed with two cores. These significant IPC
degradations demand for accurate prefetchers to alleviate
heavier cache contentions and misses on CMPs.

3. Coterminous Group and Locality

 A Coterminous Group (CG) consists of nearby data
references with same block reuse distances. The block
reuse distance is defined as the number of distinct data
blocks that are referenced between two consecutive
references to the same block. For instance, consider the
following accessing sequence: a b c x d x y z a b c y d.
The reuse distances of a-a, b-b, c-c and d-d are all 6,
whereas x-x is 1 and y-y is 4. In this case, a b c d can
form a CG. References in a CG have three important
properties. First, the order of references must be exactly
the same at each repetition (e.g. d must follow c, c follows
b and b follows a). Second, references in a CG can
interleave with other references (e.g. x, y). These
references, however, are difficult to predict accurately,
and will be excluded by the criteria of same distance.
Third, the same reference (i.e. to the same block) usually
does not appear twice in one CG.
 Figure 2 plots reuse distances of 3000 nearby
references from three SPEC2000 applications. The
existence of CGs is quite obvious from these snapshots.
Mcf has a huge CG with a reuse distance of over 60,000.
Ammp shows four large CGs along with a few small ones.
And Parser has many small CGs. Note that references
with short reuse distances (e.g. < 512), which are usually
covered by temporal and spatial localities, are filtered.
Other applications also show the CG behavior. We only
present three examples due to the space limit.
 Based on these behaviors, we conclude that members
in a CG exhibit a highly repeated access pattern, i.e.
whenever a member in a CG is referenced, the remaining
members will likely be referenced in the near future
according to the previous accessing sequence. We call
such highly repeated patterns coterminous locality.

We can quantify the coterminous locality by measuring
the pair-wise correlation A->B between adjacent
references in a CG. (This is similar to the miss correlation

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
Workload1 Workload2 Workload3 Workload4

Art/M cf /

Ammp/Twol

Art/Mcf/

Vortex/Bzip2

Twolf/Parser/

Vortex/Bzip2

Art/

M cf

Mcf/

M cf

Mcf/

Amm

Art/

Twolf

M cf/

Twolf

M cf/

Bzip2

Twolf/

Bzip2

Parser/

Bzip2

Bzip2/

Bzip2

1.99 2.12
IP

C

Figure 1. IPCs of workload mixes on CMPs

Figure 2. Reuse distances of three SPEC 2000 applications

in [6,11].) In measuring the locality, up to four successors
of each reference are kept based on the LRU replacement.
The accuracy of B being referenced immediately after the
re-reference of A provides a good locality measurement.
When a match to the successor in the MRU position
indicates a repeated reference of A followed by B.
 We also relax the reuse distance requirement. CG-N
represents CGs, in which nearby references with reuse
distances that are within ±N. CG-0 represents the original
same-distance CG, while CG- has a single CG that
includes all references with long block reuse distances.
 Figure 3 shows the accumulated percentages of repeats
to the four successors, with two different scales of Y-axis
to improve readability. In general, the results exhibit
strong repeated reference behaviors among members in a
CG. Due to array accesses, Ammp shows nearly perfect
correlations regardless of the reuse distance requirement.
Art exhibits high correlations, especially for CG-0. All
others also demonstrate strong correlations. As expected,
CG-0 shows stronger correlations than other weaker
forms of CGs, while CG- , which is essentially the same
as the adjacent cache-miss correlation, shows very poor
correlations. The gap between CG-0 and CG-2/CG-4/CG-
8 is rather narrow in Mcf, Vortex, and Bzip2, suggesting a
weaker form of CGs may be preferable for covering more
references. A large gap is observed between CG-0 and
other CGs in Twolf, Parser, and Gcc indicating CG-0 is
more accurate for prefetching.

4. Memory-side CG-prefetcher on CMPs

 Based on existences of highly-repeated coterminous
locality within members in CGs, we design and integrate
a CG-prefetcher in CMP memory controllers. Although it
is suitable on uni-processor systems too, the accurate CG-
prefetcher is more appealing on emerging CMPs due to
extra resource contentions and constraints.

4.1. Basic Design of CG-Prefetcher

 The structure of a CG-prefetcher is illustrated in Figure
4. A Request FIFO records the block addresses and their
reuse distances of recent memory requests. A CG starts to
form once the number of requests with the same reuse
distance in the Request FIFO exceeds a certain threshold.
The threshold controls the aggressiveness of forming a
new CG, and the size of the FIFO determines the
adjacency of members. A flag is associated with each
request indicating whether the request is matched. The
matched requests in the FIFO are copied into a CG Buffer
waiting for the CG to be formed. The size of the CG
buffer determines the maximum number of members in a
CG, which can control the timeliness of prefetches. A
small number of CG Buffers allows multiple CGs to be
formed concurrently. A CG is completed when either the
CG Buffer is full or a new CG is identified from the
Request FIFO. In either case, the old CG is moved to the

Art

0.8

0.84

0.88

0.92

0.96

1

MRU 2 3 4

CG-0
CG-2
CG-4
CG-8
CG-infF

ra
c

ti
o

n
 o

f
R

ep
e

a
t

Mcf

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MRU 2 3 4

Ammp

0.8

0.84

0.88

0.92

0.96

1

MRU 2 3 4

Twolf

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MRU 2 3 4

Parser

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MRU 2 3 4

CG-0
CG-2
CG-4
CG-8
CG-infF

ra
ct

io
n

 o
f

R
ep

ea
t

Gcc

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MRU 2 3 4

Vortex

0.8

0.84

0.88

0.92

0.96

1

MRU 2 3 4

Bzip2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MRU 2 3 4

Figure 3. Correlations of adjacent references within CGs

Figure 4. Structure of CG prefetcher

Coterminous Group History Table (CGHT), a set-
associative directory indexed by block addresses. A
unidirectional pointer in each entry links the members in a
CG. This link-based CGHT permits fast searching of a
CG from any member in the group. When the CGHT
becomes full, either the LRU entries are replaced and
removed from the existing CGs, or the conflicting new
CG members are dropped to avoid potential thrashing.
 Once a L2 miss hits the CGHT, the entire CG can be
identified and prefetched by following the circular links.
In Figure 4, for instance, a miss to block F will trigger
prefetches of A, B, C, D, and E in order. Note that a block
can appear in more than one CG in the CGHT. This is
because a block reference can leave a CG and become a
member of a new CG, while the CGHT may still keep the
old CG. On multiple hits, either the most recent CG or all
the matched CGs may be prefetched. Any existing CGs
can change dynamically over a period of time. Updating
CGs dynamically is difficult without precise information
on when a member leaves or joins a group. Another
option is to simply flush the CGHT periodically based on
the number of executed instructions, memory references,

or cache misses. However, a penalty will be paid to
reestablish the CGs after each flush.

4.2. Integrating CG-prefetcher on CMP

Memory Systems

 There are attractive features of a memory-side CG-
prefetcher [26]. First, it minimizes changes to the
complex processor pipeline along with any associated
performance and space overheads. Second, it may use the
DRAM array to store necessary state information with
minimum cost. A recent trend is to integrate the memory
controller in the processor die to reduce interconnect
latency. Nevertheless, such integration has minimal
performance implication on implementing the CG-
prefetcher in the memory controller.
 The first key issue for a memory-side CG-prefetcher is
to determine the block reuse distance without seeing all
processor requests at the memory controller. A global
miss sequence number is used. The memory controller
assigns and saves a new sequence number to each missed
memory block in the DRAM array. The reuse distance
can be approximated as the difference of the new and the
old sequence numbers. For a 128-byte block with a 16-bit
sequence number, a reuse distance of 64K blocks, or an
8MB working set can be covered. The memory overhead
is merely 1.5%. When the same distance requirement is
relaxed, one sequence number can be for a small number
of adjacent requests, which will expand the working set
coverage and/or reduce the space requirement.
 Figure 5 shows the CG-prefetcher in memory system.
To avoid regular cache-miss requests from different cores
disrupting one another for establishing the CGs [28], we
construct a private CG-prefetcher for each core. Each CG-
prefetcher has a Prefetch Queue (PQ) to buffer the
prefetch requests (addresses) from the associated
prefetcher. A shared Miss Queue (MQ) stores regular miss

requests from all cores for accessing the DRAM channels.
A shared Miss Return Queue (MRQ) and a shared
Prefetch Return Queue (PRQ) buffers the data from the
miss requests and the prefetch requests for accessing the
memory bus. We implement a private PQ to prevent
prefetch requests of one core from blocking those from
other cores. The PQs have lower priority than the MQ.
Among the PQs, a round-robin fashion is used. Similarly,
the PRQ has lower priority than the MRQ in arbitrating
the system bus. Each CG-prefetcher maintains a separate
sequence number for calculating the block reuse distance.
 When a regular miss request arrives, all the PQs are
searched. In case of a match, the request is removed from
the PQ and is inserted into the MQ, gaining a higher
priority to access the DRAM. In this case, there is no
performance benefit since the prefetch of the requested
block has not been initiated. If a matched prefetch request
is in the middle of fetching the block from the DRAM, or
is ready in the PRQ, waiting for the shared data bus, the
request will be redirected to the MRQ for a higher priority
to arbitrate the data bus. Variable delay cycles can be
saved depending on the stage of the prefetch request. The
miss request is inserted into the MQ normally when no
match is found.
 A miss request can trigger a sequence of prefetches if it
hits the CGHT. The prefetch requests are inserted into the
corresponding PQ. If the PQ or the PRQ is full, or if a
prefetch request has been initiated, the prefetch request is
simply dropped. In order to filter the prefetched blocks
already located in processor’s cache, a topologically
equivalent directory of the lowest level cache is
maintained in the controller (not shown in Figure 5). The
directory is updated based on misses, prefetches, and
write-backs to keep it close to the cache directory. A
prefetch is dropped in case of a match. Note that all other
simulated prefetchers incorporate the directory too.

5. Evaluation Methodology

5.1. Simulators and Parameters

 We use Virtutech Simics 2.0, a full-system execution-
driven simulator, to model an out-of-order Pentium 4
Linux machine. Simics is configured to support chip
multiprocessors, with each core having its own L1 cache
and all cores sharing a unified L2 cache. We add a g-
share branch predictor and an independent stride
prefetcher to each core.
 We implement a cycle-by-cycle event-driven memory
simulator to accurately model the memory system. Multi-
channel DDR SDRAM is simulated. The DRAM accesses
are pipelined whenever possible. A cycle-accurate, split-
transaction processor-memory bus is also included. All
timing delays of misses and prefetches are carefully
simulated. Due to a slower clock of the memory controller,

Figure 5. Basic design of a memory-side CG

the memory-side prefetchers initiate one prefetch every
10 processor cycles. Table 1 summarizes the important
simulation parameters.

5.2. Workload Selection

 We use several mixtures of SPEC2000 benchmark
workloads based on the classification of memory-bound
and CPU-bound workloads [32]. The memory-bound
workloads are Art, Mcf, and Ammp, while the CPU-bound
workloads are Twolf, Parser, Vortex, and Bzip2. The first
category of workload mixes, MEM, includes memory-
bound workloads; the second category of workload mixes,
MIX, consists of both memory-bound and CPU-bound
workloads; and the third category of workloads, CPU,
contains only CPU-bound workloads. We choose the ref
input set for all the SPEC2000 workloads. Table 2
summarizes the selected workload mixes.
 We skip certain instructions for each individual
application in a mix based on studies done in [22], and
run the workload mix for another 100 million instructions
for warming up the caches. A Simics checkpoint for each
mix is generated afterwards. We run our base simulator,
without any memory-side prefetcher, until any application
in a mix has executed at least 100 million instructions for
collecting instruction distributions [24]. Such instruction
distributions are then applied to all prefetchers to collect
statistics.

5.3. Prefetcher Configurations

 The performance results of the proposed CG-prefetcher
are presented and compared against a pair-wise miss-
correlation prefetcher (MC-prefetcher), a prefetcher based
on the last miss stream (LS-prefetcher), and a hot-stream
prefetcher (HS-prefetcher). A processor-side stride
prefetcher is included in all simulated prefetchers.

Processor-side Stride Prefetcher: It has 4k-entry PCs
with each entry maintaining four previous references of

CMP: 2 or 4 cores, 3.2GHz
ROB size: 128
Fetch/Exec/Retire/Commit width: 4 / 7 / 5 / 3
Branch predictor: G-share, 64KB, 4K BTB
Branch misprediction penalty: 10 cycles
Processor side prefetcher: Stride

L1-I: 64KB, 4-way, 64B Line, MESI
L1-D: 64KB, 4-way, 64B Line, MESI
L2: 1MB, 8-way, 64B Line
L1-I/L1-D/L2 latency: 0/2/15 cycles
L1/L2 MSHR size: 16/16
Memory latency: 432 cycles
DRAM channels: 2/4/8/16
Queue size (MQ, PQn, PRQ, MRQ) : 16
Memory side prefetcher: None/CG/MC/HS/LS
DRAM access latency: 180 cycles
Interconnection latency: 220 cycles
History table search latency: 10 cycles/entry
Memory bus: 8-byte, 800MHz, 6.4GB/s

Table 1. Simulation parameters

 MEM MIX CPU

Four Art/Mcf/
Ammp/Twolf

Art/Mcf/
Vortex/Bzip2

Twolf/Parser/
Vortex/Bzip2

Art/Mcf Art/Twolf Twolf/Bzip2

Mcf/Mcf Mcf/Twolf Parser/Bzip2 Two

Mcf/Ammp Mcf/Bzip2 Bzip2/Bzip2

Table 2. Selected workload mixes

that PC. Four successive prefetches are issued, whenever
four stride distances of a specific PC are matched [15].

Memory-side MC-prefetcher: Each core has a MC-
prefetcher with a 128k-entry 8 set-associative history
table. Each miss address (each entry) records 2 successive
misses. Upon a miss, the MC-prefetcher prefetches two
levels in depth, resulting in a total of up to 6 prefetches.

 Memory-side HS-prefetcher: The HS-prefetcher is
simulated based on a Global History Buffer [20,31] with
128k-entry FIFO and 64k-entry 16 set-associative miss
index table for each core. Each FIFO entry consists of a
26-bit block address and a 17-bit pointer that sequentially
links the entries with the same miss address. On every
miss, the index and the FIFO are searched sequentially to
find all recent streams that begin with the current miss. If
the first 3 misses of any two streams match, the matched
stream is prefetched. The length of each stream is 8.

 Memory-side LS-prefetcher: The LS-prefetcher is a
special case of the HS-prefetcher, where the last miss
stream is prefetched without any further qualification.

 Memory-side CG-Prefetcher: We use CG-2 to get
both high accuracy and decent coverage of misses. The
CGHT is 16k entries per core, with 30 bits (16-way set-
associative) per entry. We use a 16-entry Request FIFO

 Memory Controller (SRAM) per core DRAM

CG 60KB(16K*30bit/8) 3%

MC 2MB(128K*2*64bit/8) 0

HS 920KB(128K*43bit/8+64K*29bit/8) 0

LS 920KB(128K*43bit/8+64K*29bit/8) 0

Table 3. Space overhead for various prefetchers

and four 8-entry CG-Buffers. A CG can be formed once
three memory requests in the Request FIFO satisfy the
reuse distance requirement. Each CG contains up to 8
members. The CGHT is flushed periodically every 2
million misses from the corresponding core.
 Table 3 summarizes the extra space overhead to
implement various prefetchers.

6. Performance Evaluation

6.1. IPC Improvement and Miss Reductions

 In Figure 6, the IPC speedups of Stride-only, MC, HS,
LS, and CG prefetchers with respect to the baseline model
are presented. (IPCs for the baseline model were given in
Figure 1.) Each IPC-speedup bar is broken into the
contributions made by individual workloads in the mix.
The total height represents the overall IPC speedup.
 Several observations can be made. First, most
workload mixes show performance improvement for all
five prefetching techniques. In general, the CG has the
highest overall improvement, followed by the LS, the HS,
and the MC prefetchers. Two workload mixes Art/Twolf
and Mcf/Twolf show a performance loss for most
prefetchers. Our studies indicate that Twolf has irregular
patterns, and hardly benefits from any of the prefetching
schemes. Although Art and Mcf are well performed, the
higher IPC of Twolf dominates the overall IPC speedup.
Second, the CG-prefetcher is a big winner for the MEM
workloads with speedup of 40% in average, followed by
the LS with 30%, the HS with 24% and the MC with 18%.
The MEM workloads exhibit heavier cache contentions
and misses. Therefore, the accurate CG-prefetcher
benefits the most for this category. Third, the CG-
prefetcher generally performs better in the MIX and the
CPU categories. However, the LS-prefetcher slightly
outperforms the CG-prefetcher in a few cases. With
lighter memory demands in these workload mixes, the
LS-prefetcher can deliver more prefetched blocks with a
smaller impact on cache pollutions and memory traffic.
 It is important to note that the measured IPC speedup
creates an unfair view when comparing mixed workloads
on multi-cores. For example, in Art/Mcf/Vortex/Bzip2, the
IPC speedups of individual workloads are measured at
3.16, 1.41, 0.82, and 1.42 for the CG-prefetcher, and 2.39,
1.22, 0.86, and 1.49 for the MC-prefetcher. Therefore, the

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

S
tr
id

e
M

C
H

S
L
S

C
G

S
tr
id

e
M

C
H

S
L
S

C
G

S
tr
id

e
M

C
H

S
L
S

C
G

S
tr
id

e
M

C
H

S
L
S

C
G

S
tr
id

e
M

C
H

S
L
S

C
G

S
tr
id

e
M

C
H

S
L
S

C
G

S
tr
id

e
M

C
H

S
L
S

C
G

S
tr
id

e
M

C
H

S
L
S

C
G

S
tr
id

e
M

C
H

S
L
S

C
G

S
tr
id

e
M

C
H

S
L
S

C
G

S
tr
id

e
M

C
H

S
L
S

C
G

S
tr
id

e
M

C
H

S
L
S

C
G

Art / Mcf /

Ammp / Twolf

 Art / Mcf /

Vortex / Bzip2

 Twolf / Parser

/ Vortex /

Bzip2

Art / Mcf Mcf / Mcf Mcf / Ammp Art / Twolf Mcf / Twolf Mcf / Bzip2 Twolf / Bzip2 Parser / Bzip2 Bzip2 / Bzip2

Workload1 Workload2 Workload3 Workload4
IP

C
 S

p
e
ed

u
p

Figure 6. IPC speedups of Stride, MC, HS, LS, CG prefetchers (Normalized to baseline IPC)

average speedups of the four workloads are 1.70 and 1.49
for the two prefetchers. However, their measured IPC
speedups are only 1.20 and 1.22. Given the fact that
Vortex and Bzip2 have considerably higher IPC than those
of Art and Mcf, the overall IPC improvement is dominated
by the last two workloads. This is true for other workload
mixes. In Figure 7, the average speedup of two MEM and
two MIX workload mixes are shown. Comparing with the
measured speedups, significantly higher average speedups
are achieved by all prefetchers. For Art/Twolf, the average
IPC speedups are 48%, 44%, 52% and 51% for the
respective MC, HS, LS and CG prefetchers, instead of -
14%, -15%, -9%, and -10% as shown in Figure 6.

In contrast to the MC- and the LS-prefetcher, the HS-
and the CG-prefetcher carefully qualify members in a
group that show highly repeated patterns for prefetching.
The benefit of this accuracy is evident in Figure 8. The
total memory accesses are classified into 5 categories for
each prefetcher: misses, partial hits, miss reductions (i.e.
successful prefetches), extra prefetches, and wasted
prefetches. The sum of the misses, partial hits, and miss
reductions is equal to the baseline misses without
prefetching, which is normalized to 1 in the figure. The
partial hits mean latency reductions to misses due to
earlier but incomplete prefetches. The extra prefetches
represent the prefetched blocks that are replaced before
any usage. The wasted prefetches refer to the prefetched
blocks that are presented in cache already. Overall, all
prefetchers show a significant reduction of cache misses
ranging from a few percent to as high as 50%.
 The MC- and the LS-prefetcher generate significantly
higher memory traffic than the HS- and the CG-
prefetcher. On the average, the HS-, the CG-, the LS- and
the MC-prefetcher produce about 4%, 21%, 35%, and
52% extra traffic respectively. The excessive memory
traffic by the LS- and the MC-prefetcher does not turn
proportionally into a positive reduction of the cache miss.
In some cases, the impact is negative mainly due to the
cache pollution problem on CMPs. Between the two, the

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Art / Mcf /

Ammp / Twolf

 Art / Mcf /

Vortex / Bzip2

Mcf / Ammp Art / Twolf

Stride MC HS LS CG

A
v
er

a
g
e

S
p
ee

d
u
p

Figure 7. Average speedup of 4 workload mixes

LS-prefetcher is more effective than the MC-prefetcher
indicating prefetching multiple successor misses may not
be a good idea. The HS-prefetcher has the highest
accuracy. However, the low miss coverage limits its
overall IPC improvement.

6.2. Sensitivity Studies

 The distance constraint of forming a CG is simulated
and the performance results of CG-0, CG-2 and CG-8 are
plotted in Figure 9. With respect to the measured IPC
speedups, the results are mixed. We selected CG-2 to
represent the CG-prefetcher due to its slightly better IPCs
than that of CG-0 with considerably less traffic than that
of CG-8. Note that we omit CG-4, which has similar IPC
speedup in comparison with CG-2, but generates more
memory traffic.
 The impact of group size is evaluated as shown in
Figure 10. Two workload mixes in the MEM category,
Art/Mcf/Ammp/Twolf and Mcf/Ammp, and two in the MIX
category, Art/Mcf/Vortex/Bzip2 and Art/Twolf are chosen
due to their high memory demand. The measured IPCs
decrease slightly or remain unchanged for the two 4-
workload mixes, while they increase slightly with the two

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

M
C

H
S

L
S

C
G

M
C

H
S

L
S

C
G

M
C

H
S

L
S

C
G

M
C

H
S

L
S

C
G

M
C

H
S

L
S

C
G

M
C

H
S

L
S

C
G

M
C

H
S

L
S

C
G

M
C

H
S

L
S

C
G

M
C

H
S

L
S

C
G

M
C

H
S

L
S

C
G

M
C

H
S

L
S

C
G

M
C

H
S

L
S

C
G

Art / Mcf /

Ammp / Twolf

 Art / Mcf /

Vortex / Bzip2

 Twolf / Parser

/ Vortex /

Bzip2

Art / Mcf Mcf / Mcf Mcf / Ammp Art / Twolf Mcf / Twolf Mcf / Bzip2 Twolf / Bzip2 Parser / Bzip2 Bzip2 / Bzip2

Misses Partial hits Miss reduction Extra prefetch Wasted prefetch
P
re

fe
tc

h
 A

c
c
u
ra

c
y
 &

 C
o
v
e
ra

g
e

Figure 8. Prefetch accuracy and coverage of simulated prefetchers

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

C
G

0
C

G
2

C
G

8

C
G

0
C

G
2

C
G

8

C
G

0
C

G
2

C
G

8

C
G

0
C

G
2

C
G

8

C
G

0
C

G
2

C
G

8

C
G

0
C

G
2

C
G

8

C
G

0
C

G
2

C
G

8

C
G

0
C

G
2

C
G

8

C
G

0
C

G
2

C
G

8

C
G

0
C

G
2

C
G

8

C
G

0
C

G
2

C
G

8

C
G

0
C

G
2

C
G

8

Art/

Mcf/

Ammp/

Twolf

 Art /

Mcf /

Vortex

/ Bzip2

 Twolf/

Parser/

Vortex/

Bzip2

Art/

Mcf

Mcf/

Mcf

Mcf/

Ammp

Art/

Twolf

Mcf/

Twolf

Mcf/

Bzip2

Twolf/

Bzip2

Parser/

Bzip2

Bzip2/

Bzip2

Workload1 Workload2 Workload3 Workload4

IP
C

 S
p
ee

d
u
p

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

C
G

0
C

G
2

C
G

8

C
G

0
C

G
2

C
G

8

C
G

0
C

G
2

C
G

8

C
G

0
C

G
2

C
G

8

C
G

0
C

G
2

C
G

8

C
G

0
C

G
2

C
G

8

C
G

0
C

G
2

C
G

8

C
G

0
C

G
2

C
G

8

C
G

0
C

G
2

C
G

8

C
G

0
C

G
2

C
G

8

C
G

0
C

G
2

C
G

8

C
G

0
C

G
2

C
G

8

Art/

Mcf/

Ammp/

Twolf

 Art/

Mcf/

Vortex/

Bzip2

 Twolf/

Parser/

Vortex/

Bzip2

Art/

Mcf

Mcf/

Mcf

Mcf/

Ammp

Art/

Twolf

Mcf/

Twolf

Mcf/

Bzip2

Twolf/

Bzip2

Parser/

Bzip2

Bzip2/

Bzip2

Misses Partial hits Miss reduction Extra prefetch Wasted prefetch

P
re

fe
tc

h
 A

cc
u
ra

c
y

Figure 9. Effect of distance constrains: (Left) Measured IPC speedup; (Right) Accuracy and traffic

2-workload mixes. Due to cache contentions, larger
groups generate more useless prefetches. The group size
of 8 shows a balance of high IPCs with low overall
memory traffic.
 Figure 11 plots the average speedup of CG with respect
to Stride-only for different L2 cache sizes from 512KB to
4MB. As observed, the four workload mixes behave very
differently with respect to different L2 sizes. For
Art/Mcf/Vortex/Bzip2 and Art/Twolf, the average IPC
speedups are peak at 1MB and 2MB respectively, and
then drop sharply afterwards because of a sharp reduction
of cache misses with larger caches. However, for the
memory-bound workload mixes, Art/Mcf/Ammp/Twolf
and Mcf/Ammp, the average speedups of median-size L2
are slightly less than those of smaller and larger L2. With
smaller caches, the cache contention problem is so severe
that a small percentage of successful prefetches can lead
to significant IPC speedups. For median size caches, the
impact of delaying normal miss due to conflicts with
prefetches begins to compensate the benefit of
prefetching. When the L2 size continues to increase, the

number of misses decreases and it diminishes the effect of
accessing conflicts. As a result, the average speedup
increases again.
 Given a higher demand for accessing the DRAM for
the prefetching methods, we perform a sensitivity study
on the DRAM channels as shown in Figure 12. The
results indicate that the number of DRAM channels does
show impacts on the IPCs and more so to the memory-
bound workload mixes. All four workload mixes perform
poorly with 2 channels. However, the improvements are
saturated about 4 to 8 channels.

7. Related Work

 The single-chip multiprocessor was first presented in
[21]. Since then, many companies have announced their
multi-core products [2,13,18,1,19]. Trends, opportunities,
and challenges for future chip multiprocessors have
appeared in keynote speeches, as well as in special
columns of recent conferences and professional journals
[3,25,27,4], which have inspired the studies in this paper.

4 8 12 16
Group Size

Art/Mcf/Ammp/Twolf Art/Mcf/Vortex/Bzip2
Mcf/Ammp Art/Twolf

IP
C

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1.6

1.65

1.7

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

4 8 1
2

1
6 4 8 1
2

1
6 4 8 1
2

1
6 4 8 1
2

1
6

Art / Mcf /

Ammp / Twolf

 Art / Mcf /

Vortex / Bzip2

Mcf / Ammp Art / Twolf

Misses Partial hits Miss reduction
Extra prefetch Wasted prefetch

P
re

fe
tc

h
 A

cc
u
ra

cy

Figure 10. Effect of group size: (left) Measured IPCs; (right) Accuracy and traffic

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

512K 1M 2M 4M
L2 Size

Art/Mcf/Ammp/Twolf Art/Mcf/Vortex/Bzip2
Mcf/Ammp Art/Twolf

A
v
er

a
g
e

S
p
ee

d
u
p

2 4 8 16

Memory Channel

Art/Mcf/Ammp/Twolf Art/Mcf/Vortex/Bzip2
Mcf/Ammp Art/Twolf

IP
C

0

0.1

0.2

0.3

0.4

1.2

1.3

1.4

1.5

1.6

1.7

1.8

 Figure 11. Effect of L2 size Figure 12. Effect of memory channels

Many uni-processor data prefetching schemes have
been proposed in the last decade [29,6,20,30]. Traditional
sequential or stride prefetchers work well for workloads
with regular spatial access patterns [7,12,15]. Prior
correlation-based predictors (e.g. Markov predictor [11, 6]
and Global History Buffer [20]) record and use past miss
correlations to predict future cache misses. However, a
huge history table or FIFO is usually needed to provide
decent coverage. Hu et al. [10] uses tag-correlation, a
much bigger block correlation, to reduce the history size.
To avoid cache pollution and provide timely prefetches,
the dead-block prefetcher issues a prefetch once a cache
block is predicted to be dead [16].

Chilimbi [8,9] introduced a hot-stream prefetcher. It
profiles and analyzes sampled memory traces on-line to
identify frequently repeated sequences (hot streams) and
inserts prefetching instructions to the binary code for
these streams. The profiling, analysis, and binary code
insertions / modifications incur execution overheads, and
may become excessive to cover hot streams with long
reuse distances. Wenisch et al. [31] proposed temporal
streams by extending hot streams and global history
buffer to deal with coherence misses on SMPs. It requires

a huge FIFO and multiple searches/comparisons on every
miss to capture repeated streams. The proposed CG
prefetcher uses approximated reuse distances to capture
repeated coterminous groups with minimum overhead.
 Saulsbury et al. [23] proposed a recency-based TLB
preloading. It maintains the TLB information in a Mattson
stack, and preloads adjacent entries in the stack upon a
TLB miss. The recency-based technique can be applied
for data prefetching. Compared with the CG-prefetcher, it
prefetches adjacent entries in the stack without the prior
knowledge of whether the adjacent requests have showed
any repeated patterns or how the two requests arrive at the
adjacent stack positions. In contrast, the CG approach
carefully qualifies members in a group based on the same
reuse-distance (i.e. have shown repeated patterns) and
physical adjacency (i.e. within a short window) of the
requests to achieve higher accuracy.

8. Conclusion

 This paper has introduced an accurate CG-based data
prefetching scheme on Chip Multiprocessors (CMPs). We
showed the existence of coterminous groups (CGs) and a

third kind of locality, coterminous locality. In particular,
the order of nearby references in a CG follows exactly the
same order that these references appeared last time, even
though they may be irregular. The proposed prefetcher
uses CG history to trigger prefetches when a member in a
group is re-referenced. It overcomes challenges of the
existing correlation-based or stream-based prefetchers,
including low prefetch accuracy, lack of timeliness, and
large history. The accurate CG-prefetcher is especially
appealing for CMPs, where cache contentions and
memory access demands are escalated. Evaluations based
on various workload mixes have demonstrated significant
advantages of the CG-prefetcher over other existing
prefetching schemes on CMPs.

Acknowledgements

This work was supported in part by NSF grant EIA-

0073473 and by research and equipment donations from

Intel Corp. We also thank anonymous referees for their

helpful comments.

References

[1] Advanced Micro Devices. AMD Demonstrates Dual Core
Leadership. http://www.amd.com, 2004.
[2] L. Barroso et al. Piranha: A Scalable Architecture Based on
Single-Chip Multiprocessing. In Proc. of 27th Int'l Symp. on
Computer Architecture, pages 165-175, June 2000.
[3] S. Borkar. Microarchitecture and Design Challenges for
Gigascale Integration. In Proc. of 37th Int'l Symp. on
Microarchitecture, 1st Keynote, pages 3-3, Dec. 2004.
[4] P. Bose. Chip-Level Microarchitecture Trends. In IEEE
Micro, Vol 24(2), page 5, Mar-Apr. 2004.
[5] R. Kalla, B. Sinharoy, and J. Tendler. IBM POWER5 Chip:
A Dual-Core Multithreaded Processor. In IEEE Micro, Vol
24(2), pages 40-47, Mar-Apr. 2004.
[6] M. Charney and A. Reeves. Generalized correlation based
hardware prefetching. Technical Report EE-CEG-95-1, Cornell
University, Feb. 1995.
[7] Tien-Fu Chen, Jean-Loup Baer. Reducing memory latency
via non-blocking and prefetching caches. In Proc. of the 5th Int'l
Conf. on ASPLOS, pages 51-61, Oct. 1992.
[8] T. M. Chilimbi. On the stability of temporal data reference
profiles. In Int’l Conf. on PACT, page 151, Sept. 2001.
[9] T. M. Chilimbi and M. Hirzel. Dynamic hot data stream
prefetching for general-purpose programs. In Proc. of the
SIGPLAN ’02 Conference on PLDI, pages 199-209 June 2002.
[10] Z. Hu, M. Martonosi, S. Kaxiras. TCP: Tag Correlating
Prefetchers. In Proc. of 9th Ann Int’l Symp. on HPCA, pages
317-326, Feb 2003.
[11] D. Joseph, and D. Grunwald. Prefetching Using Markov
Predictors. In Proc. of 26th Int'l Symp. on Computer
architecture, pages 252-263, Jun 1997.
[12] N. P. Jouppi. Improving direct-mapped cache performance
by the addition of a small fully-associative cache and prefetch

buffers. In Proc. of 17th Int'l Symp. on Computer Architecture,
pages 364-373, May 1990.
[13] S. Kapil. UltraSPARC Gemini: Dual CPU Processor. Hop
Chips 15, Aug. 2003.
[14] R. Kumar, N. P. Jouppi, and D. Tullsen. Conjoined-Core
Chip Multiprocessing. In Proc. of 37th Int’l Symp. on
Microarchitecture, pages 195-206, Dec 2004.
[15] S. Lacobovici, L. Spracklen, S. Kadambi, Y. Chou, and S.
G. Abraham. Effective Stream-Based and Execution-Based Data
Prefetching. In Proc. Of the 18th ICS, pages 1-11, June 2004.
[16] A. Lai, C. Fide, and B. Falsafi. Dead-block Prediction &
Dead-block Correlating Prefetchers. In Proc. of 28th Int'l Symp.
on Computer Architecture, pages 144-154, July 2001.
[17] P.S. Magnusson et al. Simics: A Full System Simulation
Platform. In IEEE Computer, pages 50-58, Feb. 2002.
[18] T. Maruyama. SPARC64 VI: Fujitsu’s Next Generation
Processor. Microprocessor Forum 2003, Oct. 2003.
[19] C. McNairy and R. Bhatia. Montecito – The Next Product
in the Itanium Processor Family. Hot Chips 16, Aug. 2004.
[20] K. Nesbit and J. Smith. Data cache prefetching using a
global history buffer. In Proc. of 10th Int'l Symp. on High

Performance Computer Architecture, pages 96-105, Feb. 2004.
[21] K. Olukotun. The Case for a Single-Chip Multiprocessor.
In Proc. of 7th Int'l Conf. on ASPLOS, pages 2-11, Oct. 1996.
[22] S. Sair, and M. Charney. Memory Behavior of the SPEC-
2000 Benchmark Suit. Technical Report, IBM Corp. Oct. 2000.
[23] A. Saulsbury, F. Dahlgren, and P. Stenstrom. Recency-
based TLB preloading. In Proc. of the 27th int’l symp. on
Computer architecture, pages 117-127, May 2000.
[24] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder.
Automatically Characterizing Large Scale Program Behavior. In
Proc. of 10th Int’l Conf. on ASPLOS, pages 45–57, Oct. 2002.
[25] G. Sohi. Single-Chip Multiprocessors: The Next Wave of
Computer Architecture Innovation. In Proc. of 37th Int'l Symp.
on Microarchitecture, 2nd Keynote, pages 143-143, Dec. 2004.
[26] Y. Solihin, J. Lee, and J. Torrellas. Using a user-level
memory thread for correlation prefetching. In Proc. of the 29th
int’l symp. on Computer architecture, pages171-182, May 2002.
[27] L. Spracklen and S. Abraham. Chip Multithreading: Oppor-
tunities and Challenges. In Proc. of 11th Int'l Symp. on HPCA,
pages 248-252, Feb. 2005.
[28] L. Spracklen and Y. Chou. Effective Instruction Pre-
fetching in Chip Multiprocessors for Modern Commercial
Applications. In Proc. of 11th Int'l Symp. on HPCA, pages 225-
236, Feb. 2005.
[29] S. P. Vanderwiel, and D. J. Lilja. Data Prefetch Mecha-
nisms. ACM Computing Surveys, pages 174-199, June 2000.
[30] Z. Wang, and D. Burger, et al. Guided region prefetching: a
cooperative hard-ware/software approach. In Proc. of 30th Int’l
Symp. on Computer Architecture, pages 388-398, June 2003.
[31] T. Wenisch, S. Somogyi, et al. Temporal Streaming of
Shared Memory. In Proc. of 32nd Int'l Symp. on Computer
Architecture, pages 222-233, June 2005.
[32] Z. Zhu, and Z. Zhang. A Performance Comparison of
DRAM Memory System Optimizations for SMT Processors. In
Proc. of 11th Int'l Symp. on HPCA, pages 213- 224, Feb. 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

