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Abstract

Security has been considered as an important issue in processor design. Most of the existing designs of 
security handling assume the chip as a single secure unit. However, such assumption is vulnerable to 
exposure resulted from a central failure point. In this article, we propose a secure Chip-Multiprocessor 
architecture (SecCMP) to handle security related problems such as key protection and core authentica-
tion in multi-core systems. Matching the nature of multi-core systems, a distributed threshold secret shar-
ing scheme is employed to protect critical secrets. A critical secret (e.g., encryption key) is divided into 
multiple shares and distributed among multiple cores instead of being kept a single copy in one core that 
is sensitive to exposure. The proposed SecCMP can not only enhance the security and fault-tolerance in 
secret protection but also support core authentication. SecCMP is designed to be an efficient and secure 
architecture for CMPs.
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INTRODUCTION
Computer networking makes every computer 
component vulnerable to security attacks. 
Examples of such attacks include injection 
of malicious codes (e.g., buffer overflow), 
denial of service (DoS) attacks, and passive 
eavesdropping between CPU cores and off-
chip devices. Also off-chip or on-chip devices 
taken over by an adversary can launch attacks 
to other components of a computer. Pure soft-

ware solutions itself cannot counter all attacks, 
therefore, enforcing security in processor design 
has drawn more and more attention. Currently 
many proposed works focus on encryption and 
authentication of hardware memory in single-
core systems (Gassend, Suh, Clarke, Dijk, 
& Devadas, 2003; Lee, Kwan, McGregor, 
Dwoskin, & Wang, 2005; Shi, Lee, Ghosh, 
Lu, & Boldyreva, 2005; Yan, Rogers, En-
glender, Solihin, & Prvulovic, 2006; Yang, 
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Zhang, & Gao, 2003). They usually assume 
the processor core as a safe and secure unit. 
When Chip-Multiprocessors (CMPs) have 
become mainstream products, applying encryp-
tion scheme of existing works to each core 
independently is one possible solution to enforce 
security in CMPs. The weakness of this solu-
tion is that the critical secrets (e.g., encryption 
key) stored or processed by one processor core 
can be easily exposed to adversaries through 
remote exploit attacks such as buffer overflow 
or Trojan horse, which leads to a central failure 
point. Once a core is compromised or taken over, 
the adversary could either access the critical 
secrets or wait until the compromised thread 
migrating onto another clean core then access 
unauthorized critical secrets. Therefore, this is 
not an effective approach to protecting shared 
critical secrets for CMPs. 

Utilizing the distributed nature of CMPs is 
an alternative solution to reinforce the security 
of CMPs. Not only the computation load but 
also the security risks are distributed among 
multiple processor cores that are designed to 
collaboratively protect and access the critical 
secret. No individual core is possible to access 
the critical secret alone. We proposed a novel 
Secure Chip-Multiprocessor (SecCMP) archi-
tecture (Yang & Peng, 2006) to protect critical 
secrets based on a distributed Secret Sharing 9. 
Instead of protecting a secret in one processor 
core, Secret Sharing is employed to distribute 
the secret among multiple cores that protect the 
secret collaboratively. The distributed security 
management matches the nature of multi-core 
architecture in CMPs. By employing a thresh-
old Secret Sharing scheme, critical secrets are 
protected safely in a CMP processor even when 
one or more processor cores are compromised. 
In this article, we integrate the SecCMP archi-
tecture with identity-based cryptography to 
support remote information access and sharing. 
The performance degradation of our approach is 
studied through simulation. Low overheads and 
improved fault-tolerance are two major features 
of our approach. Low overhead is achieved via 
distributing the encryption and decryption load 
among multiple cores. Fault-tolerant is achieved 

via (k, n) secret sharing where at least k out of n 
cores are required to recover the secret. From a 
secret protection point of view, fewer than k-1 
cores are not able to recover the secret (i.e., 
the encryption key) such that our solution is 
resistant to the compromise of fewer than k-1 
cores. From a service protection point of view, 
k cores are able to provide the secret recovery 
service (i.e., retrieve the encryption key) such 
that our solution is tolerant to failure (i.e., 
hardware failure, DoS attacks) of up to (n-k) 
cores. Moreover, confidentiality and authentica-
tion among cores are supported through core 
authentication in SecCMP. Core authentication, 
which identifies whether a core is compromised, 
could be performed during critical information 
reconstruction or periodically. If not enough 
authenticated cores available, a system error 
will be called. The user may restart the system 
and reconstruct the critical secrets.

We use an application to demonstrate 
secure and remote critical information ac-
cess and sharing supported by our SecCMP. 
Integrated with identity-based cryptography 
(Bonh, & Franklin, 2003) the SecCMP pro-
vides a secure and reliable way to generate and 
distribute encryption keys between local host 
and remote site when prior distribution of keys 
is not available. Each local host has a pair of 
master public key (MUK) and master private 
key (MRK). In addition, each account has a 
pair of account public key (AUK) and account 
private key (ARK). In the local host which 
contains a multi-core processor, the MRK is 
divided and distributed among multiple cores 
and the ARK is generated from the MRK. On 
the remote site, the MUK and an Account ID 
will generate an AUK, which is used to en-
crypt the requested critical information. After 
receiving the encrypted critical information, k 
authenticated cores in the local host involve 
in generating the ARK, which finally decrypts 
received information. 

To support critical information protection 
on CMPs, each processor core maintains two 
registers for the secret share and a public/private 
key pair for core authentication. These registers 
can only be accessed by a trusted application 
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which constructs an account private key and 
decrypts the information. An encrypted I/O 
channel is employed to support user input and 
critical information receiving. To avoid bus or 
interconnection eavesdropping, all critical infor-
mation related cache blocks are encrypted. 

The rest of this article is organized as fol-
lows: Introduction of related work; statement 
of the attack and thread model of this article; 
discussion of the master private key protec-
tion and core authentication of the SecCMP 
architecture; an application of the SecCMP is 
to support critical information remote access 
and sharing followed by security and compu-
tational complexity analysis; introduction of 
performance evaluation; and, finally, we sum-
marize the article. 

RELATED WORK
Lee et al. (Lee et al., 2005) proposes a “se-
cret-protected (SP)” architecture focusing on 
key protection and management, featured by 
secure on-line access of users’ keys from dif-
ferent network computing devices. The keys are 
organized as a tree structured key chain rooted 
at a secret “User Master Key”. With helps 
from additional hardware features supporting 
Concealed Execution Mode (CEM) and Trusted 
Software Module (TSM), the SP architecture 
protects confidentiality and integrity of sensi-
tive data transmitted between processor chip 
and off-chip devices. Our proposed mechanism 
can enhance the security for the SP processor 
architecture working on a CMP. With a thresh-
old distributed secret sharing, even if one or 
more pieces of critical secrets are released, 
the adversaries still cannot obtain the secrets 
as long as the number of released pieces is less 
than the threshold. 

In Shi et al. (Shi, Lee, Falk, & Ghosh, 
2006) the authors present an integrated frame-
work utilizing multi-core processors to detect 
intrusions and recover from infected states. The 
processor cores are divided as resurrectors and 
resurrectees and memory space is also insulated. 
Resurrectees cannot access resurrectors’ mem-
ory but resurrectors can access all the memory 

space. Fine grain internal state logging for low 
privileged cores, resurrectees, is employed. 
Resurrectors dynamically check the states of 
resurrectees. If any suspicious intrusions are 
detected, a logged state will be recovered. This 
design presumes that there are one or more 
master cores which are immune to attacks. In 
our scheme, we assume that all cores inside a 
chip are organized to a peer-to-peer relationship. 
Any cores could be compromised. However, if 
there are not enough authenticated cores, the 
system can be recovered by restarting. 

There are two schemes to protect memory 
integrity and confidentiality for symmetric 
shared memory multiprocessor systems (SMP) 
proposed in (Shi, Lee, Ghosh, & Lu, 2004; 
Zhang, Gao, Yang, Zhang, & Gupta, 2005). 
In Shi et al. (Shi et al., 2004), the authors pro-
pose a one-time-pad based memory encryption 
scheme and an SHA256 hash function based 
authentication approach to protect bus com-
munication. The scheme proposed in (Zhang 
et al., 2005) further improves security by 
generating a Cipher Block Chaining (CBC) 
encryption pad from snooped data. In (Rogers, 
& Solihin, 2006) the authors propose a memory 
encryption and authentication mechanism for 
Distributed Shared Memory (DSM) systems. 
All above proposals assume that a processor is 
a single secure unit. In this article, we assume 
that adversaries could intrude one or more cores 
in a multi-core processor and they need more 
efforts and time to intrude more than one cores 
than they compromise a single core. 

Many other works (Gassend et al., 2003; 
Lee et al., 2005; Shi et al., 2005; Yan et al., 
2006; Yang et al., 2003) emphasize on memory 
encryption and authentication by efficient hard-
ware approaches in single-core systems. Our 
proposed scheme focuses on on-chip secret 
protection in multi-core processors. Addition-
ally, there are a few proposals provide efficient 
bus or interconnection protection (Gao, Yang, 
Chrobak, Zhang, Nguyen, & Lee, 2006; 
Zhuang, Zhang, & Pande, 2004). Incorpo-
rating with the above memory/bus protection 
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and recovery schemes, our proposal will further 
enhance security and fault-tolerance of CMP 
systems. 

ATTACK MODEL 
In this article, we focus on vulnerabilities 
resulted from the remote exploit network at-
tacks. The system suffers attacks at different 
points including memories, crossbar switch or 
one or more cores on multi-core processors, 
as shown in Figure 1. A firewall or intrusion 
detection system (IDSs) helps to protect users 
from attacks such as known virus or denial-of-
service. However, they cannot protect the system 
once attacks have bypassed firewalls or IDSs. 
Therefore, the system suffers from a variety of 
vulnerabilities and attacks that expose critical 
secrets of a core to adversaries. The different 
kinds of attacks include eavesdropping, buffer 
overflow, cascading breakdowns, message 
spoofing, and message blocking. 

The adversaries can access critical secrets 
by eavesdropping the crossbar switch connect-
ing cores. During an eavesdropping attack, an 
attacker tries to learn critical secrets such as 

the root password that he/she was unable to 
access. Buffer overflow attack happens when 
a process attempts to store data beyond the 
boundaries of a fixed length buffer, and the extra 
data overwrites adjacent memory locations. By 
doing so, possible malicious code is injected 
into an execution path. If executed, the injected 
malicious code grants attackers unauthorized 
privileges to access critical secrets. Therefore, 
both eavesdrops and buffer overflow try to in-
crease privileges of an attacker and expose the 
critical information to unauthorized attackers. 
Adversaries can break down other processors in 
a cascading manner if one core’s critical secret 
is compromised. Message spoofing can occur 
if a fake message is generated and attributed 
to other senders. Examples are message inser-
tion or replaying. Also, a message destined to 
a processor can be blocked illegally when it is 
transmitted through the crossbar switch. 

A single authentication or encryption algo-
rithm is not able to counter all aforementioned 
attacks. The section Secure Chip Multiprocessor 
Architecture, describes how SecCMP enhances 
confidentiality by distributing secrets among 

Figure 1. Attack model
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multi-cores and augments authentication by 
employing digital signature from each core. 
The section SeeCMP Supported Clinical 
Inofrmation Access and Sharing, demonstrates 
countermeasures proposed in SecCMP by using 
an example. The example shows how to sup-
port access of the critical information shared 
remotely    

SECURE CHIP 
MULTIPROCESSOR 
ARCHITECTURE

Each processor has a pair of master public key 
and master private key. The master public key 
is available to all other network devices and 
hosts. The master private key is protected by a 
threshold secret sharing scheme in the SecCMP. 
Protection of the master private key allows criti-
cal information related to an application to be 
stored and accessed over public network. Each 
core in the processor also employs new hardware 
features to support trusted applications. Trusted 
applications generate and distribute application 
related keys and encrypt, decrypt the remotely 
shared critical information. Because all activi-
ties including key computations, distributions 
and critical information encryptions and com-
munications are protected by the trusted ap-
plications, an adversary can not observe other 
cores’ secret share even when one or more 
cores are compromised. Most importantly, the 
SecCMP comprises two unique components: 
protection of a master (chip) private key and 
core authentication. 

Protection of the Master Private 
Key 
The master private key is used to generate an 
application private key (we call it as an account 
private key in the section SeeCMP Supported 
Clinical Inofrmation Access and Sharing and 
decrypt the application related critical informa-
tion stored on-line and accessed over public 
network, that is, banking PIN, PGP keys. To 
avoid a central failure point in a single proces-
sor system, the master private key is divided 

and distributed among multiple CPU cores in 
a processor chip. In a (k, n)-threshold secret 
sharing, each core ci holds a secret share si, 
and any k of these n cores can reconstruct the 
master private key. Any collection of less than k 
partial shares cannot get any information about 
the master private key (Pederson, 1992). Here, 
k is the threshold parameter such that 1 ≤ k ≤ n. 
Each processor will authenticate itself in fine 
grained intervals. Therefore, it is difficult for 
adversaries to obtain k or more pieces of secret 
shares during a short time. 

Figure 2 is an example of a (2, 4)-threshold 
scheme among four cores where a master private 
key MRK is divided into four unique pieces (Se-
cret Share 0, 1, 2, 3), such that any two of them 
can be used to reconstruct the master private 
key MRK. Traditional Shamir’s secret sharing 
scheme suffers from the requirement of a trust 
authority and the absence of share verification. 
We employ a scheme based on nine, which is 
an extension to Shamir’s secret sharing without 
the support of a trust authority. We also deploy 
the verifiable secret sharing (Pederson, 1992) 
to detect the invalid share that some sharehold-
ers generate to prevent reconstruction of the 
master private key. 

For each core in a processor supporting 
SecCMP, we have a 128 bit register for the secret 
share and a 128 bit register for the public/private 
key pair which is used for core authentication. 
These dedicated registers can only be accessed 
by the trusted application which generates the 
account private key. To ensure security, a thread 
running on one core cannot access another 
core’s secret share register and public/private 
key register. During the procedure of critical 
information generation, threads involved are not 
allowed to migrate to another core. Besides, an 
encrypted I/O channel is required for a user to 
input the account ID (AcctId) and receive the 
decrypted critical information. To keep confi-
dentiality of the decrypted critical information, 
we employ an AES based encryption (Mene-
zes, Oorschot, & Vanstone, 1997) scheme 
to encrypt a related cache block before it goes 
outside of the core. This can prevent eavesdrop-
ping attacks over the crossbar interconnection. 
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For performance consideration, however, other 
cache blocks are not necessary to be encrypted. 
To identify critical information related cache 
blocks, we add one bit into all on-chip cache 
tags. This bit is set if a cache block contains 
part critical information.

Core Authentication 
One or more cores may be compromised and 
their secret share is exposed to an attacker. We as-
sume that an honest core will present the correct 
share to authenticate itself, and a compromised 
core will present a random number instead of 
the correct share. The attacker learns the secret 
shares from compromised cores and interrupts 
the master private key reconstruction. Failure 
of master private key reconstruction will result 
in a denial of service (DoS) attack. In order to 
exchange secret share securely, each core ci 
holds a public/private key pair {<uki,rki>} to 
encrypt the secret share and authenticate each 
other. Each core signs its secret share and hash 
code with its private key (digital signature). 
Then the signed message is encrypted with 
requesting core’s public key. The requesting 
core decrypts the message with its private key. 
Then requesting node checks the signature to 
authenticate the sender, checks the hash code 
to make sure the integrity of the secret share. 
The key pair is created during core installation 

based on each core’s identity. An adversary is 
not able to observe the encrypted share without 
a correct key pair. The private key is also used 
to encrypt the critical key sent to and from off-
chip devices. In our design, core authentication 
also allows that a sender core to authenticate a 
receiver core. This is implemented by sending 
an authentication request message to the receiver 
core and checking the returned signature. 

We not only passively protect the master 
private key, but also actively detect the compro-
mised core. In order to detect the compromised 
cores, we design a series of m master private 
keys such that none of the participants knows 
beforehand which is correct. The master private 
keys are ordered incrementally based on their 
values, except for the real key. The participants 
combine their shares to generate one key after 
the other, until they create a correct key that is 
less than the previous key. This helps us to detect 
the compromised core before the master private 
key is exposed to the cheating compromised 
core. The detection and prevention of cheaters 
in threshold schemes (Lin, & Harn, 1991) is 
adopted in our approach. Once the compromised 
core is detected, we isolate the compromised 
one. The work in (Martin, 1993) allows a new 
sharing scheme to be activated instantly once 
one of the cores becomes untrustworthy. 

Figure 2. A secure chip multiprocessor (seccmp) with master private key MRK sharings
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SecCMP SUPPORTED
CRITICAL INFORMATION 
ACCESS AND SHARING 
An application of SecCMP is to support critical 
information remote access and sharing. SecCMP 
provides secure channels to generate, store 
and exchange encryption keys for a local host 
and remote sites to share critical information 
associated with a specific account (i.e., a bank 
account, an email account). Each local host has 
a pair of master public key (MUK) and master 
private key (MRK). In addition, each account has 
a pair of account public key (AUK) and account 
private key (ARK). Based on the identity-based 
cryptography (Bonh, & Franklin, 2003) a user 
account public key can be any arbitrary string. 
In other words, users may use some well-known 
information, such as email address, IP address, 
URL as their account public key. 

When a local host tries to retrieve critical 
information from a remote site, it creates a pair 
of MUK and MRK. The MUK is available to 
the remote site, and the MRK is distributed and 
stored in multiple cores of the local host. Such 
distributed design of the master private key is 
resistant to eavesdropping since at least k cores 
need to be compromised in the active session 
to reconstruct master private key. Moreover, k 
out of n cores needs to be contacted in order to 
create an account private key based on the ac-
count ID. A buffer overflow attack may expose 
secret share of a core or interrupt private key 
generation from a core. Our core authentication 
service could detect such attacks. Because an 
attack from network exploits usually cannot be 
performed in a very short duration, the undergo-
ing attack can be reported and blocked before 
k cores are compromised. 

Identity-based Cryptography
Identity-based systems 1 allow any party to 
generate a public key from a known identity 
value such as an ASCII string. The Private Key 
Generator (PKG) generates the corresponding 
private keys. To operate, the PKG first publishes 
a master public key, and keeps the corresponding 
master private key. Given the master public key, 

a public key can be generated corresponding to 
the identity by any party. To obtain a correspond-
ing private key, PKG is contacted to generate 
the private key using master private key based 
on the identity. As a result, messages may be en-
crypted without prior key distribution between 
individual participants. Such solution is helpful 
when the pre-distribution of the authentication 
keys is not available. A major challenge of this 
approach is that the PKG must by highly trusted 
since it generates any user’s private key and 
thus decrypt messages. In the SecCMP, multiple 
cores work together to provide a secure private 
key generation service when there is no prior 
distribution of keys. 

Remote Information Access and 
Sharing 
When a local host, a multi-core processor 
system, tries to access or retrieve critical infor-
mation from a remote site. The local host and 
remote site need to authenticate and exchange 
master public key with each other. How two 
remote hosts authenticate each other and how 
local host authenticate the current user is valid 
or not are out of the scope of this article. The 
former can be accomplished either by a Certifi-
cate Authority (CA) or a trusted third party. The 
later can be achieved through access control or 
biometrics. We focus on how remote site and 
local host generate, store and distribute master 
public key, master private key, account public 
key and account private key. 

Figure 3 shows the general procedure of 
remote information access and sharing. To 
initiate the remote critical information access, 
the local host sends its master public key to 
remote site in the step 1. In step 2, the local host 
also sends account ID (AcctID) whose critical 
information the user would like to access. The 
remote site computes an account public key 
based on a master public key and an account ID 
(AcctID). After that, the remote host encrypts 
requested critical information with the account 
public key and transmits requested critical 
information to public networks in step 3. In 
step 4, the local host computes account private 
key by interacting at least k out of n cores in 
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Figure 4 Account public key generation and 
encryption in the remote site

the local host processor, and uses the account 
private key to decrypt the received encrypted 
critical information. 

The remote site needs to generate an ac-
count public key to encrypt requested critical 
information and send it to public networks. The 
local host will obtain account private key to 
decrypt the critical information encrypted using 
its corresponding public key. Figure 4 shows 
the account public key generation and critical 
information encryption in the remote site. There 
is a generator producing an account public key 
from the master public key and the input account 
id. The critical information is encrypted by the 
account public key and transmitted back to the 
requestor over a public network. 

The local host generates an account private 
key by which the encrypted critical information 
is decrypted, as shown in Figure 5. The method 
to obtain the account private key is to contact at 
least k cores, present the account identity and 
request private key generation service. 

The trusted application is the only applica-
tion that can access the secret share in registers 
of a core. It can be implemented as a system call 
which can only be executed by a thread with a 
special privilege. This application is called when 
an authenticated local user sends a request for 

critical information to a remote site. When a 
trusted application sends the MUK to a remote 
site, the MRK was divided into n secret shares 
and kept in n cores respectively. The distributed 
secret shares and account public key pairs are 
stored in a set of special registers which can 
only be accessed by the trusted application. 
The general procedure of the account private 
key generation and decryption in the local host 
is listed as follows:

1.	 Authenticated users input to the trusted 
application and AcctID whose related criti-
cal information will be retrieved through 
public network by an authenticated user. 

2.	 Each core generates an account private key 
share. 

3.	 K shares of the account private key con-
struct the corresponding ARK for AUK of 
the AcctID. Note each core only constructs 
its own share and then sends the output 
results to the next core. Therefore the 
confidentiality of the MRK is preserved 
here. Meanwhile, during the transmis-
sion, core authentication will also be pre-
formed. To keep the constructed Account 
Private Key secret, the kth core has to 
be authenticated. Before the (k-1)th core 
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sends out its decrypted secret share, it 
has to authenticate the last receiver. If no 
available authenticated cores exist, there 
are no enough cores to decrypt requested 
information. It will report this failure to 
the user. The user may require restart the 
system. Details of core authentication refer 
to the Core Authentication section. 

4.	 The constructed ARK is used to decrypt the 
cipher text encrypted by the correspond-
ing AUK. We will perform this step on an 
authenticated core identified by step 3. 
By doing so, a user can securely access 
and share critical information remotely. 
The received critical information can be 
protected until the user session finished. 

(1) 

(2) 

AcctID from Authenticated User 

Trusted Application 

Account Private 
Key Share 

Account Private 
Key Share  
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Figure 5. Account private key generation and decryption in the local host
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SECURITY AND COMPLEXITY 
ANALYSIS
Confidentiality and Integrity are taken care of 
by the encryption and hash function performed 
on secret share. Hash function guarantees that a 
share being transferred is never corrupted due 
to non-benign failure. Availability ensures the 
survivability of a processor chip despite denial 
of service attack. In our schema we take care of 
this problem by making use of (k, n) threshold 
secret sharing algorithm, as any k out of n cores 
work together for critical master key recon-
struction. Thus our security solution is tolerant 
to k-1 compromised cores. Authentication is 
taken care of by digital signature that enables a 
core to ensure the identity of the peer core it is 
communicating with. During a network exploit 
attack, the adversary compromises the proces-
sor cores one by one through attacks such as 
buffer overflow. We authenticate cores during 
the critical information generation or actively 
perform authentication periodically. If there are 
no enough cores for decryption, a system error 
will be triggered. Therefore, our secret sharing 
mechanism prevents an adversary from spoofing 
a secure core and gaining unauthorized secret 
share. Main computations in our approach 
come from secret share reconstruction and 
encryption. The reconstruction computational 
complexity depends on the number of thresholds. 
The encryption computational complexity is 
same as the traditional schemes and depends 
on the size of shares. The shorter length of a 
share results in less resource consumption. The 
computations will be accelerated by involve-
ment of multi-cores.

  
PERFORMANCE ANALYSIS
User activities can either not involve the request 
of remote critical information (e.g., browse 
unclassified daily news) or involve the request 
of remote critical information (e.g., access 
bank account). The former one does not call 
secret protection procedure so that the system 
performance is not affected. However, the latter 
one calls the secret protection procedure dem-
onstrated in Figure 5, resulting in performance 

degradation. The performance degradation in 
the local host of Figure 3 is considered and simu-
lated in this article. We evaluate the proposed 
architecture by a multi-core processor based 
on SESC (http://sesc.sourceforge.net/) with 
SPLASH2 applications and kernels. The setting 
of the processor simulator is listed in Table 1. 
For each program, we skip the first 100 million 
instructions and collect statistics for the next 
200 million instructions. Three schemes are 
evaluated: the baseline machine has no secret 
sharing mechanism; a CMP triggering a secret 
sharing engineering every 1 million cycles and 
a CMP triggering a secret sharing engineering 
every 100 thousand cycles. We measure the 
average number of cycles executed for all eight 
cores. We calculate performance degradation by 
comparing average execution cycles for each 
scheme. The simulated secret sharing engine is 
a (4, 8) scheme, which means that a secret can 
only be reconstructed by at least four correct 
sharing. During secret generation, the current 
executed program will be paused and the secret 
sharing engine will use caches for it calcula-
tion. Performance degradation comes from 
the latency of the secret sharing engine and 
cache pollution. Figure 6 shows performance 
degradation for simulated programs. We can 
see that average performance degradation are 
0.26% and 2.35% respectively when the secret 
sharing scheme is triggered every 1 million 
cycles and every 100 thousand cycles. Ocean, 
which is sensitive to cache misses, slows down 
9.17% when the secret sharing engine is trig-
gered every 100 thousand cycles.

CONCLUSION
In this article, we introduce a low cost secure 
architecture design for CMPs. The proposed 
architecture employs a threshold Secret Sharing 
scheme to protect critical secrets and support 
core authentication for a CMP system. It sup-
ports online critical information retrieval and 
protection in a local host. In stead of keeping 
a whole copy of a critical secret, the secret is 
divided and distributed among multiple cores. 
A user can only reconstruct the secret if the 
number of authenticated cores is equal to or 
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larger than the threshold. Compared with exist-
ing mechanisms, the proposed scheme is more 
secure and fault-tolerant. 
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