
54 International Journal of Information Security and Privacy, 2(4), 54-66, October-December 2008

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

SecCMP:
Enhancing Critical Secrets Protection in

Chip-Multiprocessors
Li Yang, University of Tennessee at Chattanooga, USA

Lu Peng, Louisiana State University, USA

Balachandran Ramadass, Louisiana State University, USA

Abstract

Security has been considered as an important issue in processor design. Most of the existing designs of
security handling assume the chip as a single secure unit. However, such assumption is vulnerable to
exposure resulted from a central failure point. In this article, we propose a secure Chip-Multiprocessor
architecture (SecCMP) to handle security related problems such as key protection and core authentica-
tion in multi-core systems. Matching the nature of multi-core systems, a distributed threshold secret shar-
ing scheme is employed to protect critical secrets. A critical secret (e.g., encryption key) is divided into
multiple shares and distributed among multiple cores instead of being kept a single copy in one core that
is sensitive to exposure. The proposed SecCMP can not only enhance the security and fault-tolerance in
secret protection but also support core authentication. SecCMP is designed to be an efficient and secure
architecture for CMPs.

Keywords: 	 Cybernetics; Data Sharing; Front-End Computers; Processor Architecture

INTRODUCTION
Computer networking makes every computer
component vulnerable to security attacks.
Examples of such attacks include injection
of malicious codes (e.g., buffer overflow),
denial of service (DoS) attacks, and passive
eavesdropping between CPU cores and off-
chip devices. Also off-chip or on-chip devices
taken over by an adversary can launch attacks
to other components of a computer. Pure soft-

ware solutions itself cannot counter all attacks,
therefore, enforcing security in processor design
has drawn more and more attention. Currently
many proposed works focus on encryption and
authentication of hardware memory in single-
core systems (Gassend, Suh, Clarke, Dijk,
& Devadas, 2003; Lee, Kwan, McGregor,
Dwoskin, & Wang, 2005; Shi, Lee, Ghosh,
Lu, & Boldyreva, 2005; Yan, Rogers, En-
glender, Solihin, & Prvulovic, 2006; Yang,

International Journal of Information Security and Privacy, 2(4), 54-66, October-December 2008 55

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Zhang, & Gao, 2003). They usually assume
the processor core as a safe and secure unit.
When Chip-Multiprocessors (CMPs) have
become mainstream products, applying encryp-
tion scheme of existing works to each core
independently is one possible solution to enforce
security in CMPs. The weakness of this solu-
tion is that the critical secrets (e.g., encryption
key) stored or processed by one processor core
can be easily exposed to adversaries through
remote exploit attacks such as buffer overflow
or Trojan horse, which leads to a central failure
point. Once a core is compromised or taken over,
the adversary could either access the critical
secrets or wait until the compromised thread
migrating onto another clean core then access
unauthorized critical secrets. Therefore, this is
not an effective approach to protecting shared
critical secrets for CMPs.

Utilizing the distributed nature of CMPs is
an alternative solution to reinforce the security
of CMPs. Not only the computation load but
also the security risks are distributed among
multiple processor cores that are designed to
collaboratively protect and access the critical
secret. No individual core is possible to access
the critical secret alone. We proposed a novel
Secure Chip-Multiprocessor (SecCMP) archi-
tecture (Yang & Peng, 2006) to protect critical
secrets based on a distributed Secret Sharing 9.
Instead of protecting a secret in one processor
core, Secret Sharing is employed to distribute
the secret among multiple cores that protect the
secret collaboratively. The distributed security
management matches the nature of multi-core
architecture in CMPs. By employing a thresh-
old Secret Sharing scheme, critical secrets are
protected safely in a CMP processor even when
one or more processor cores are compromised.
In this article, we integrate the SecCMP archi-
tecture with identity-based cryptography to
support remote information access and sharing.
The performance degradation of our approach is
studied through simulation. Low overheads and
improved fault-tolerance are two major features
of our approach. Low overhead is achieved via
distributing the encryption and decryption load
among multiple cores. Fault-tolerant is achieved

via (k, n) secret sharing where at least k out of n
cores are required to recover the secret. From a
secret protection point of view, fewer than k-1
cores are not able to recover the secret (i.e.,
the encryption key) such that our solution is
resistant to the compromise of fewer than k-1
cores. From a service protection point of view,
k cores are able to provide the secret recovery
service (i.e., retrieve the encryption key) such
that our solution is tolerant to failure (i.e.,
hardware failure, DoS attacks) of up to (n-k)
cores. Moreover, confidentiality and authentica-
tion among cores are supported through core
authentication in SecCMP. Core authentication,
which identifies whether a core is compromised,
could be performed during critical information
reconstruction or periodically. If not enough
authenticated cores available, a system error
will be called. The user may restart the system
and reconstruct the critical secrets.

We use an application to demonstrate
secure and remote critical information ac-
cess and sharing supported by our SecCMP.
Integrated with identity-based cryptography
(Bonh, & Franklin, 2003) the SecCMP pro-
vides a secure and reliable way to generate and
distribute encryption keys between local host
and remote site when prior distribution of keys
is not available. Each local host has a pair of
master public key (MUK) and master private
key (MRK). In addition, each account has a
pair of account public key (AUK) and account
private key (ARK). In the local host which
contains a multi-core processor, the MRK is
divided and distributed among multiple cores
and the ARK is generated from the MRK. On
the remote site, the MUK and an Account ID
will generate an AUK, which is used to en-
crypt the requested critical information. After
receiving the encrypted critical information, k
authenticated cores in the local host involve
in generating the ARK, which finally decrypts
received information.

To support critical information protection
on CMPs, each processor core maintains two
registers for the secret share and a public/private
key pair for core authentication. These registers
can only be accessed by a trusted application

56 International Journal of Information Security and Privacy, 2(4), 54-66, October-December 2008

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

which constructs an account private key and
decrypts the information. An encrypted I/O
channel is employed to support user input and
critical information receiving. To avoid bus or
interconnection eavesdropping, all critical infor-
mation related cache blocks are encrypted.

The rest of this article is organized as fol-
lows: Introduction of related work; statement
of the attack and thread model of this article;
discussion of the master private key protec-
tion and core authentication of the SecCMP
architecture; an application of the SecCMP is
to support critical information remote access
and sharing followed by security and compu-
tational complexity analysis; introduction of
performance evaluation; and, finally, we sum-
marize the article.

RELATED WORK
Lee et al. (Lee et al., 2005) proposes a “se-
cret-protected (SP)” architecture focusing on
key protection and management, featured by
secure on-line access of users’ keys from dif-
ferent network computing devices. The keys are
organized as a tree structured key chain rooted
at a secret “User Master Key”. With helps
from additional hardware features supporting
Concealed Execution Mode (CEM) and Trusted
Software Module (TSM), the SP architecture
protects confidentiality and integrity of sensi-
tive data transmitted between processor chip
and off-chip devices. Our proposed mechanism
can enhance the security for the SP processor
architecture working on a CMP. With a thresh-
old distributed secret sharing, even if one or
more pieces of critical secrets are released,
the adversaries still cannot obtain the secrets
as long as the number of released pieces is less
than the threshold.

In Shi et al. (Shi, Lee, Falk, & Ghosh,
2006) the authors present an integrated frame-
work utilizing multi-core processors to detect
intrusions and recover from infected states. The
processor cores are divided as resurrectors and
resurrectees and memory space is also insulated.
Resurrectees cannot access resurrectors’ mem-
ory but resurrectors can access all the memory

space. Fine grain internal state logging for low
privileged cores, resurrectees, is employed.
Resurrectors dynamically check the states of
resurrectees. If any suspicious intrusions are
detected, a logged state will be recovered. This
design presumes that there are one or more
master cores which are immune to attacks. In
our scheme, we assume that all cores inside a
chip are organized to a peer-to-peer relationship.
Any cores could be compromised. However, if
there are not enough authenticated cores, the
system can be recovered by restarting.

There are two schemes to protect memory
integrity and confidentiality for symmetric
shared memory multiprocessor systems (SMP)
proposed in (Shi, Lee, Ghosh, & Lu, 2004;
Zhang, Gao, Yang, Zhang, & Gupta, 2005).
In Shi et al. (Shi et al., 2004), the authors pro-
pose a one-time-pad based memory encryption
scheme and an SHA256 hash function based
authentication approach to protect bus com-
munication. The scheme proposed in (Zhang
et al., 2005) further improves security by
generating a Cipher Block Chaining (CBC)
encryption pad from snooped data. In (Rogers,
& Solihin, 2006) the authors propose a memory
encryption and authentication mechanism for
Distributed Shared Memory (DSM) systems.
All above proposals assume that a processor is
a single secure unit. In this article, we assume
that adversaries could intrude one or more cores
in a multi-core processor and they need more
efforts and time to intrude more than one cores
than they compromise a single core.

Many other works (Gassend et al., 2003;
Lee et al., 2005; Shi et al., 2005; Yan et al.,
2006; Yang et al., 2003) emphasize on memory
encryption and authentication by efficient hard-
ware approaches in single-core systems. Our
proposed scheme focuses on on-chip secret
protection in multi-core processors. Addition-
ally, there are a few proposals provide efficient
bus or interconnection protection (Gao, Yang,
Chrobak, Zhang, Nguyen, & Lee, 2006;
Zhuang, Zhang, & Pande, 2004). Incorpo-
rating with the above memory/bus protection

International Journal of Information Security and Privacy, 2(4), 54-66, October-December 2008 57

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

and recovery schemes, our proposal will further
enhance security and fault-tolerance of CMP
systems.

ATTACK MODEL
In this article, we focus on vulnerabilities
resulted from the remote exploit network at-
tacks. The system suffers attacks at different
points including memories, crossbar switch or
one or more cores on multi-core processors,
as shown in Figure 1. A firewall or intrusion
detection system (IDSs) helps to protect users
from attacks such as known virus or denial-of-
service. However, they cannot protect the system
once attacks have bypassed firewalls or IDSs.
Therefore, the system suffers from a variety of
vulnerabilities and attacks that expose critical
secrets of a core to adversaries. The different
kinds of attacks include eavesdropping, buffer
overflow, cascading breakdowns, message
spoofing, and message blocking.

The adversaries can access critical secrets
by eavesdropping the crossbar switch connect-
ing cores. During an eavesdropping attack, an
attacker tries to learn critical secrets such as

the root password that he/she was unable to
access. Buffer overflow attack happens when
a process attempts to store data beyond the
boundaries of a fixed length buffer, and the extra
data overwrites adjacent memory locations. By
doing so, possible malicious code is injected
into an execution path. If executed, the injected
malicious code grants attackers unauthorized
privileges to access critical secrets. Therefore,
both eavesdrops and buffer overflow try to in-
crease privileges of an attacker and expose the
critical information to unauthorized attackers.
Adversaries can break down other processors in
a cascading manner if one core’s critical secret
is compromised. Message spoofing can occur
if a fake message is generated and attributed
to other senders. Examples are message inser-
tion or replaying. Also, a message destined to
a processor can be blocked illegally when it is
transmitted through the crossbar switch.

A single authentication or encryption algo-
rithm is not able to counter all aforementioned
attacks. The section Secure Chip Multiprocessor
Architecture, describes how SecCMP enhances
confidentiality by distributing secrets among

Figure 1. Attack model

Core 0 Core 1 Core N

L1I L1I L1IL1D L1D L1D

L2 L2 L2

Crossbar Switch

Insecure Memory

Attacks

58 International Journal of Information Security and Privacy, 2(4), 54-66, October-December 2008

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

multi-cores and augments authentication by
employing digital signature from each core.
The section SeeCMP Supported Clinical
Inofrmation Access and Sharing, demonstrates
countermeasures proposed in SecCMP by using
an example. The example shows how to sup-
port access of the critical information shared
remotely

SECURE CHIP
MULTIPROCESSOR
ARCHITECTURE

Each processor has a pair of master public key
and master private key. The master public key
is available to all other network devices and
hosts. The master private key is protected by a
threshold secret sharing scheme in the SecCMP.
Protection of the master private key allows criti-
cal information related to an application to be
stored and accessed over public network. Each
core in the processor also employs new hardware
features to support trusted applications. Trusted
applications generate and distribute application
related keys and encrypt, decrypt the remotely
shared critical information. Because all activi-
ties including key computations, distributions
and critical information encryptions and com-
munications are protected by the trusted ap-
plications, an adversary can not observe other
cores’ secret share even when one or more
cores are compromised. Most importantly, the
SecCMP comprises two unique components:
protection of a master (chip) private key and
core authentication.

Protection of the Master Private
Key
The master private key is used to generate an
application private key (we call it as an account
private key in the section SeeCMP Supported
Clinical Inofrmation Access and Sharing and
decrypt the application related critical informa-
tion stored on-line and accessed over public
network, that is, banking PIN, PGP keys. To
avoid a central failure point in a single proces-
sor system, the master private key is divided

and distributed among multiple CPU cores in
a processor chip. In a (k, n)-threshold secret
sharing, each core ci holds a secret share si,
and any k of these n cores can reconstruct the
master private key. Any collection of less than k
partial shares cannot get any information about
the master private key (Pederson, 1992). Here,
k is the threshold parameter such that 1 ≤ k ≤ n.
Each processor will authenticate itself in fine
grained intervals. Therefore, it is difficult for
adversaries to obtain k or more pieces of secret
shares during a short time.

Figure 2 is an example of a (2, 4)-threshold
scheme among four cores where a master private
key MRK is divided into four unique pieces (Se-
cret Share 0, 1, 2, 3), such that any two of them
can be used to reconstruct the master private
key MRK. Traditional Shamir’s secret sharing
scheme suffers from the requirement of a trust
authority and the absence of share verification.
We employ a scheme based on nine, which is
an extension to Shamir’s secret sharing without
the support of a trust authority. We also deploy
the verifiable secret sharing (Pederson, 1992)
to detect the invalid share that some sharehold-
ers generate to prevent reconstruction of the
master private key.

For each core in a processor supporting
SecCMP, we have a 128 bit register for the secret
share and a 128 bit register for the public/private
key pair which is used for core authentication.
These dedicated registers can only be accessed
by the trusted application which generates the
account private key. To ensure security, a thread
running on one core cannot access another
core’s secret share register and public/private
key register. During the procedure of critical
information generation, threads involved are not
allowed to migrate to another core. Besides, an
encrypted I/O channel is required for a user to
input the account ID (AcctId) and receive the
decrypted critical information. To keep confi-
dentiality of the decrypted critical information,
we employ an AES based encryption (Mene-
zes, Oorschot, & Vanstone, 1997) scheme
to encrypt a related cache block before it goes
outside of the core. This can prevent eavesdrop-
ping attacks over the crossbar interconnection.

International Journal of Information Security and Privacy, 2(4), 54-66, October-December 2008 59

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

For performance consideration, however, other
cache blocks are not necessary to be encrypted.
To identify critical information related cache
blocks, we add one bit into all on-chip cache
tags. This bit is set if a cache block contains
part critical information.

Core Authentication
One or more cores may be compromised and
their secret share is exposed to an attacker. We as-
sume that an honest core will present the correct
share to authenticate itself, and a compromised
core will present a random number instead of
the correct share. The attacker learns the secret
shares from compromised cores and interrupts
the master private key reconstruction. Failure
of master private key reconstruction will result
in a denial of service (DoS) attack. In order to
exchange secret share securely, each core ci
holds a public/private key pair {<uki,rki>} to
encrypt the secret share and authenticate each
other. Each core signs its secret share and hash
code with its private key (digital signature).
Then the signed message is encrypted with
requesting core’s public key. The requesting
core decrypts the message with its private key.
Then requesting node checks the signature to
authenticate the sender, checks the hash code
to make sure the integrity of the secret share.
The key pair is created during core installation

based on each core’s identity. An adversary is
not able to observe the encrypted share without
a correct key pair. The private key is also used
to encrypt the critical key sent to and from off-
chip devices. In our design, core authentication
also allows that a sender core to authenticate a
receiver core. This is implemented by sending
an authentication request message to the receiver
core and checking the returned signature.

We not only passively protect the master
private key, but also actively detect the compro-
mised core. In order to detect the compromised
cores, we design a series of m master private
keys such that none of the participants knows
beforehand which is correct. The master private
keys are ordered incrementally based on their
values, except for the real key. The participants
combine their shares to generate one key after
the other, until they create a correct key that is
less than the previous key. This helps us to detect
the compromised core before the master private
key is exposed to the cheating compromised
core. The detection and prevention of cheaters
in threshold schemes (Lin, & Harn, 1991) is
adopted in our approach. Once the compromised
core is detected, we isolate the compromised
one. The work in (Martin, 1993) allows a new
sharing scheme to be activated instantly once
one of the cores becomes untrustworthy.

Figure 2. A secure chip multiprocessor (seccmp) with master private key MRK sharings

Processor Chip
with a master private key MRK

Secret Sharing EngineSecret Sharing Engine

Secret Sharing EngineSecret Sharing Engine

CPU Core 0 CPU Core 1

CPU Core 2 CPU Core 3

MRK share3

MRK share0 MRK share1

MRK share2

{uk1, rk1}{uk0, rk0}

{uk2, rk2} {uk3, rk3}

60 International Journal of Information Security and Privacy, 2(4), 54-66, October-December 2008

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

SecCMP SUPPORTED
CRITICAL INFORMATION
ACCESS AND SHARING
An application of SecCMP is to support critical
information remote access and sharing. SecCMP
provides secure channels to generate, store
and exchange encryption keys for a local host
and remote sites to share critical information
associated with a specific account (i.e., a bank
account, an email account). Each local host has
a pair of master public key (MUK) and master
private key (MRK). In addition, each account has
a pair of account public key (AUK) and account
private key (ARK). Based on the identity-based
cryptography (Bonh, & Franklin, 2003) a user
account public key can be any arbitrary string.
In other words, users may use some well-known
information, such as email address, IP address,
URL as their account public key.

When a local host tries to retrieve critical
information from a remote site, it creates a pair
of MUK and MRK. The MUK is available to
the remote site, and the MRK is distributed and
stored in multiple cores of the local host. Such
distributed design of the master private key is
resistant to eavesdropping since at least k cores
need to be compromised in the active session
to reconstruct master private key. Moreover, k
out of n cores needs to be contacted in order to
create an account private key based on the ac-
count ID. A buffer overflow attack may expose
secret share of a core or interrupt private key
generation from a core. Our core authentication
service could detect such attacks. Because an
attack from network exploits usually cannot be
performed in a very short duration, the undergo-
ing attack can be reported and blocked before
k cores are compromised.

Identity-based Cryptography
Identity-based systems 1 allow any party to
generate a public key from a known identity
value such as an ASCII string. The Private Key
Generator (PKG) generates the corresponding
private keys. To operate, the PKG first publishes
a master public key, and keeps the corresponding
master private key. Given the master public key,

a public key can be generated corresponding to
the identity by any party. To obtain a correspond-
ing private key, PKG is contacted to generate
the private key using master private key based
on the identity. As a result, messages may be en-
crypted without prior key distribution between
individual participants. Such solution is helpful
when the pre-distribution of the authentication
keys is not available. A major challenge of this
approach is that the PKG must by highly trusted
since it generates any user’s private key and
thus decrypt messages. In the SecCMP, multiple
cores work together to provide a secure private
key generation service when there is no prior
distribution of keys.

Remote Information Access and
Sharing
When a local host, a multi-core processor
system, tries to access or retrieve critical infor-
mation from a remote site. The local host and
remote site need to authenticate and exchange
master public key with each other. How two
remote hosts authenticate each other and how
local host authenticate the current user is valid
or not are out of the scope of this article. The
former can be accomplished either by a Certifi-
cate Authority (CA) or a trusted third party. The
later can be achieved through access control or
biometrics. We focus on how remote site and
local host generate, store and distribute master
public key, master private key, account public
key and account private key.

Figure 3 shows the general procedure of
remote information access and sharing. To
initiate the remote critical information access,
the local host sends its master public key to
remote site in the step 1. In step 2, the local host
also sends account ID (AcctID) whose critical
information the user would like to access. The
remote site computes an account public key
based on a master public key and an account ID
(AcctID). After that, the remote host encrypts
requested critical information with the account
public key and transmits requested critical
information to public networks in step 3. In
step 4, the local host computes account private
key by interacting at least k out of n cores in

International Journal of Information Security and Privacy, 2(4), 54-66, October-December 2008 61

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Local
host

2. AcctID

3. Encrypted
critical info

4.
Decryption

1. Master
Public Key

Remote
site

Figure 3. Remote critical information access

(2)

(1) Account Public Key Generator

Master Public Key AcctID

Critical
info Account

Public Key

Critical Info Encryption

Encrypted critical
info

Figure 4 Account public key generation and
encryption in the remote site

the local host processor, and uses the account
private key to decrypt the received encrypted
critical information.

The remote site needs to generate an ac-
count public key to encrypt requested critical
information and send it to public networks. The
local host will obtain account private key to
decrypt the critical information encrypted using
its corresponding public key. Figure 4 shows
the account public key generation and critical
information encryption in the remote site. There
is a generator producing an account public key
from the master public key and the input account
id. The critical information is encrypted by the
account public key and transmitted back to the
requestor over a public network.

The local host generates an account private
key by which the encrypted critical information
is decrypted, as shown in Figure 5. The method
to obtain the account private key is to contact at
least k cores, present the account identity and
request private key generation service.

The trusted application is the only applica-
tion that can access the secret share in registers
of a core. It can be implemented as a system call
which can only be executed by a thread with a
special privilege. This application is called when
an authenticated local user sends a request for

critical information to a remote site. When a
trusted application sends the MUK to a remote
site, the MRK was divided into n secret shares
and kept in n cores respectively. The distributed
secret shares and account public key pairs are
stored in a set of special registers which can
only be accessed by the trusted application.
The general procedure of the account private
key generation and decryption in the local host
is listed as follows:

1.	 Authenticated users input to the trusted
application and AcctID whose related criti-
cal information will be retrieved through
public network by an authenticated user.

2.	 Each core generates an account private key
share.

3.	 K shares of the account private key con-
struct the corresponding ARK for AUK of
the AcctID. Note each core only constructs
its own share and then sends the output
results to the next core. Therefore the
confidentiality of the MRK is preserved
here. Meanwhile, during the transmis-
sion, core authentication will also be pre-
formed. To keep the constructed Account
Private Key secret, the kth core has to
be authenticated. Before the (k-1)th core

62 International Journal of Information Security and Privacy, 2(4), 54-66, October-December 2008

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

sends out its decrypted secret share, it
has to authenticate the last receiver. If no
available authenticated cores exist, there
are no enough cores to decrypt requested
information. It will report this failure to
the user. The user may require restart the
system. Details of core authentication refer
to the Core Authentication section.

4.	 The constructed ARK is used to decrypt the
cipher text encrypted by the correspond-
ing AUK. We will perform this step on an
authenticated core identified by step 3.
By doing so, a user can securely access
and share critical information remotely.
The received critical information can be
protected until the user session finished.

(1)

(2)

AcctID from Authenticated User

Trusted Application

Account Private
Key Share

Account Private
Key Share

MRK Share n
{uk n, rk n}

L1 L 2

Execution Unit

Encryption and
Hashing

Private Key
for AcctID

Encrypted critical info

Critical Info Decryption

Critical
info

(3)

(4)

MRK Share 0
{uk 0, rk 0}

L1 L 2

Execution Unit

Encryption and
Hashing

.....

Figure 5. Account private key generation and decryption in the local host

International Journal of Information Security and Privacy, 2(4), 54-66, October-December 2008 63

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

SECURITY AND COMPLEXITY
ANALYSIS
Confidentiality and Integrity are taken care of
by the encryption and hash function performed
on secret share. Hash function guarantees that a
share being transferred is never corrupted due
to non-benign failure. Availability ensures the
survivability of a processor chip despite denial
of service attack. In our schema we take care of
this problem by making use of (k, n) threshold
secret sharing algorithm, as any k out of n cores
work together for critical master key recon-
struction. Thus our security solution is tolerant
to k-1 compromised cores. Authentication is
taken care of by digital signature that enables a
core to ensure the identity of the peer core it is
communicating with. During a network exploit
attack, the adversary compromises the proces-
sor cores one by one through attacks such as
buffer overflow. We authenticate cores during
the critical information generation or actively
perform authentication periodically. If there are
no enough cores for decryption, a system error
will be triggered. Therefore, our secret sharing
mechanism prevents an adversary from spoofing
a secure core and gaining unauthorized secret
share. Main computations in our approach
come from secret share reconstruction and
encryption. The reconstruction computational
complexity depends on the number of thresholds.
The encryption computational complexity is
same as the traditional schemes and depends
on the size of shares. The shorter length of a
share results in less resource consumption. The
computations will be accelerated by involve-
ment of multi-cores.

PERFORMANCE ANALYSIS
User activities can either not involve the request
of remote critical information (e.g., browse
unclassified daily news) or involve the request
of remote critical information (e.g., access
bank account). The former one does not call
secret protection procedure so that the system
performance is not affected. However, the latter
one calls the secret protection procedure dem-
onstrated in Figure 5, resulting in performance

degradation. The performance degradation in
the local host of Figure 3 is considered and simu-
lated in this article. We evaluate the proposed
architecture by a multi-core processor based
on SESC (http://sesc.sourceforge.net/) with
SPLASH2 applications and kernels. The setting
of the processor simulator is listed in Table 1.
For each program, we skip the first 100 million
instructions and collect statistics for the next
200 million instructions. Three schemes are
evaluated: the baseline machine has no secret
sharing mechanism; a CMP triggering a secret
sharing engineering every 1 million cycles and
a CMP triggering a secret sharing engineering
every 100 thousand cycles. We measure the
average number of cycles executed for all eight
cores. We calculate performance degradation by
comparing average execution cycles for each
scheme. The simulated secret sharing engine is
a (4, 8) scheme, which means that a secret can
only be reconstructed by at least four correct
sharing. During secret generation, the current
executed program will be paused and the secret
sharing engine will use caches for it calcula-
tion. Performance degradation comes from
the latency of the secret sharing engine and
cache pollution. Figure 6 shows performance
degradation for simulated programs. We can
see that average performance degradation are
0.26% and 2.35% respectively when the secret
sharing scheme is triggered every 1 million
cycles and every 100 thousand cycles. Ocean,
which is sensitive to cache misses, slows down
9.17% when the secret sharing engine is trig-
gered every 100 thousand cycles.

CONCLUSION
In this article, we introduce a low cost secure
architecture design for CMPs. The proposed
architecture employs a threshold Secret Sharing
scheme to protect critical secrets and support
core authentication for a CMP system. It sup-
ports online critical information retrieval and
protection in a local host. In stead of keeping
a whole copy of a critical secret, the secret is
divided and distributed among multiple cores.
A user can only reconstruct the secret if the
number of authenticated cores is equal to or

64 International Journal of Information Security and Privacy, 2(4), 54-66, October-December 2008

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

larger than the threshold. Compared with exist-
ing mechanisms, the proposed scheme is more
secure and fault-tolerant.

REFERENCES
Bonh, D., & Franklin, M. (2003). Identity-based
encryption from weil pairing. SIAM Journal of
Computing, 32(3), (pp. 586-615).

Gassend, B., Suh, G., Clarke, D., Dijk, M., &
Devadas, S. (2003). Caches and hash trees for efficient
memory integrity verification. Proceedings of the
9th International Symposium on High-Performance
Computer Architecture (HPCA), (pp. 295-306).

Gao, L. Yang, J., Chrobak, M., Zhang, Y., Nguyen,
S., & Lee, H. H. (2006). A low-cost memory remap-
ping scheme for address bus protection. Proceedings
of the 15th International Conference on Parallel

Architectures and Compilation Techniques (PACT),
Seattle, Washington, USA, (pp. 74-83).

Lee, R. B., Kwan, P. C. S., McGregor, J. P., Dwoskin,
J., & Wang, Z. (2005). Architecture for protecting
critical secrets in microprocessors. Proceedings of
the 32nd International Symposium on Computer
Architecture (ISCA), (pp. 2-13).

Lie, D., Thekkath, C., Mitchell, M., Lincoln, P.,
Boneh, D., Mitchell, J., & Horowitz, M. (2000).
Architectural support for copy and tamper resistant
software. Proceedings of the 9th International Con-
ference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), (pp.
168-177).

Lin, H. Y., & Harn, L. (1991). A generalized secret
sharing scheme with cheater detection. Proceedings
of the International Conference on the Theory and
Applications of Cryptology: Advances in Cryptol-

Processor 8 cores, 5GHz, Out-of-order execution pipeline. Issue width: 1.

L1 instruction cache Two way set-associative. 32 bytes block size. 32KB inst. cache for each
core. 1 cycle access delay.

L1 data. cache Four way set-associative. 32 bytes block size. 32KB inst. cache for each
core. 2 cycles access delay.

L2 shared unified cache 16-way set-associative. 128 bytes block size. 1MB. 9 cycles access delay.
MESI protocol for L1 cache coherence.

Memory latency 500 cycles.

Secret Sharing Engine latency 80 cycles.

Table 1. Processor and memory hierarchy parameters

Figure 6. Performance degradation for a seccmp triggering a secret sharing engine every 1
million and every 100 thousand cycles

Performance Degradation

0.00%
1.00%
2.00%
3.00%
4.00%
5.00%
6.00%
7.00%
8.00%
9.00%

10.00%

Barnes Oc ean Radios ity Ray trac e W ater-NS W ater-S Choles ky FFT LU Radix A v erage

1M 100K

International Journal of Information Security and Privacy, 2(4), 54-66, October-December 2008 65

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

ogy, Lecture Notes in Computer Science (739),
(pp. 149-158).

Martin, K. M. (1993). Untrustworthy participants in
perfect secret sharing schemes. Cryptography and
Coding III, M. J. Ganley, ed., Oxford University
Press, (pp. 255-264).

Menezes, A. J., Oorschot, P. C. van, & Vanstone,
S. A. (1997). Handbook of applied cryptography.
CRC Press, LLC.

Pedersen, T. P. (1991). A threshold cryptosystem
without a trusted party. Proceedings of EUROCRYPT,
(pp. 522-526).

Pederson, T. P. (1992). Non-interactive and infor-
mation-theoretic secure verifiable secret sharing.
Proceedings of the 11th Annual International Cryptol-
ogy Conference on Advances in Cryptology, Lecture
Notes in Computer Science (576), (pp. 129-140).

Rogers, M. P., & Solihin, Y. (2006). Efficient data
protection for distributed shared memory multipro-
cessors. Proceedings of the 15th International Con-
ference on Parallel Architectures and Compilation
Techniques (PACT), (pp. 84-94).

SESC, Retrieved on XXX from, http://sesc.source-
forge.net/.

Shi, W., Lee, H. H., Ghosh, M., & Lu, C. (2004).
Architectural support for high speed protection of
memory integrity and confidentiality in multiproces-
sor systems. Proceedings of the 13th International
Conference on Parallel Architectures and Compila-
tion Techniques (PACT), (pp. 123-134).

Shi, W., Lee, H. H., Ghosh, M., Lu, C., & Boldyreva,
A. (2005). High efficiency counter mode security
architecture via prediction and precomputation.

Proceedings of the 32nd International Symposium
on Computer Architecture (ISCA), (pp. 14-24).

Shi, W., Lee, H. H., Falk, L., & Ghosh, M. (2006).
An integrated framework for dependable and re-
vivable architectures using multicore processors.
Proceedings of the 33rd International Symposium on
Computer Architecture (ISCA), (pp. 102-113).

Suh, G. E., Clarke, D., Gassend, B., Dijk, M. van,
& Devadas, S. (2003). AEGIS: architecture for
tamper-evident and tamper-resistant processing.
Proceedings of the 17th International Conference
on Supercomputing (ICS), (pp. 160-171).

Yan, C., Rogers, B., Englender, D., Solihin, Y., & Pr-
vulovic, M. (2006). Improving cost, performance, and
security of memory encryption and authentication.
Proceedings of the 33rd International Symposium on
Computer Architecture (ISCA), (pp. 179-190).

Yang, L., & Peng, L. (2006). SecCMP: a secure
chip-multiprocessor architecture. Proceedings of
the first Workshop on Architectural and System Sup-
port for Improving Software Dependability (ASID),
(pp. 72-76).

Yang, J., Zhang, Y., & Gao, L. (2003). Fast secure
processor for inhibiting software piracy and tamper-
ing. Proceedings of the 36th International Symposium
on Microarchitecture (MICRO), (pp. 351-360).

Zhang, Y., Gao, L., Yang, J., Zhang, Z., & Gupta,
R. (2005). SENSS: Security Enhancement to Sym-
metric Shared Memory Multiprocessors. Proceedings
of the 11th Intl. Symposium on High-Performance
Computer Architecture (HPCA), (pp. 352-362).

Zhuang, X., Zhang, T., & Pande, S. (2004). HIDE: An
Infrastructure for Efficiently Protecting Information
Leakage on the Address Bus. Proceedings of the 11th
International Conference on Architectural Support
for Programming Languages and Operating Systems
(ASPLOS), (pp. 72-84).

Li Yang is an assistant professor in the Department of Computer Science and Electrical Engineering at
University of Tennessee at Chattanooga. Her research interests include network and information security,
databases, and engineering techniques for complex software system design. She authored papers on these
areas in refereed journal, conferences and symposiums. She is a member of the ACM.

66 International Journal of Information Security and Privacy, 2(4), 54-66, October-December 2008

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Lu Peng received his bachelor’s and master’s degrees in computer science & engineering from Shanghai
Jiaotong University, China. He obtained his PhD degree in computer engineering from the University of
Florida in Gainesville in April 2005. He joined the electrical and computer engineering department at
Louisiana State University as an Assistant Professor in August, 2005. His research focus on memory hi-
erarchy system, multi-core interconnection, power efficiency and other issues in CPU design. He also has
interests in Network Processor. He received an ORAU Ralph E. Powe Junior Faculty Enhancement Awards
in 2007 and a Best Paper Award from IEEE International Conference on Computer Design in 2001. Dr.
Peng is a member of the ACM and the IEEE Computer Society.

Balachandran Ramadass received his bachelor’s degree in electronics and communication engineering
from Pondicherry University, India. He is currently doing his Master of Science degree in electrical and
computer engineering in Louisiana State University. He is also currently doing his Internship in Enterprise
power path finding group, Intel Corporation, DuPont. His research focuses are CMP architecture, on-chip
power optimization, interconnection network, heterogeneous CMP architecture.

