
Comprehensive and Efficient Design Parameter
Selection for Soft Error Resilient Processors

via Universal Rules
Lide Duan, Ying Zhang, Bin Li, and Lu Peng, Member, IEEE

Abstract—Soft errors have been significantly degrading the reliability of current processors whose feature sizes and supply voltages are
fast scaling down. In this paper, we propose two effective approaches to characterize processor reliability against soft errors at
presilicon stage. By utilizing a rule search strategy named Patient Rule Induction Method (PRIM), we are capable of generating a set of
selective rules on key design parameters. These rules quantify the design space subregion with the lowest effective soft error rate
(SER), thus providing useful guidelines in designing reliable processors. Furthermore, we also propose to use Classification and
Regression Trees (CART) to partition the design space into a number of small subregions each being associated with a representative
SER value. This gives the processor designer a global view of the SER distribution, enabling a comprehensive analysis over the
entire design space. More importantly, both approaches generate “universal” models whose effectiveness is validated with a set of test
programs unseen to training. Compared to traditional application-specific design space studies, our models’ cross-program capability
can save great training effort in the era of multithreading. Finally, a case study onmultiprocessors is performed to simultaneously balance
multiple design metrics, including reliability, performance, and power.

Index Terms—Hardware reliability, modeling and prediction, modeling of computer architecture

1 INTRODUCTION

SOFT errors have become an important factor in degrading
the reliability of current high-performance processors.

They occur mainly due to the electronic noises caused by
energetic nuclear particles, such as alpha-particles, neutrons,
and pions, from the environment [46]. These particles may
invert the state of a logic device (from ‘0’ to ‘1’, or from ‘1’ to
‘0’) when the resulted charge has been accumulated to a
sufficient amount, introducing soft errors (or transient faults)
into the system. With the feature size and supply voltage
scaling down to extremely small values, current processors
becomehighly vulnerable to soft errors [4], [20], [30], [32], [33],
[39], [42], [44].

Not all soft errorswill affect thefinal outputof theprogram.
For instance, a bit flip in the branch predictor may cause a
wrong prediction but doesn’t have any impact on program
correctness. To characterize a processor’s reliability against
soft errors,oneshould lookat itseffectiveSoftErrorRate (SER),
which can be calculated from the following equation [17]:

FIT (Failures in Time) quantifies the number of raw soft
errors occurring in a time unit on the processor, depending on
circuit level properties such as the area. Architectural Vulner-
ability Factor (AVF) [31], [6] is the probability that a raw soft
error finally produces a visible error in the program output.
The AVF is an important architecture-level reliability metric
reflecting soft error masking effect, depending on both the
software program in execution [37] and the underlying hard-
ware configuration [38]. Therefore, AVF has gained strong
interests from processor architects in recent years, resulting in
a significant number of studies [10], [14], [18], [25], [26], [35],
[40], [41], [44], [45]. In this paper, we first investigate the
impact of design parameter selection on AVF, then focus on
minimizing the SER to achieve soft error resilient designs for
the entire processor.

Motivation. The SERof aprocessormaydrastically change
if it runs different threads or uses different configuration
parameters. In particular, the AVF (so is the SER) of a multi-
processor is affected by the data contention and sharing in the
low level cache [45]. Fig. 1 shows how the system SER would
vary when different workloads (multi-threaded benchmarks
from SPLASH2 [43]) execute on a number of multiprocessor
configurations. These 5 configurations, cfg1 to cfg5, are rep-
resentative examples chosen from 1,000 design points ran-
domly sampled from a large multiprocessor design space
(illustrated in Section 5). For each workload, the 1,000 sam-
pled configurations are ranked in terms of their SER values,
with the lowest value as rank 1 and the largest value as rank
1,000. Therefore, a lower rank indicates amore reliable design.
We can see that, for the same configuration, its SER rank could
be significantly different across different programs (or the
same program with different numbers of threads, i.e., FFT).

• L.Duan iswithAMD, Inc.,Austin, TX 78735.E-mail: lide.duan@amd.com.
• Y. Zhang and L. Peng are with the Division of Electrical and Computer

Engineering, School of Electrical Engineering and Computer Science,
Louisiana State University, Baton Rouge, LA 70803.
E-mail: {yzhan29, lpeng}@lsu.edu.

• B. Li is with the Department of Experimental Statistics, Louisiana State
University, Baton Rouge, LA 70803. E-mail: bli@lsu.edu.

Manuscript received 28 Sep. 2012; revised 15 Jan. 2013; accepted 17 Jan. 2013.
Date of publication 30 May 2013; date of current version 07 Aug. 2014.
Recommended for acceptance by E.-Y. Chung.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2013.24

IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 9, SEPTEMBER 2014 2201

0018-9340 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

For cfg1–3, there exists at least one workload suffering from a
high SER rank. A reliable processor design would favor
configurations (such as cfg4 and cfg5 in this example) whose
SER ranks are consistently low indifferent applications.Hence,
this work aims at effectively and efficiently identifying such
designs from a statistically large design space.

Our proposal: efficient and comprehensive design
parameter selection. In this paper, we propose two effective
approaches to characterize the SER over the design space.
First, we propose to use Patient Rule Induction Method (PRIM)
[16] to efficiently generate a set of selective rules on keydesign
parameters. Applying these rules on the design space effec-
tively identifies the design space subregion that has the lowest
response values (i.e., “valley seeking”). Therefore, the con-
figurations selected by these rules demonstrate the lowest
SER, thus being inherently reliable to soft errors. Second, we
utilize Classification and Regression Trees (CART) [7] to parti-
tion the design space into a set of subregions, each beingfitted
with a representative SER value. By doing so, we can obtain a
global and comprehensive view of the SER distribution over
the entire design space. Consequently, both techniques can
provide computer architects with useful guidelines to design
soft error resilient processors at pre-silicon stage.

More importantly, the parameter selection results gener-
ated by our proposed methods are “universal” across differ-
ent programs. In other words, only a single model is needed
for all the programs in consideration; the model effectiveness
is also validated on other programs not used in training. This
is in contrast to traditional design space explorations which
build a separate model for each program: in those studies, the
training cost would become intractable with the quickly
increasing number of workloads; in particular, the number
of multi-programmed workloads increases super-linearly
with the number of threads. As a result, our models’ cross-
program capability is very useful in such situations. Note,
however, that by “universal”we don’t refer to rules working
for all programs; instead,wemanage to identify the ruleswith
workload-independent effectiveness for SPEC CPU and
SPLASH2 benchmark suites used in this work. Regardless,
these commonly used benchmarks well represent real-world
applications.

Finally, the proposed approaches are inherently generic, so
they canbeused to optimizevariousprocessordesignmetrics.

A case study performed in Section 5 utilizes the proposed
universal design parameter selection to achieve a multi-ob-
jective optimization of reliability, performance, andpower for
multiprocessors.

Contributions. In summary, themain contributions of this
paper are as follows:

Analysis of design parameter selection on AVF. By
investigating the rules generated for AVF, we quantita-
tively demonstrate that: (1) minimizing the AVF for
different processor structures has different impacts on
the performance; (2) reducing the AVF of a single struc-
ture may increase the AVF of others.
Universal rules generation and validation using PRIM.
We propose to use an advanced rule search strategy
(PRIM) to efficiently extract the design space subregion
with universally optimal soft error reliability. The effec-
tivenessoftheuniversal ruleset is furthervalidatedusinga
well-developed statistical method (“Bootstrap” [15]) on a
setof testprogramsthatareunseenduringmodel training.
Comprehensive design space characterization using
CART. We propose to employ a regression tree fitting
process (CART) to obtain a global picture of the SER
distribution on the entire design space. CART provides
useful guidelines in designing reliable processors, espe-
cially in the cases when the optimal designs cannot be
achieved.
Balancing reliability, performance, and power for mul-
tiprocessors. We perform a study on multiprocessors
using the proposed universal modeling scheme to simul-
taneously balance multiple design metrics. We quantita-
tively identify suitable trade-offs among reliability,
performance, and power when running multi-threaded
workloads.

2 METHODOLOGY

2.1 Patient Rule Induction Method (PRIM)
Patient Rule Induction Method (PRIM) [16] identifies a sub-
region in the input space (composed of configuration para-
meters in this paper) that gives relatively low values for the
output response (e.g., the SER). The identified input space
subregion (or “box”) is described as a set of simple “selective

rules” in the form of . represents the th

input variable, and is a subset of all possible values for the
th variable. Hence, the identified region is the intersection
of subsets, each being from one of the input variables.

The box construction of PRIM consists of two phases:
patient successive top-downpeeling andbottom-up recursive
pasting. Fig. 2 visualizes this procedure. The top-down peel-
ing starts from the entire input space. At each iteration, we
have the following operations: a small subbox within the
current box is removed; we calculate the output mean for
the elements remaining in , trying
this operation in each dimension (i.e., try removing a different
subbox from each input variable); finally we choose the one
that yields the smallest output mean value for the next box

. The above procedure is iteratively applied until the
proportion of the data points remaining in the current box
(called the support) is below a chosen threshold . Note that
for a categorical variable, an eligible subbox contains only

Fig. 1. The SER rank of a certain configuration varies significantly across
different multi-threaded workloads. The number at the end of each
workload name indicates the number of threads generated when that
workload is run.

2202 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 9, SEPTEMBER 2014

one element of the possible values of the variable in the
current box . For example, suppose three possible values
for LSQ size remain in the current box, i.e., ,
there are three eligible subboxes: { }, { } and
{ } in this dimension. They are also the possible candi-
dates to be removed in the next iteration.

The pasting algorithm is simply the inverse of the peeling
procedure. The reason for pasting is that at each peeling
iteration we only look one step ahead. The box boundary is
thereby determined without knowledge of later iterations.
Consequently, we may peel too much from the input space,
and the final box can sometimes be improved by readjusting
its boundaries. From the peeling result, the current box is
iteratively enlarged by pasting onto it a small subbox that
minimizes the outputmean in the new larger box. The subbox
being pasted is chosen in the same manner as in peeling. The
bottom-up pasting is iteratively applied, successively enlarg-
ing the current boxuntil the additionof thenext subbox causes
the output mean start increasing.

Regarding the complexity of PRIM, thefirst peel requires at

most operations, where is the number of observa-

tions, is the number of input variables, and is the number
of possible values for the th variable. The number of opera-
tions for each peel will decrease since fewer and fewer
samples will be left during peeling. On the other hand, PRIM
performs approximately peeling steps,
where is the percentage of points that is peeled off at each
iteration.

An advantage of PRIMover greedymethods is its patience.
For example, a binary tree partitions the data quickly because
of its binary splits, while in PRIM each time only a small
proportion () of data is peeled off. Hence, the solution of
PRIM is usuallymore stable: if the data are slightly changed, a
tree structuremay change drastically but the PRIM solution is
less affected. Moreover, if the optimal subspace is not con-
nected, PRIM can generate a sequence of hyper-boxes instead
of just one.Namely, after getting thefirst hyper-box, the PRIM
procedure can be repeated on the remaining dataset. As a
result, a disconnected subspace can also be covered. However,
in practice the leading one hyper-box usually covers most of
the points with the smallest response values. Therefore, we
only apply PRIM once to identify the desired subregion in the
following sections. Finally, the threshold indicates the
percentage of data points remaining in the final hyper-box.

As can be seen in the following sections, if 2% design points
are extracted in the final results, they are usually within the
top 5%–15%optima of the entire design space for themetric in
analysis.

2.2 Classification and Regression Trees (CART)
While PRIM is an efficient mechanism to effectively identify
the “valley” of the input space, Classification and Regression
Trees (CART) provides a comprehensive view of the entire
space. CARTpartitions the input space into a set of rectangles,
fitting a simple model (usually a constant) in each of them. By
applying CART, we characterize different portions of the
input space with simple but representative response values,
thus enabling direct comparisons among different subre-
gions. Consequently, we can obtain a global and comprehen-
sive understanding of the response distribution over the
entire input space.

CART is a recursive binary partitioning algorithm that
provides an alternative to traditional parametric methods for
regression problems. We use the rpart package from the R
language [1] to train the CARTmodel; the detailed algorithm
is illustrated in Fig. 3. Initially, it splits the space into two
regions and via choosing the optimal variable and split-
point that can achieve the best fit (i.e., minimizing the Mean
Square Error as shown in Step 2.2) in the current iteration.
Then each of these two regions is further split into two more
regions, and this process is continued until some stopping
criteria are reached. In this algorithm, the split of a subspace is
stopped when the current depth of the tree exceeds a

Fig. 2. PRIM training procedure, including peeling and pasting.

Fig. 3. The CART algorithm used in this paper.

DUAN ET AL.: COMPREHENSIVE AND EFFICIENT DESIGN PARAMETER SELECTION 2203

threshold or the relative decrease of theMean Square Error
due to the new split is lower than a complexity parameter cp.
This recursive approach essentially builds a binary treewhose
leaves correspond to the resulting input space subregions.
Each of these subregions is modeled with the average of the
response values of the data points in this subregion. By
looking at these values, we can have a comprehensive view
of the distribution of the response in different input space
subregions.

As an illustrative example, Fig. 4 shows the result of the
CART process in a two-dimensional (and) input space.
In this example, we first split the space at ; then the
region < is split at , and the region > is
split at ; finally the region < is split at .
Therefore, the entire space is partitioned intofive regions to

as shown in the left panel of this figure. The right panel is
the binary tree representation of the same model. The full
dataset sits at the top of the tree; observations satisfying the
condition at each junction are assigned to the left branch; the
leaves of the tree correspond to the final resulting regions.
and are not further partitioned because they have reached
the threshold depth (assuming that), and the splits of
the other regions are stopped early because they are not
worthy compared to the introduced complexity.

A key advantage of CART is its interpretability. The
partition of the feature space can be fully described by a
single binary tree, which provides an intuitive visualization
to high-dimensional datasets. Second, CART is inherently
nonparametric and can easily handle input variables with
mixed types. Therefore, it doesn’t need to make any assump-
tions on the value distributions of the inputs, avoiding the
effort in examining and preprocessing training data. Further-
more, CART is adept at capturing non-additive behavior such
as the complex interaction between different input variables;
it is also insensitive to outliers.On the other hand, a treemodel
is usually not very stable: small changes in the training data
could result in a very different series of splits. Nevertheless,
the PRIM model (Section 2.1) is complementary to CART in
terms of stability. In the later sections, we will apply both
schemes to conduct a comprehensive yet stable investigation
on the problem studied in this paper.

3 ANALYSIS OF DESIGN PARAMETER SELECTION
ON AVF

This section investigates the impact of design parameter
selection on AVF, rather than SER, due to the following
reasons. First, this section focuses on analyzing an individual

processor structure (e.g., ROB), whose SER is directly related
to its number of entries (i.e., its area). Therefore, for individual
structures, the rules minimizing SER always tend to choose
configurationswith fewer entries, making it less interesting to
be examined. Second andmore importantly, AVF itself, as the
most important portion of SER, depends on both the software
and hardware, drawing strong interests from computer de-
signers. Many prior works [8]-[10], [18], [19], [40], [13] had
focused on merely investigating AVF itself. As a result, it’s
interesting and worthy to discuss the correlation of AVF and
configuration as part of this paper, particularly in the context
of generic rule summary over a design space.

In this section,we directly apply the PRIMmethod to build
a separate AVF model for each benchmark. This application-
specific approach generates the parameter selection rules that
work best for each individual workload,1 but requires work-
load dependent model trainingwhose overhead is significant
when there are a large number of workloads. Moreover, the
rules derived from a certain workload may not work well for
another. Nonetheless, analysis of these rules still provides
valuable insights on reliable processor design. In Section 4,we
will extend to SER, generating universal rules effective across
workloads.

3.1 Experimental Setup
We implement the AVF calculations [31], [18] in an extended
version of SimpleScalar3.0 [2] to simulate a detailed out-of-
order multistage superscalar processor. The implemented
AVF measurement is based on Architecturally Correct Execu-
tion (ACE) analysis [31], which identifies the hardware bits
(called ACE bits) that are required for correct program exe-
cution via a post-commit analysis window. Using this
approach, our simulation framework measures the AVF of
major microarchitectural components including Reorder
Buffer (ROB), Load StoreQueue (LSQ), FunctionalUnits (FU),
and Register File (RF).

We use a mixed set of benchmarks from SPEC CPU 2000
and 2006 suits as listed in Table 1. When generating the
universal rules in Section 4, 24 of these benchmarks form the
training set while the rest 12 are used for test. In this section,
we only select some of the representative ones to report their
application-specific rules. In order to have a comprehensive
evaluation, the entire SPECCPU 2000 suite (except sixtrack) is
included. For the other SPEC CPU benchmarks not used in
this work, we were not able to compile them into Alpha
binaries runnable in the SimpleScalar simulator. Each bench-
mark is simulated for 100 million instructions in details after
being fast forwarded to a representative phase derived from
SimPoint Toolkit [34]. The AVF measurements along with
performance data are outputted at the end of each simulation.

We construct a uniprocessor design space composed of 8
configuration parameters (to in Table 2). For register
files and caches, we assume no ECC protection since adding
ECCprotection effectively reducesAVF to 0. Thedesign space
size is 473,088, from which we randomly and uniformly
sample 2,000 configurations. This amount of sample size turns
out to be sufficient for training accurate models and also cost-
efficient for simulation.

Fig. 4. Illustration of CART in a two dimensional input space.

1. In this paper, we use “application”, “workload” and “program”
interchangeably.

2204 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 9, SEPTEMBER 2014

3.2 Results and Discussion
Application-specific rules achieve the AVF optimization for
individual workloads, enabling insightful analysis of design
parameter selection that optimizes processor soft error reli-
ability. Table 3 lists the rule sets for a number of benchmarks.
The results for other benchmarks used in this work show
similar behavior, thus being omitted in the paper. From these
results, we observe that minimizing the AVF of different
processor structures have different impacts on the
performance.

First, some rules tend to degrade the performance consid-
erably when minimizing the AVF. Specifically, the rules for

mcf to optimize the ROB AVF introduce some restriction on
the branch predictor selection. Fig. 5 shows the variation of
branch misprediction rate and the ROB AVF when running
mcf on configurations with different branch predictors to .
The other parameters are identical for these configurations.
Clearly, the ROB AVF varies contrarily with respect to the
variation of branch misprediction rate. If we exclude the two
(and) with the lowest misprediction rates as the rules
suggest, one can expect a significant performance loss. Similar
observation can be made from the rules for minimizing the
LSQ AVF. For example, in gobmk, the restriction on L1 cache
size to have smaller values (<) will result in a longer

TABLE 2
The Uniprocessor Design Space Composed of 8 Parameters; Branch Predictors Are Renamed to to for Easy Reference

TABLE 3
Workload-Dependent Rules for Optimizing Individual Structure’s AVF; “Width/ALUs” Is the Combination of Processor Width, # of

Integer ALUs, and # of FP ALUs; “&” Refers to “AND”; “ ” Refers to “OR”

TABLE 1
SPEC Benchmarks Used in This Paper; The Partitioning of Training and Test Sets Will Be Used in Section 4

DUAN ET AL.: COMPREHENSIVE AND EFFICIENT DESIGN PARAMETER SELECTION 2205

execution time. The reason that queue-based structures like
ROB and LSQ usually have lower AVF with worse perfor-
mance is intuitive: the AVF of these structures is directly
related to their occupancy rates, so a lowAVF value indicates
a low queue occupancy which in turn implies degraded
performance.

In contrast, optimizing the Register File AVF simulta-
neously improves the performance. Therefore, the rules gen-
erated for minimizing the Register File AVF clearly select the
designs achieving better performance via employing larger
queues or caches, wider CPUs, or more accurate branch
predictors. For example, the rules for milc favor a ROB size
larger than 110. Fig. 6 demonstrates how theRegister FileAVF
and the performance would vary when different ROB sizes
are used. It is easy to see that a larger ROB size results in better
performance and a more reliable Register File as well. This is
because more pipeline resources (e.g., a larger ROB) usually
improve performance via making instructions pass through
the pipeline more quickly. This effectively shortens the write-
read interval for a certain register, thus reducing the ACE
cycles and lowering the AVF for the Register File.

The correlation between the AVF and performance is
fuzzier for the Functional Units (FU). A very wide CPU
usually incurs a low FU AVF because it has sufficient ALUs
to execute the instructions more quickly (thus fewer ACE
cycles); a very narrow CPU significantly degrades perfor-
mance, but its FU AVF may still be low due to the inefficient
usage of ALUs. This can be verified from the rules for

optimizing the FU AVF of many benchmarks. For instance,
Fig. 7 illustrates that for fma3d the execution cycles consis-
tently decreasewith the increasing CPUwidth and number of
ALUs, but the FU AVF increases initially and decreases later.
Consequently, the rules for fma3d shown in Table 3 choose the
two extreme settings (either widest or narrowest) when opti-
mizing the FU AVF. If performance is taken into consider-
ation, one should choose a wide CPU.

On the other hand, the AVFs are also related to the cache
miss rates. Fig. 8 lists the level 1 data cachemiss rates for all the
configurations presented in Figs. 5–7. As can be seen, mcf
shows a variation of data cache miss rate that is very close to
its ROB AVF variation shown in Fig. 5. A higher cache miss
rate indicates more severe congestion in the pipeline, so there
are more microarchitectural bits that are vulnerable to soft
errors. In contrast, milc has a constant miss rate among the
configurations showing decreasing RF AVF. This workload’s
memory behavior is insensitive to the ROB size changes.
Similarly, fma3d demonstrates near-zero miss rates for the
differentwidths being examined. In spite of a slight increase in
the miss rate for the widest configuration, the FU AVF still
decreases because of the reduction in the vulnerable cycles
incurred by more ALUs and much wider pipeline.

To summarize, minimizing the individual processor struc-
ture’s AVF may degrade the performance (e.g., in ROB and
LSQ), or improve the performance (e.g., in Register File), or

Fig. 7. Functional Units AVF of fma3d (SPEC 2000) varies with different
combinations of processor width and # of ALUs.

Fig. 8. The level 1 data cachemiss rates for the workloads running on the
configurations shown in Figs. 5–7.

Fig. 5. ROBAVFofmcf (SPEC2000) varieswith Fig. 6. Register File AVF
ofmilc (SPEC 2006) varies different branch predictors with different ROB
sizes.

Fig. 6. Register File AVF of milc (SPEC 2006) varies with different ROB
sizes.

2206 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 9, SEPTEMBER 2014

result in either way (e.g., in Functional Unit). Furthermore, in
Table 3we also observemany contradictions between the rule
sets optimizing different structures’ AVF for the same work-
load. For example, applu requires a small LSQ size (<) but a
large one (>) in optimizing the AVF for ROB and LSQ,
respectively. Fig. 9 illustrates this contradiction. We can see
that the LSQAVF decreases with the increase of LSQ size, but
meanwhile the ROBAVF quickly boosts to a very high value.
Therefore, if the rules for optimizing the LSQ AVF are
adopted in the processor design, ROB will become extremely
vulnerable. Consequently, reducing theAVF of one processor
structure may increase the AVF of others. When designing a
reliable processor, one can easily make a mistake by transfer-
ring the soft error vulnerability to other parts of the processor,
instead of really reducing it. Therefore, the overall AVF (and
SER) of the entire processor should be considered to achieve a
holistically reliable solution.

4 UNIVERSAL RULES GUIDED DESIGN PARAMETER
SELECTION

4.1 Efficient Generation Using PRIM
Weextend themodeling in the previous section in two aspects
here. First, the effective SER is used as the model response in
this section, as SER is a more direct measurement of soft error
vulnerability. Since we only care about the relative SER
values,we use (AVF area) to estimate the SERof a processor,
assuming a constant FIT per area unit. For the area of each
microarchitectural structure, we use its number of bits that
can be available in a recent AVF simulation framework [18],
[3]. Theprocessor overallAVF is the ratio between thenumber
of the entire processor’s ACE bits and the whole processor
size. It can be calculated as the summation of different struc-
tures’ AVFs weighted by the corresponding structures’ sizes.
The area of the processor is the summation of all the struc-
tures’ areas.

Second, we generate rules effective across programs in this
section. The rule sets generated in the previous section work
well for their corresponding applications, butmay differ from
each other. In practice, these results may not be very useful if
the rule sets for different applications significantly disagree.
Processor architects are more interested in generic guidelines
that can achieve universal reliability across different applica-
tions. Fortunately, from Fig. 1 we can see that there exists some
consensusamongdifferentprogramsaboutwhat configurations

are reliable. Therefore, it is possible to extract a “universal”
rule set that works well across different programs.

Consequently, we propose to select parameters that mini-
mize the average SER rank across all the training benchmarks.
First,we need to rank the configurations in each benchmark in
terms of the SER measurements. This is because the absolute
SER value ranges significantly differ in different benchmarks.
For the 2K configurations used in this work, the one with the
lowest SER value is ranked 1 while the one with the highest
SER is ranked 2000. Hence, a certain configuration would
have 24 different ranks for the 24 training benchmarks in
Table 1, respectively. Second, we use the average of these
ranks as the output response to train a PRIM model. The
generated rule set contains the design points that are univer-
sally reliable for all training benchmarks. In practice, we
found that minimizing the average of the cube of the ranks
(i.e., mean()) is very effective in identifying the universal
rules, as this tends to balance the ranks across different
benchmarks. For example, suppose we have 5 benchmarks
and need to compare two cases with ranks (2, 2, 2, 2, 2) and
(1, 1, 1, 1, 6), respectively. If the average of ranks is used, the
two cases are considered as the same; but if the cube of ranks is
used, the first case is better than the second one.

By using the above approach, we are able to generate a
universal rule set that optimizes the overall SER of a uni-
processor. It is shown as Rule Set I as follows:

< <

<

Rule Set I provides useful guidelines in designing a holis-
tically and universally reliable processor. It has upper bounds
on ROB and LSQ sizes because smaller structures have less
exposure to raw soft errors; other factors somehow degrade
the performance, validating our previous observation that a
contradiction exists between optimizing performance and
some structures’ AVF.

Compared to a number of prior design space studies [21],
[22], [8], [9], our PRIM-based approach is more efficient. First,
traditional design space studies usually need to train a sepa-
rate model for each benchmark. The training cost would
become intractable when the number of workloads enlarges
quickly. In contrast, our approach only builds a single model
that is effective across different workloads. Second, the prior
studies propose predictive models while PRIM quantifies the
desired parameter value ranges. It’s also possible for predic-
tive models to derive these ranges (e.g., via exhaustive pre-
diction like Pareto Analysis [23]), but PRIM is a direct and
more efficient one-step search that avoids exhaustive predic-
tion on the entire design space.

4.2 Universal Rules Validation
In this subsection, we apply Rule Set I on the 12 test bench-
marks (see Table 1) to validate its effectiveness in identifying
reliable design configurations. For each of these benchmarks
being tested, the validation consists of the following steps:

(1) Simulate the test benchmark on the 2,000 configura-
tions randomly and uniformly sampled from the entire

Fig. 9. ROB and LSQAVFs of applu (SPEC 2000) vary with different LSQ
sizes.

DUAN ET AL.: COMPREHENSIVE AND EFFICIENT DESIGN PARAMETER SELECTION 2207

design space. These simulations are used to approxi-
mate the whole design space whose exhaustive simu-
lation is intractable.

(2) Identify what configurations among the 2,000 ones are
selected by Rule Set I. When Rule Set I was generated
above, was set to 2%. Therefore, there are approxi-
mately 40 points selected by this rule set.

(3) Identify in which part of the design space the points
selected by Rule Set I are actually located.

Themain difficulty of the above approach is in (3), because
for each benchmark in the test set we intend to know where
those configurations selected by the rule set are located in the
entire design space (not just the sampled 2K configurations!).
In other words, we intend to know what percentile (say) of
the design space that the values of these selected points are
below.The -percentile for thewhole space indicates thevalue
that is greater than % of all the data points but less than the
rest.

In order to make inference based on the entire input space,
we use the bootstrapping method [15]. Specifically, we first
sample (with replacement) 1,000 bootstrap samples from the
2,000 configurations. Note that each bootstrap sample also
contains 2,000 design points though some of them may be
repetitive due to the replacement in sampling. We then
compute a confidence interval estimate of the entire design
space’s -percentile based on these bootstrap samples.
Specifically, for each bootstrap sample, we calculate its
-percentile. This gives us a total of 1,000 values for
-percentiles (one for each bootstrap sample). Among these
1,000 values, we further calculate their 5-percentile (say W).
By doing so, we have 95% confidence that the -percentile of
the entire design space is larger than or equal toW. Finally,we
adjust the value (by repeating the above steps) to have the
derivedW slightly larger than the largest value of the selected
points. Therefore, thefinaldetermined value is thepercentile
that all the selected points are below. Note that this approach
is conservative since the exact -percentile of the entire design
space could be much larger than W.

For each benchmark being tested, we first calculate the
minimum, lower quartile, median, upper quartile, and maxi-
mumof thedesignpoints selected by the rule set; after that, for
each of these five values, we calculate the corresponding
percentile of the entire design space that it is below (using
the bootstrapping method). We use boxplot to demonstrate
the validation results in Fig. 10. In this boxplot, the upper and
lower boundaries of the central gray box correspond to the
upper and lower quartiles; the highlighted horizontal line
within the box is at the median; the vertical dotted line drawn
from the box boundaries extend to the minimum and maxi-
mum. The vertical axis shows the percentile of the entire
design space that the selected points are below. For example,
for gcc, the maximum of the points selected by Rule Set I
corresponds to a value of 8% in the vertical axis, meaning that
in this benchmark all selected points are within the top 8%
optima of the entire design space. We can see that Rule Set I is
very effective infinding theoptima for all test benchmarks.On
average, the design points quantified by Rule Set I achieve the
top 12% optima of the entire design space. Again, as clarified
in Section 1, we don’t intend to locate the design space
subregion that is reliable independent of all programs, but
demonstrate that the rules generated using our proposed

methodologyworkwell across SPECCPUbenchmarks. These
rules would be effective for other programs outside SPEC
provided that SPEC CPU suites well represent real-world
applications.

4.3 Comprehensive Analysis Using CART
PRIM efficiently identifies the “valley” of the design space
that has the lowest SER, but it doesn’t reveal any information
on the SER distribution outside the valley. Sometimes, the
optimal designs may not be achieved due to budget issues; in
such cases, processor architects are more interested in obtain-
ing a global picture of the response distribution over the entire
design space. CART canprovide such information viafitting a
regression tree. The detailed description of CART can be
found in Section 2.2. In this subsection, we apply the CART
process on the training data used in previous subsections to
generate a comprehensive tree-structured model. The inputs
to thismodel are the configurationparameters, and the output
is the average SER rank over training benchmarks.

Fig. 11 shows the regression tree generated based on the
training data. When generating this tree, we set the threshold
depth to 4 and the complexity parameter cp to 0.1%. As can
be seen, the design space is partitioned into 16 subregions (i.e.,
the leaves in this tree); in eachof them, theuppernumber is the
average SER rank of the data points belonging to this subre-
gion, and the bottom number (indicated by “ ”) is the
percentage (%) of the data points in this subregion over all
data points. We summarize two typical leaves (the leftmost
one and the rightmost one) as the following rule sets.Note that
design points satisfying the condition at each junction are
assigned to the left branch.

<

> >

We have a number of interesting findings. First, Leaf 1
quantifies the subregion with the lowest SER ranks among all
the leaves. This is consistent with Rule Set I discovered by
PRIM: bothRule Set I andLeaf 1 cover of the input space

Fig. 10. Validation of Rule Set I on the test benchmarks.

2208 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 9, SEPTEMBER 2014

with most of the selected points overlapped. This part is the
lowest “valley” of thewhole space. On the other hand, Leaf 16
is the subregionwith thehighest SER ranks.Whendesigning a
reliable processor, processor architects should avoid any
designs falling into this subregion. Second, from this global
view we can see that the best subregions (in terms of SER
ranks) are usually small and separated, while the worst
subregions are usually large and connected. For instance,
Leaf 1, 2, 3, 5 have the lowest SER ranks but only cover less
than 13.5% of the space in total; in contrast, Leaf 12 and 16
show extremely high ranks, each covering 22.3% and 11.2%of
the space, respectively. This actually indicates the high diffi-
culty of seeking the optimal design subregions. In this sense,
the PRIM scheme proposed in this paper is very effective and
useful. Third, the tree hierarchy suggests the importance of
different configuration parameters. For example, the LSQ size
has the most significant impact on the processor SER: it
appears at the top levels since both FIT and AVF are affected
by the LSQ size. At the lower levels, branch predictor, pro-
cessor width, and ROB size further partition the subspaces.

As a validation, we apply the obtained tree model to the
test benchmarks. In Fig. 12, the tree structure is the same as in
Fig. 11, but the numbers in the leaves are different since the
test data is being used now. As can be seen, the overall
patterns (in terms of average SER ranks) of the two trees
agree; Leaf 1 and 16 still have the lowest and highest average
ranks, respectively. Furthermore, Fig. 13 demonstrates how
the SER ranks would distribute in each of the 16 leaf

subregions. This is a boxplot whose description can be found
in Fig. 10 (Section 4.2); in this figure, circles are added to
indicate outliers. It’s easy to see that the rank distributions (in
particular, the central rectangles) are very similar for the
training and test benchmarks. Consequently, the effectiveness
of the CART model is validated on (unseen) test programs.

5 BALANCING RELIABILITY, PERFORMANCE, AND
POWER FOR MULTIPROCESSORS

In this section, we further extend our universal PRIM model-
ing scheme tomultiprocessors, demonstrating that universal-
ly soft error resilient design configurations still exist for a
homogeneous multi-core processor running multi-threaded
workloads. By varying the number of cores and the number of
application threads, Soundararajan et al. [36] concluded that
the configurations optimizing soft error reliability of different
multi-threaded applications were not straightforward. Nev-
ertheless, our proposed scheme can still quantify and validate
the optimal design subspace for multiprocessors. Moreover,
we also perform a multi-objective optimization that concur-
rently balances multiple design metrics (reliability, perfor-
mance, and power) for a multiprocessor.

5.1 Experimental Setup
All experiments in this section are run using theM5 simulator
[5] capable of simulatingmulti-threaded programs. Because of
the inter-thread data sharing, a dynamically dead instruction

Fig. 12. The application of the generated CART tree on the test benchmarks.

Fig. 11. The regression treegeneratedbyCARTon the trainingbenchmarks. “ ” refers to “ ”, while “ ” refers to
“ ”.

DUAN ET AL.: COMPREHENSIVE AND EFFICIENT DESIGN PARAMETER SELECTION 2209

whose result is not usedbyother instructions in its own thread
may become an ACE instruction (thus being “vulnerable”) in
the system if its result is accessed by instructions fromanother
thread. Therefore, in order to calculate the AVF for multi-
threaded programs, a system-wide post-commit analysis
window needs to be maintained. The committed instructions
from different threads are inserted into this unified window,
and their types can be determined after they reach the other
end of thewindow. TheAVF can then be calculated from such
information. By following this approach, we implement the
AVF measurements for ROB, Load Queue, Store Queue, and
IssueQueue formultiprocessorswithAlpha 21264-likeCPUs.
The SER of themultiprocessor is calculated based on the AVF
and areas of these structures.

Six benchmarks (Cholesky, FFT, Radix, OceanContiguous,
WaterNSquared, and WaterSpatial) from SPLASH2 [43] suite
are evaluated, each being measured with 1 thread, 2 threads,
and 4 threads enabled on single-core, dual-core, and quad-
core processors, respectively. All cores in our multiprocessor
model have their private L1 I/D caches and share a unified L2
cache. The data coherencies among different L1 caches are
maintained using a MOESI snooping protocol. Multi-
threaded workloads explore thread-level parallelism. The
multiple threads running simultaneously show contention

as well as constructive behavior in the shared memory hier-
archy. Therefore, the SER, performance, and power of one
thread can be affected by its competing threads.

M5 simulates Alpha 21264-like out-of-order CPUs, whose
important parameters are tuned and form a new design space
shown in Table 4. In this study, 1,000 configurations are
randomly sampled from themultiprocessor design space and
simulated for each benchmark.Note that a separate core (with
the corresponding configuration from the design space) is
created for each of the threads enabled in the simulated
program. The detailed simulation starts after the program’s
sequential initialization, and stops when the fastest thread
finishes a certain amount of instructions.

5.2 Results and Discussion
Before simultaneously balancing the three metrics, we sepa-
rately optimize each of them first. The multiprocessor’s soft
error reliability can be characterized by its aggregated SER: in
our case, it’s the total area times the average of all cores’AVFs
(because of the core homogeneity). The reciprocal of the
system throughput, i.e., , where
< < , is used to represent a n-core processor’s perfor-

mance. Finally, the total power is the summation of all cores’
power. Note that all three metrics favor lower values. We

TABLE 4
TheMultiprocessor Design Space Composed of 9 Parameters. Only Multiprocessors with Homogeneous Cores Are Considered. The

Entire Space Size Is 1,458,000

Fig. 13. The rank distribution of the data points in each of the 16 tree leaves on training (left) and test (right) data.

2210 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 9, SEPTEMBER 2014

follow the same approach described in Section 4.1 (i.e., con-
figuration parameters as the inputs and average rank as the
output) to generate the universal rule sets respectively opti-
mizing the three metrics. Specifically in this work, we put the
2-threaded runs of 5 benchmarks (except WaterSpatial) in the
training set, and validate the generated rules on the other
runs. In particular, WaterSpatial is chosen to have all config-
urations (including 1-threaded, 2-threaded, and 4-threaded)
in the test set in order to validate the generated model’s
effectiveness across SPLASH2 benchmarks and different
numbers of threads. The three rule sets (Rule Set II, III, IV)
are listed in Table 5. Not surprisingly, a multiprocessor with
wider CPUs and more pipeline resources usually demon-
strates better performance, while a power-efficient design
often selects parameters at the lower end of the range. In
contrast, Rule Set II which minimizes the multiprocessor SER
shows upper bounds on a few important parameters, e.g.,
ROB, LSQ, and IQ, but favors a bigger L1 cache. The valida-
tion of these three rule sets are shown in Fig. 14. We can see
thatmost identifieddesignpoints achieve the top 20%optima.

Simultaneously balancing the three metrics is essentially a
multi-objective optimization problem that requires a reason-
able objective function.Wepropose tominimize the following
function to achieve a good trade-off among different con-
flicting metrics:

>

The exponentials a, b, and c are weight factors controlled
by the designer. Formulating the objective function in this
way results in an optimization process in proportional to the
relative change of different metrics, ensuring more fairness
thanother objective functions such asnormalized summation.
Consequently, the designer can give more importance to a
certain metric by enlarging its weight factor.

Rule Set II, III, and IV are actually special cases where one
of the three weight factors equals 1 and the other two equal 0.
That said, Rule Set II–IV merely optimize a certain metric
without taking the other two into account. Therefore, one can
expect large degradations in the other two metrics for each of
the three rule sets. Fig. 15 shows the comparison of different
weight factor assignments in terms of SER, performance, and
power. A separate rule set is generated for each weight factor
assignment shown in this figure. Each column in this figure
corresponds to the average response of the design points

selected by the corresponding rule set; the value of the column
is normalized to the case that merely optimizes the perfor-
mance, i.e., the leftmost case where . For
example, the rule set merely optimizing SER with weights
(1, 0, 0) demonstrates 34% improvement in SERbut 44% loss in
performance. Hence, none of the three rule sets (II, III, and IV)
provides a good balance of reliability, performance, and
power. This is expected because they individually optimize
only one of the three conflictingmetrics. Therefore,we need to
tune the weight factors to achieve better trade-offs among the
metrics. (0.3, 0.4, 0.3) is a well-balanced assignment which
shows 32% improvement, 15% loss, and 3% improvement in
SER, performance, and power, respectively. One can further
enlarge the middle weight factor to mitigate the performance
loss. For instance, (0.2, 0.6, 0.2) is another assignment that
achieves SER improvement of 25%with only 7%performance
degradation. Rule sets for these two assignments are also
listed in Table 5 as Rule Set V and VI.

6 RELATED WORK

The concept of AVF was originally proposed in [31], and
Biswas et al. [6] extended it to address-based structures.
A common approach to calculate the AVF is via Architectural
Correct Execution (ACE) analysis [31] which provides a
tight lower bound on the soft error reliability of various
processor structures. Aunified framework named Sim-SODA
[18] to study the superscalar processor’s AVF was released.
Soundararajan et al. [35] described a simple infrastructure to
estimate an upper bound of the ROB AVF. Zhang et al. [44]
characterized theAVFonSMTarchitectures by examining the
impact fromworkloads, fetch policies, etc. On the other hand,
Statistical Fault Injection (SFI) [27], [41] provides another
approach to calculate the AVF. Sridharan et al. proposed
Program Vulnerability Factor (PVF) [37] and Hardware
Vulnerability Factor (HVF) [38] to describe architecture-
independentprogramvulnerability andsoftware-independent
hardware vulnerability to soft errors.

For the correlation between the AVF and configuration
parameters, Cho et al. [8], [9] predicted the dynamics of
power, CPI, and the AVF using a combination of wavelets
and neural networks. Our work differs from theirs in that we
provide simple but useful guidelines to conduct reliable
processor design. We also quantitatively analyze the effect
of optimizing holistic reliability and identify the trade-off of
reliability, performance, and power for multiprocessors.

TABLE 5
Universal Rule Sets Optimizing Different Metrics for Multiprocessors

DUAN ET AL.: COMPREHENSIVE AND EFFICIENT DESIGN PARAMETER SELECTION 2211

A series of studies [28], [29] discussed design space explo-
ration on performance and/or power. Ipek et al. [21] pre-
dicted performance of memory hierarchy, CPU and CMP
design spaces using Artificial Neural Networks (ANNs);
similarly, Lee et al. [22], [24] proposed to use spline-based
regression to predict performance and power from a large
design space. It’s also possible to derive optimal points based
on their predictive models (e.g., via exhaustive prediction in
Pareto Analysis [23]), but our method is a one-step search
that is more efficient and direct. Besides, PRIM can provide
highly interpretable selective rules. More importantly, we
demonstrated in this paper that the PRIM-generated rules
are effective across SPEC and SPLASH2 benchmarks. This is
in contrast to traditional application-specific design space
studies.

Several prior publications studied on-line AVF prediction.
Fu et al. [19] observed a fuzzy correlation between the AVF
and a few common performance metrics. Walcott et al. [40]
extended the input metrics set and used linear regression to
reexamine this correlation. They performed a very accurate
prediction, proving the existence of the correlation between
the AVF and various performance metrics. Our prior work
[10], [25] further generalized this correlation to be across
workloads, execution phases, and configurations. Alterna-
tively, Li et al. [26] developed an online algorithm to estimate
processor structures’ vulnerability using a modified error
injection and propagation scheme [27], [41].

7 CONCLUSION

This paper proposes to use two statistical techniques to
characterize processor reliability against soft errors via
exploring a configuration design space. The first technique,
Patient Rule Induction Method, generates selective rules on
design parameters to identify the design space subregion
showing optimal soft error reliability. By analyzing the gen-
erated rules, we find that minimizing the AVF for different
processor structures has different impacts on the perfor-
mance, and reducing the AVF of a single structure may
increase the AVF of others. The second technique, Classifica-
tion and Regression Trees, partitions the input space into
small subregions, providing a global picture of the SER
distribution. Via examining the regression tree, we find that
the optimal subregions are usually small, separated, and
thereby difficult to identify; the tree hierarchy also indicates
the importance of different parameters. Finally, this work is
extended to multiprocessors where multiple design metrics
are simultaneously balanced. We find that tuning the weight
factors of different metrics in our proposed objective function
can achieve multi-objective optimizations among reliability,
performance, and power.

ACKNOWLEDGMENT

The work of L. Duan was performed during the PhD study
at LSU. This work is supported in part by an NSF Grant
CCF-1017961, the Louisiana Board of Regents grant

Fig. 15. The comparison (in terms of the three metrics) of different
assignments of (a, b, c) in the proposed objective function f. All cases
are normalized to the corresponding values in (0,1,0) that optimizes the
performance.

Fig. 14. Validation of Rule Set II, III, IV on the test multi-threaded bench-
marks. The number at the end of a benchmark’s name indicates the
number of threads generated when that benchmark is run.

2212 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 9, SEPTEMBER 2014

NASA/LEQSF (2005–2010)-LaSPACE and NASA Grant
number NNG05GH22H, NASA(2011)-DART-46, LQESF
(2011)-PFUND-238 and the Chevron Innovative Research
Support (CIRS) Fund. We acknowledge the computing
resources provided by the Louisiana Optical Network Initia-
tive (LONI) HPC team. Finally, we appreciate invaluable
comments from anonymous reviewers.

REFERENCES

[1] The R Project for Statistical Computing. Available: http://www.r-
project.org/

[2] Simple Scalar LLC. Available: http://www.simplescalar.com/
[3] Sim-SODA (SOftware Dependability Analysis). Available: http://

www.ideal.ece.ufl.edu/main.php?action=simsoda
[4] T. Austin, “DIVA: A reliable substrate for deep submicron micro-

architecture design,” in Proc. Int. Symp. Microarchit. (MICRO), 1999,
pp. 196–207.

[5] N. Binkert et al., “The M5 simulator: Modeling networked
systems,” in Proc. IEEE Int. Symp. Microarchit. (MICRO), vol. 26,
no. 4, pp. 52–60, Jul./Aug. 2006.

[6] A. Biswas, P. Racunas, R. Cheveresan, J. Emer, S. Mukherjee, and
R. Rangan, “Computing architectural vulnerability factors for
address-based structures,” inProc. Int. Symp.Comput. Archit. (ISCA),
2005, pp. 532–543.

[7] L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification and
Regression Trees. Belmont, CA, USA: Wadsworth International
Group, 1984.

[8] C. Cho, W. Zhang, and T. Li, “Informed microarchitecture design
space exploration using workload dynamics,” in Proc. IEEE Int.
Symp. Microarchit. (MICRO), 2007, pp. 274–285.

[9] C. Cho, W. Zhang, and T. Li, “Modeling and analyzing the effect of
microarchitecture design space parameters on microprocessor soft
error vulnerability,” in Proc. Int. Symp. Model. Anal. Simul. Comput.
Telecommun. Syst. (MASCOTS), 2008, pp. 247–256.

[10] L. Duan, B. Li, and L. Peng, “Versatile prediction and fast estimation
of architectural vulnerability factor from processor performance
metrics,” in Proc. Int. Symp. High Perform. Comput. Archit. (HPCA),
2009, pp. 129–140.

[11] L. Duan, B. Li, and L. Peng, “Reliability-constrained processor
performance optimization via design parameter selection,” in Proc.
Int. Conf. Parallel Archit. Compil. Techn. (PACT), 2009.

[12] L. Duan, L. Peng, and B. Li, “Two-level soft error vulnerability
prediction on SMT/CMP architectures,” in Proc. IEEE Int. Symp.
Workload Char. (IISWC), 2011, p. 78.

[13] L. Duan, L. Peng, and B. Li, “Predicting architectural vulnerability
on multi-threaded processors under resource contention and
sharing,” IEEE Trans. Dependable Secure Comput., vol. 10, no. 2,
pp. 114–127, Mar./Apr. 2013.

[14] L. Duan, Y. Zhang, B. Li, and L. Peng, “Universal rules guided
design parameter selection for soft error resilient processors,” in
Proc. IEEE Int. Symp. Perform. Anal. Syst. Softw. (ISPASS), 2011, pp.
247–256.

[15] B. Efron and R. Tibshirani, An Introduction to the Bootstrap. London,
U.K.: Chapman & Hall/CRC, 1994.

[16] J. Friedman and N. Fisher, “Bump hunting in high-dimensional
data,” Statist. Comput., vol. 9, pp. 123–143, 1999.

[17] X. Fu, T. Li, and J. Fortes, “Combined circuit and microarchitecture
techniques for effective soft error robustness in SMT processors,” in
Proc. Int. Conf. Dependable Syst. Netw. (DSN), 2008, pp. 137–146.

[18] X. Fu, T. Li, and J. Fortes, “Sim-SODA: A unified framework for
architectural level software reliability analysis,” in Proc. Workshop
Model. Benchmarking Simul., 2006.

[19] X. Fu, J. Poe, T. Li, and J. Fortes, “Characterizing microarchitecture
soft error vulnerability phase behavior,” in Proc. Int. Symp. Model.
Anal. Simul. Comput. Telecommun. Syst. (MASCOTS), 2006, pp. 147–
155.

[20] M. Gomaa, C. Scarbrough, T. Vijaykumar, and I. Pomeranz, “Tran-
sient-fault recovery for chip multiprocessors,” in Proc. Int. Symp.
Comput. Archit. (ISCA), 2003, pp. 98–109.

[21] E. Ipek, S. McKee, B. de Supinski, M. Schulz, and R. Caruana,
“Efficiently exploring architectural design spaces via predictive
modeling,” in Proc. Int. Conf. Archit. Support Program. Languages
Oper. Syst. (ASPLOS), 2006, pp. 195–206.

[22] B. Lee and D. Brooks, “Accurate and efficient regression modeling
for microarchitectural performance and power prediction,” in Proc.
Int. Conf. Archit. Support Program. Languages Oper. Syst. (ASPLOS),
2006, pp. 185–194.

[23] B. Lee and D. Brooks, “Illustrative design space studies with micro-
architectural regression models,” in Proc. Int. Symp. High Perform.
Comput. Archit. (HPCA), 2007, pp. 340–351.

[24] B. Lee, J. Collins, H. Wang, and D. Brooks, “CPR: Composable
performance regression for scalable multiprocessor models,” in
Proc. IEEE Int. Symp. Microarchit. (MICRO), 2008, pp. 270–281.

[25] B. Li, L. Duan, and L. Peng, “Efficient microarchitectural vulner-
abilities prediction using boosted regression trees and patient
rule inductions,” IEEE Trans. Comput., vol. 59, no. 5, pp. 593–607,
May 2010.

[26] X. Li, S. Adve, P. Bose, and J. Rivers, “Online estimation of architec-
tural vulnerability factor for soft errors,” in Proc. Int. Symp. Comput.
Archit. (ISCA), 2008, pp. 341–352.

[27] X. Li, S.Adve, P. Bose, and J. Rivers, “SoftArch:Anarchitecture-level
tool for modeling and analyzing soft errors,” in Proc. Int. Conf.
Dependable Syst. Netw. (DSN), 2005, pp. 496–505.

[28] Y. Li, B. Lee, D. Brooks, Z. Hu, and K. Skadron, “CMP design space
exploration subject to physical constraints,” in Proc. Int. Symp. High
Perform. Comput. Archit. (HPCA), 2006, pp. 17–28.

[29] M. Monchiero et al., “Design space exploration for multicore archi-
tectures: Power/performance/thermal view,” in Proc. Int. Comput.
Symp. (ICS), 2006, pp. 177–186.

[30] S. Mukherjee, M. Kontz, and S. Reinhardt, “Detailed design and
evaluation of redundant multithreading alternatives,” in Proc. Int.
Symp. Comput. Archit. (ISCA), 2002, pp. 99–110.

[31] S. Mukherjee, C. Weaver, J. Emer, S. Reinhardt, and T. Austin,
“A systematic methodology to compute the architectural vulnera-
bility factors for a high-performance microprocessor,” in Proc. IEEE
Int. Symp. Microarchit. (MICRO), 2003, pp. 29–40.

[32] S. Reinhardt and S. Mukherjee, “Transient fault detection via simul-
taneous multithreading,” in Proc. Int. Symp. Comput. Archit. (ISCA),
2000, pp. 25–36.

[33] E. Rotenberg, “AR-SMT: A microarchitectural approach to fault
tolerance in microprocessor,” in Proc. Int. Symp. Fault-Tolerant
Comput. (FTCS), 1999, pp. 84–91.

[34] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Auto-
matically characterizing large scale program behaviors,” in Proc.
Int. Conf. Archit. Support Program. Languages Oper. Syst. (ASPLOS),
2002, pp. 45–57.

[35] N. Soundararajan,A. Parashar, andA. Sivasubramaniam, “Mechan-
isms for bounding vulnerabilities of processor structures,” in Proc.
Int. Symp. Comput. Archit. (ISCA), 2007, pp. 506–515.

[36] N. Soundararajan, A. Sivasubramaniam, and V. Narayanan, “Char-
acterizing the soft error vulnerability of multicores running
multithreaded applications,” in Proc. SIGMETRICS Conf., 2010,
pp. 379–380.

[37] V. Sridharan and D. Kaeli, “Eliminating microarchitectural depen-
dency from architecture vulnerability,” in Proc. Int. Symp. High
Perform. Comput. Archit. (HPCA), 2009, pp. 117–128.

[38] V. Sridharan and D. Kaeli, “Using hardware vulnerability factors to
enhance AVF analysis,” in Proc. Int. Symp. Comput. Archit. (ISCA),
2010, pp. 461–472.

[39] T. Vijaykumar, I. Pomeranz, and K. Cheng, “Transient-fault recov-
ery using simultaneous multithreading,” in Proc. Int. Symp. Comput.
Archit. (ISCA), 2002, pp. 87–98.

[40] K. Walcott, G. Humphreys, and S. Gurumurthi, “Dynamic
prediction of architectural vulnerability from micro-
architectural state,” in Proc. Int. Symp. Comput. Archit. (ISCA),
2007, pp. 516–527.

[41] N. Wang, A. Mahesri, and S. Patel, “Examining ACE analysis
reliability estimates using fault-injection,” inProc. Int. Symp.Comput.
Archit. (ISCA), 2007, pp. 460–469.

[42] C. Weaver, J. Emer, S. Mukherjee, and S. Reinhardt, “Techniques
to reduce the soft error rate of a high-performance micro-
processor,” in Proc. Int. Symp. Comput. Archit. (ISCA), 2004,
pp. 264–275.

[43] S. C. Woo et al., “The SPLASH-2 programs: Characterizing and
methodological considerations,” in Proc. Int. Symp. Comput. Archit.
(ISCA), 1995, pp. 24–36.

[44] W. Zhang, X. Fu, T. Li, and J. Fortes, “An analysis of microarchi-
tecture vulnerability to soft errors on simultaneous multithreaded
architectures,” in Proc. IEEE Int. Symp. Perform. Anal. Syst. Softw.
(ISPASS), 2007, pp. 169–178.

DUAN ET AL.: COMPREHENSIVE AND EFFICIENT DESIGN PARAMETER SELECTION 2213

[45] W. Zhang and T. Li, “Managing multi-core soft-error reliability
through utility-driven cross domain optimization,” in Proc.
IEEE Int. Conf. Appl. Specific Syst. Archit. Process. (ASAP), 2008,
pp. 132–137.

[46] J. Ziegler et al., “IBM experiments in soft fails in computer
electronics (1978–1994),” IBM J. Res. Develop., vol. 40, no. 1,
pp. 3–18, 1996.

Lide Duan received the BS degree in computer
science and engineering from Shanghai Jiao
Tong University, China, and the PhD degree
in electrical and computer engineering from
Louisiana State University, Baton Rouge. He is
currently working as a senior design engineer in
core modeling for AMD’s x86 architectures. His
research interests include computer architecture,
soft error reliability analysis and prediction, and
application-level error propagation prediction. He
received a Graduate Fellowship from Louisiana

Optical Network Initiative (LONI) and the Dissertation Year Fellowship
from LSU Graduate School during his PhD study.

Ying Zhang received the bachelor’s andmaster’s
degree in electronics and information engineering
from Huazhong University of Science and Tech-
nology, China, in June 2006 and 2008, respec-
tively. He is currently a PhD student in electrical
and computer engineering, Louisiana State
University. His research interests include GPU
performance characterization and hard-error reli-
able processor design. He also has interests in
energy-efficiency optimization for heterogeneous
architectures.

Bin Li received the bachelor’s degree in biophys-
ics from FudanUniversity, China. He obtained the
master’s degree in biometrics and PhD degree
in statistics from The Ohio State University,
Columbus, in August 2002 and August 2006,
respectively. He is an associate professor
with the Experimental Statistics Department,
Louisiana State University, Baton Rouge. His
research interests include statistical learning &
data mining, statistical modeling on massive and
complex data, and Bayesian statistics. He re-

ceived the Ransom Marian Whitney Research Award in 2006 and a
Student Paper Competition Award from ASA on Bayesian Statistical
Science in 2005. He is amember of the Institute ofMathematical Statistics
(IMS) and American Statistical Association (ASA).

Lu Peng received the bachelor’s and master’s
degrees in computer science and engineering
from Shanghai Jiao Tong University, China. He
obtained thePhDdegree in computer engineering
from University of Florida, Gainesville, in April
2005. He is currently an associate professor with
the Division of Electrical and Computer Engineer-
ing, Louisiana State University, Baton Rouge. His
research interests include memory hierarchy sys-
tem, reliability, power efficiency and other issues
in CPU design. He also has interests in network

processors. He received an ORAU Ralph E. Powe Junior Faculty
Enhancement Awards in 2007 and a Best Paper Award from IEEE
International Conference on Computer Design in 2001. He is a member
of the ACM.

▽ For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

2214 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 9, SEPTEMBER 2014

