

Versatile Prediction and Fast Estimation of Architectural Vulnerability
Factor from Processor Performance Metrics

Lide Duan, Bin Li and Lu Peng

Louisiana State University, Baton Rouge, LA 70803
{lduan1, bli, lpeng}@lsu.edu

Abstract

The shrinking processor feature size, lower threshold
voltage and increasing clock frequency make modern
processors highly vulnerable to transient faults. Archi-
tectural Vulnerability Factor (AVF) reflects the possibil-
ity that a transient fault eventually causes a visible error
in the program output, and it indicates a system’s sus-
ceptibility to transient faults. Therefore, the awareness
of the AVF especially at early design stage is greatly
helpful to achieve a trade-off between system perform-
ance and reliability. However, tracking the AVF during
program execution is extremely costly, which makes
accurate AVF prediction extraordinarily attractive to
computer architects.

In this paper, we propose to use Boosted Regression
Trees, a nonparametric tree-based predictive modeling
scheme, to identify the correlation across workloads,
execution phases and processor configurations between
a key processor structure’s AVF and various perform-
ance metrics. The proposed method not only makes an
accurate prediction but quantitatively illustrates indi-
vidual performance variable’s importance to the AVF.
Moreover, to reduce the prediction complexity, we also
utilize a technique named Patient Rule Induction
Method to extract some simple selecting rules on impor-
tant metrics. Applying these rules during run time can
fast identify execution intervals with a relatively high
AVF.

1. Introduction

The electronic noise, which usually comes from large
power supplies, strong radiations, or high-energy parti-
cle strikes [28], may invert the state of a logic device
when the resulted charge has been accumulated to a
sufficient amount. The introduced logic fault is termed
as a soft error or a transient fault [16]. The shrinking
trend in processor feature size, particularly the exponen-
tial growth rate of on-chip transistors, along with lower
supply voltage and increasing clock frequency make
modern processors extremely vulnerable to transient
faults. Fortunately, not all such faults eventually affect
the final program outcome. For example, a bit flip in an
empty Reorder Buffer entry will not cause any effect in

the program execution. Based on this observation, Muk-
herjee et al. [16] defined a structure’s Architectural
Vulnerability Factor (AVF) as the probability that a
transient fault in that structure will finally produce a
visible error in the output of a program. At any point of
time, a structure’s AVF can be derived via counting all
the important bits that are required for Architecturally
Correct Execution (ACE) in the structure, and dividing
them by the total number of bits of the structure. Using
the ACE analysis method, many publications (e.g.
[16][9][10]) have reported a large masking effect of
transient faults at the architectural level, that is, a key
processor structure usually shows an AVF below 40%,
but with a large variation over time.

The AVF values provide computer architects with an
indicator, or actually an upper bound, of the system’s
susceptibility to transient faults. Dynamically tracking
the AVF would be greatly helpful to achieve a trade-off
between system performance and reliability. However,
tracking a processor structure’s vulnerability during
program execution is extremely costly. In [16][9], the
authors implemented a post-commit analysis window
which tracks the most recent 40K committed instruc-
tions to determine the exact type of each instruction, and
then used this information backward to estimate the reli-
ability of various hardware structures. In other words,
the AVF calculations were not performed on the fly.

Under this limitation, some mechanisms were intro-
duced to predict, instead of measuring, the instantaneous
AVF values at any point of program execution. By ob-
serving a fuzzy correlation between the hardware AVF
and some common performance metrics such as IPC,
branch prediction rate, cache miss rate, etc, Fu et al. [10]
concluded that a simple performance metric was not a
good indicator to the program reliability behavior. Wal-
cott et al. [23] reexamined the correlation by extending
the variable set to 160 easily-measured time-varying
processor metrics. They adopted a multivariate regres-
sion-based statistical model using 22 workloads as a
training set to extract a quantitative relationship between
the AVF and a small subset of the variables, and then
applied the obtained predictor to another 4 workloads.
By demonstrating a very accurate prediction of the reli-
ability behaviors, their work convincingly proved the

existence of a correlation between the AVF and various
processor performance metrics. However, they restricted
their model training/test within one configuration, and
only focused on the first SimPoints [20] of SPEC2000
suite. It is not clear that the predictor obtained from one
set of phases (i.e. the first SimPoints) will give accurate
estimation for another set of phases (e.g. the second
SimPoints), and most likely the model developed under
one configuration would not work for other configura-
tions, which significantly narrows its applicability.

In this paper, by employing Boosted Regression
Trees (BRTs), a nonparametric tree-based predictive
modeling scheme, we propose a versatile method which
accurately predicts the AVF across different workloads,
execution phases and processor configurations. Initially,
a statistical model is trained with the first SimPoints
measured from a set of workloads under a BRT-based
algorithm, and then is tested by other workloads that are
not included in the training set. The testing results show
that the prediction is very accurate. Within the same
configuration, the trained model also succeeds in pre-
dicting the vulnerabilities of the second SimPoints of all
the workloads. We then extend our model by adding the
configuration parameters to the training variable set, and
demonstrate a very high accuracy in predicting the AVF
variations under different configurations. Finally, to
make our method easier to be used in practice, we pro-
pose a fast estimation approach which utilizes a Patient
Rule Induction Method (PRIM) to extract some simple
selecting “IF-ELSE” rules on important performance
metrics. These rules can be used to monitor the per-
formance variables during a program execution, and
then to efficiently identify vulnerable intervals experi-
encing high AVF values.

In summary, the main contributions of this paper are
the followings:
• Versatile AVF Predictions: our proposed method

accurately predicts the AVF across different work-
loads, execution phases and processor configurations.

• Model Interpretation: the proposed model can quan-
tify performance metrics’ importance and the AVF’s
dependence on these variables. This provides com-
puter architects with a scientific view on the proces-
sor AVF variation.

• Fast AVF Estimations: the selecting “IF-ELSE”
rules generated from the PRIM-based algorithm
greatly reduce the prediction complexity. This en-
ables computer architects to efficiently identify
highly vulnerable execution intervals during a pro-
gram’s run time.
The remainder of this paper is organized as follows.

Section 2 introduces the statistical methods and their
specific algorithms used in this paper. Section 3 de-
scribes our experimental setup. In Section 4, we first
illustrate the influence of a variable on the vulnerabili-

ties, and then demonstrate our model’s applicability
across workloads, phases, and configurations. In Section
5, we use PRIM-based scheme to fast estimate AVF
online by generating some simple rules on a small set of
performance variables. Section 6 lists the related work,
and we finally draw the conclusions in Section 7.

2. Background and Methodology

We propose to use a nonparametric tree-based pre-
dictive modeling method, named Boosted Regression
Trees, to predict the architectural vulnerability from the
processor performance metrics. BRT is capable of iden-
tifying a few important features from a large number of
performance variables and accurately capturing the cor-
relation between a processor structure’s AVF and these
selected features. Although the fitted BRT model con-
sists of an ensemble of (hundreds to thousands of) re-
gression trees, it can be summarized, interpreted and
visualized similarly to conventional regression models
through measuring of relative variable importance and
partial dependence functions. For a fast AVF prediction,
we employ another scheme, i.e. Patient Rule Induction
Method (PRIM), which is able to identify the “highly
vulnerable” intervals based on a few interpretable “IF-
ELSE” rules.

2.1 Boosted Regression Trees

Boosted regression trees, originally proposed by
Friedman [7], is an ensemble technique that aims to im-
prove the performance of a single model by fitting many
models and combining them for prediction. BRT em-
ploys two algorithms: “regression trees” from Classifi-
cation And Regression Tree (CART) [4] and “boosting”
which builds and combines a collection of models, i.e.
trees.

CART is a binary recursive partitioning algorithm
and provides an alternative to traditional parametric
models for regression problems. The term “binary” im-
plies that CART first splits the space into two regions,
and models the response by a constant for each region.
Then the optimal variable and the split-point are chosen
to achieve the best fit again on one or both of these re-
gions. Thus, each node can be split into two child nodes,
in which case the original node is called a parent node.
The term “recursive” refers to the fact that the binary
partitioning process can be applied over and over again.
Thus, each parent node can give rise to two child nodes
and, in turn, each of these child nodes may themselves
be split to generate additional children. Although CART
represents information in a way that is intuitive and easy
to be visualized, it is not usually as accurate as its com-
petitors.

Boosting is one of the recent enhancements to tree-
based methods that have met with considerable success
in prediction accuracy. In boosting, models such as re-

gression trees are fitted iteratively to the training data,
using appropriate methods to gradually increase empha-
sis on observations modeled poorly by the existing col-
lection of trees.

The detailed BRT algorithm used in our paper is de-
scribed in Algorithm 1. We consider a problem with n
observations {yi, xi}, i=1,2,…,n, where xi is a p-
dimensional input vector (i.e. the performance variables)
and yi is the response (i.e. the AVF).
1. Initialize () yf i =x0̂ , where y is the average for

{ }iy .

2. Repeat for :,...,2,1 Mm =
a) Compute the current residuals

() .,...,1 ,ˆ
1 nifyr imiim =−= − x

b) Partition the input space into H disjoint regions
{ }H

hhmR 1= based on { }n
iiimr 1, =x .

c) For each region, compute the constant fit
()∑

∈

−=
hmi R

imhm r
x

2minarg γγ
γ

.

d) Update the fitted model
() () ()hmhmmm RIff ∈×+= − xxx γν1

ˆˆ .
3. End algorithm.

Algorithm 1. BRT-based algorithm
used in this paper.

Note that in Step 2.d, ()•I is an indicator function

which returns 1 if its argument is satisfied, otherwise 0,
and ν which controls the learning rate of the procedure
is the “shrinkage” parameter between 0 and 1. Empirical
results (see e.g. [7]) have shown that small values of ν
always lead to better generalization errors. In this study,
we fixed ν at 0.01.

From a user’s point of view, BRT has the following
advantages. First, BRT is inherently nonparametric and
can handle mixed-type of input variables naturally. Not
like other parametric models, BRT doesn’t need to make
any assumptions regarding the underlying distribution of
the values for the input variables. For example, BRT can
make researchers to avoid determining whether vari-
ables are normally distributed, and making transforma-
tions if they are not. Second, tree is adept at capturing
complex-structured behaviors. In other words, complex
interactions among predictors are routinely and auto-
matically handled with relatively few inputs required
from the analyst. This is in contrast to some other multi-
variate nonlinear modeling methods, in which extensive
inputs from the analyst, analysis of interim results, and
subsequent modifications of the method are required.
Third, tree is insensitive to outliers. It is unaffected by

monotone transformations and different scales of meas-
urement among inputs.

2.2 Interpretation and Visualization from BRT

Even producing a model with hundreds to thousands
of trees, BRT does not have to be treated like a black
box. A BRT model can be summarized, interpreted and
visualized similarly to conventional regression models.
This includes identifying parameters that are most influ-
ential in contributing to the response’s variation, and
visualizing the nature of dependence of the fitted model
on these important parameters.

The relative variable importance measures are based
on the number of times a variable is selected for split-
ting, weighted by the squared improvement to the model
as a result of each split, and then average over all trees.
The relative influence is scaled so that the sum adds to
100%, with a higher number indicating a stronger influ-
ence on the response.

Visualization of fitted functions in a BRT model
can be easily achieved through a partial dependence
function, which shows the effect of a subset of variables
on the response after accounting for the average effects
of all other variables in the model. Given any subset sx

of the input variables indexed by { }p,,1 ⋅⋅⋅⊂s . The
partial dependence of ()xf is defined as

() ()[]xx
sxs fEFs \

= ,

where []⋅
sx \

E means expectation over the joint distribu-

tion of all the input variables with index not in s . In
practice, partial dependence can be estimated from the
training data by

() () ()∑
=

=
n

i
ifnF

1
\,ˆ1ˆ

ssss xxx ,

where { }n
i 1\sx are the data values of sx\ .

2.3 Patient Rule Induction Method

The objective of PRIM, which was originally pro-
posed by Friedman and Fisher [8], is to find a set of
subregions in the input space such as performance meas-
ures with relatively high values for the output (the AVF
in this paper). The subregion (or “box”) is described in
an interpretable form involving simple “rules” taking

the form ()jj

p

j
sxB ∈=∩

=1
. For continuous variables,

the subset js are represented by contiguous subinter-

vals []+−= jjj bbs , . Thus, the projection of a box B on

the subspace of real valued inputs is a hyper-rectangle.
The box construction strategy of PRIM consists of two

phases: (1) patient successive top-down peeling process;
(2) bottom-up recursive pasting process.

The top-down peeling begins with the box B that
covers all the data. At each iteration, a small subbox b
within the current box B is removed, which yields the
largest output mean value with the next box B-b. For
each real valued variable, the two eligible subboxes bj-
and bj+ border its respective lower and upper boundaries
of the current box B { }αjjj xxb <=− |x and

{ })1(| α−+ >= jjj xxb x . Here xjα is the α-quantile of

the xj-values for data within the current box. The peel-
ing procedure stops when the support of the current box
B is below a chosen threshold β. Hence, in this study, α
is the proportion of intervals removed in each peeling
process while β is the approximate proportion of inter-
vals identified as high AVF regions. We fixed α at 0.05
and β at 0.1 in this study.

The pasting algorithm is the inverse of the peeling
procedure. Starting with the peeling solution, the current
box B is iteratively enlarged by pasting onto it a small
subbox that maximizes the output mean in the new (lar-
ger) box. The bottom-up pasting is iteratively applied,
successively enlarging the current box, until the addition
of the next subbox causes the output mean to decrease.

3. Experimental Setup

We use Sim-SODA [9], a unified simulation frame-
work that models software reliability of different mi-
croarchitecture structures in a microprocessor system, to
measure the AVFs and a large set of performance met-
rics. Sim-SODA was developed based on Sim-alpha [6]
which has been validated as an accurate Alpha 21264
simulator, and has been incorporated microarchitecture
level AVF calculation methods for key processor struc-
tures. In this work, we use Sim-SODA to dump the time-
varying AVF values for Integer Issue Queue (IQ) and
Reorder Buffer (ROB). We believe that these two struc-

tures produce significant impact on the processor vul-
nerability. Without losing generality, our methods can
be also used for other processor components.

Table 1 shows the Alpha-21264-like baseline ma-
chine configuration which will remain unchanged in
Section 4.1. In Section 4.2, several key parameters will
be tuned to generate 15 different configurations. For the
experiments, all the benchmarks except one from the
SPEC CINT 2000 suite are evaluated. The only excep-
tion is gzip whose simulation cannot be finished in a
reasonable time in Sim-SODA. The floating point
benchmarks of SPEC 2000 suite are not included in our
experiments because Sim-alpha cannot accurately model
Alpha 21264 floating point pipeline (thus Sim-SODA
does not support AVF measurements for FP workloads).
In order to perform a sufficient model training/test, we
provide each benchmark with different inputs if possi-
ble, and the total 19 workloads are listed in Table 2 in
which the training set includes the white columns and
the test set consists of the gray columns. Note that the
training and test sets are disjoint.

Each workload is run for two 100-Million Instruction
SimPoints [1]. Table 2 also gives the number of instruc-
tions (unit: 100M) fast-forwarded to reach the Sim-
Points that we are interested in. In this paper, we term
each SimPoint (i.e. the execution of 100M instructions)
as a “phase”, and each 500K instructions within a Sim-
Point as an “interval”. In other words, for each work-
load, we simulate 2 phases, each containing 200 inter-
vals. The granularity of dumping the AVFs and per-
formance metrics is “interval”, that is, the system re-
cords the AVF values (of IQ and ROB) and the values
of 217 performance variables after the execution of
every interval. We don’t list all of them due to the page
limit; instead, the following subsections will analyze the
most important ones. Table 3 explains the abbreviation
of variable names.

Pipeline stages 8
Fetch/slot/map/issue/commit width 4/4/4/4/11
Fetch/slot queue size 4/4
Issue queue size 20
Reorder buffer size 80
Load/store queue size 32/32
Integer register file size 41 (1-cycle read latency)
Integer ALUs/multipliers 4/4 (latency: 1/7)
Branch predictor Hybrid (local: 1K+1K; global: 4K; choice: 4K)
L1 instruction cache 64KB (64B block, 2-way, 1-cycle latency)
L1 data cache 64KB (64B block, 2-way, 3-cycle latency)
L2 cache 2MB (64B block, 1-way, 7-cycle latency)
ITLB/DTLB Each: 128 entries, fully-associative
Victim buffer 8 entries, 1-cycle latency

Table 1. The Alpha-21264-like machine configuration (our baseline setting)

4. Versatile AVF Prediction
Generally, we believe that the AVF value of a key

processor structure is a complex function of a large set
of processor performance metrics. The exact form of the
function may vary in different execution stages or dif-
ferent configurations. Nevertheless, our proposed
method (i.e. BRT) is capable of identifying important
features from a large set of performance variables and
accurately predicting the vulnerabilities across work-
loads, execution phases, and different configurations.
We show the AVF prediction in this section.

4.1 Prediction within the Same Processor Configura-
tion

This subsection discusses the model training and test
under our baseline setting (Table 1) to demonstrate that
BRT accurately predicts the vulnerabilities of other
workloads and future execution phases. Specifically, 15
phase files (workloads in the white columns in Table 2)
are used to train a BRT model, which is then applied to
other 4+19 phase files (phase 1 of 4 workloads and
phase 2 of all workloads, as shown in the gray columns
in Table 2).

We first apply Algorithm 1 (described in Section 2.1)
using all 217 performance variables. Recall that, in each
iteration, some variables are selected in Step 2.b of Al-
gorithm 1 as features to partition the input space into H
disjoint regions. We term variable importance as the
average number of times (weighted by the contribution
to the squared improvement made by the corresponding
variable) a variable is selected in this step. The 10 most
influential variables are listed in Figure 1. Note that the
values shown have been scaled to a sum of 100%, with

a higher percentage indicating a stronger influence on
the AVF. As can be seen, the number of valid entries
(cumulative_count, average_count) and the cumulative
latency that the committed instructions spent in the
structure significantly contribute to the vulnerability of
the structure. In addition, states of some other microar-
chitecture components (e.g. Ready Queue, Load/Store
Queue, Register File, etc) also show strong effects on
the vulnerabilities of the IQ and ROB structures.

After identifying the 10 most important performance
metrics, we refit the BRT model by only using the 10
selected variables. The prediction results of the work-
loads in the test set are shown in Figure 2. Note that in
this paper all the AVF values are shown in a range of 0
to 100. As can be seen, for the 4 workloads (phase 1) on
the left, the mean absolute errors (MAEs) for IQ and
ROB AVFs are 0.93 and 0.55, respectively, validating
the ability of our model to accurately predict the AVF
variation on different workloads. Furthermore, the
MAEs for the second phases of all 19 workloads are
almost all below 4 with only two exceptions mcf and vpr
whose IQ errors reach about 8. The small average
MAEs (2.23 for IQ and 1.16 for ROB) of the phase 2
files indicate that the cross-phase correlation between
the vulnerability and performance metrics can be cap-
tured by our model. Besides, the overall R2 on the test
set is 0.737 for IQ AVF, and 0.950 for ROB AVF,
meaning that 73.7% of the variation in the IQ AVF and
95% of the variation in the ROB AVF can be captured
by our predicted curves. On the other hand, Figure 3
depicts the overall empirical cumulative density func-
tion (CDF) for the absolute error values on the test set.
We see that over 90% of the intervals are predicted be-

Benchmark Phase 1 Phase 2 Benchmark Phase 1 Phase 2 Benchmark Phase 1 Phase 2
bzip2.source 4 104 mcf 1 37 crafty 114 252
eon.cook 78 187 parser 173 309 gcc.200 101 137
eon.kajiya 389 410 perlbmk.makerand 0 5 gcc.integrate 1 11
eon.rushmeier 210 213 twolf 2 122 vortex.lendian3 97 311
gap 83 239 vortex.lendian1 78 127
gcc.166 0 20 vortex.lendian2 164 422
gcc.expr 8 24 vpr.route 2 265
gcc.scilab 38 112

Table 2. Workloads and SimPoints used in our experiments

Abbreviation Example Meaning
xxx_count load_q_writes_count # writes to load queue in current interval
xxx_cumulative_count ready_q_cumulative_count the cumulative # ready queue entries

in all cycles of current interval
xxx_average_count rob_average_count rob_cumulative_count / # cycles of current interval
xxx_cumulative_latency fu_cumulative_latency the cumulative # cycles

that the committed instructions
of current interval stayed in functional unit

xxx_occupant_rate issue_q_occupant_rate issue_q_average_count / issue_q_size
Table 3. Explanation of variable names

low absolute errors of 4.5 and 2.2 for IQ and ROB
AVFs, respectively.

4.2 Prediction across Different Processor Configura-
tions

The previous subsection demonstrates a correlation
between the AVFs and a small set of performance met-

Figure 1. Relative variable importance (within the same configuration).

Figure 2. Prediction results on different workloads (4 phase 1 on the left) and
future phases (19 phase 2 on the right).

Figure 3. Empirical CDF on absolute errors in the within-configuration study

Within-config Prediction Performance

0
1
2
3
4
5
6
7
8
9

10

cr
af

ty

gc
c.

20
0

gc
c.

i

vo
rte

x.
l3

bz
ip

2

cr
af

ty

eo
n.

c

eo
n.

k

eo
n.

r

ga
p

gc
c.

16
6

gc
c.

20
0

gc
c.

ex
pr

gc
c.

i

gc
c.

s

m
cf

pa
rs

er

pe
rlb

m
k

tw
ol

f

vo
rte

x.
l1

vo
rte

x.
l2

vo
rte

x.
l3

vp
rA

VF
 M

ea
n

A
bs

ol
ut

e
Er

ro
r

IQ
ROB

Phase 1 Phase 2

rics across workloads and phases but within a specified
processor configuration. In this subsection, we further
extend our methodology to address the cross-
configuration situation. Specifically, we tune the 7 pa-
rameters (4 of them are the same) listed in Table 4 to
generate 15 different configurations because these pa-
rameters are believed to be dominant in producing the
vulnerabilities of IQ and ROB. Note that cfg1 is the
baseline setting described in Table 1. We still employ
the BRT methodology to perform the prediction in this
case. However, in order to characterize the changing of
configuration, we also include the tuned parameters in
the performance metrics set as additional variables. Two
randomly selected workloads, each also containing two
phases, are simulated under each configuration. The
training set consists of the phases under cfg1 to cfg12

(48 phase files in total) while the test set is composed of
the other 3 configurations (12 phase files shown in
gray).

Similar to the within-configuration study, we first
apply BRT using all 217+7 input variables, and select
the most important 10 features. After that, we refit the
BRT model with the 10 metrics. The relative variable
influences for this case are quantified in Figure 4. We
see that the variable importance distribution (percentage
and ranking) shown in Figure 4 is quite different from
those depicted in Figure 1. This happens due to the mul-
ticollinearity problem in multiple regression models
[17]. When many correlated input variables exist, the
estimate of variable coefficients and their importance
can be unstable since the effect from one variable may
be disguised by its correlated variable(s). For example,

 Fetch/slot/map
/issue widths

Commit
width

Issue queue
size

Reorder buffer
size

Simulated workloads
(2 phases for each)

cfg1 4 11 20 80 mcf, vpr
cfg2 4 11 40 40 eon.cook, gap
cfg3 4 11 30 60 crafty, perlbmk.makerand
cfg4 4 11 40 80 eon.cook, eon.rushmeier
cfg5 2 7 20 80 eon.kajiya, gap
cfg6 2 7 40 40 gcc.166, gcc.200
cfg7 2 7 20 40 gcc.expr, gcc.integrate
cfg8 2 7 40 80 gcc.scilab, mcf
cfg9 1 3 20 80 parser, perlbmk.makerand
cfg10 1 3 40 40 twolf, vortex.lendian1
cfg11 1 3 20 40 vortex.lendian2, vortex.lendian3
cfg12 1 3 40 80 vpr.route, bzip2.source
cfg13 4 11 20 40 bzip2.source, crafty
cfg14 2 7 30 60 eon.kajiya, twolf
cfg15 1 3 30 60 gcc.expr, vortex.lendian1

Table 4. Configurations used in Section 4.2. The training set contains the 48 phase files of cfg1 to cfg12

(white), and the test set includes the 12 phase files of cfg13 to cfg15 (gray).

Figure 4. Relative variable importance (across different configurations).

rob_average_count and rob_occupant_rate are two
highly corrected variables, but show completely differ-
ent influences to the response in Figure 1 and 4.

As for the prediction performance illustrated in Fig-
ure 5, only one workload (bzip2 under cfg13) is pre-
dicted with mean absolute errors of AVFs above 3, and
the other 5 workloads under test show very high predic-
tion accuracies in both IQ and ROB AVFs. Specifically,
the overall MAEs of all the 6 workloads in the test set
are 2.91 for IQ AVF (Phase 1), 2.0 for IQ AVF (Phase

2), 1.17 for ROB AVF (Phase 1), and 1.56 for ROB
AVF (Phase 2). Note that the 6 workloads are simulated
under 3 different configurations which also differ from
the configurations used in the training set. Hence, the
accurate prediction results validate that our model is
capable of predicting vulnerability behaviors across
configurations. The overall R2 on the test set turns out to
be 0.874 and 0.906 for IQ and ROB AVFs. In addition,
Figure 6 shows that over 90% of the intervals are pre-

Cross-config Prediction Performance

0

1

2

3

4

5

6

7

8

9

bzip
2_cfg

13

cra
fty_

cfg
13

eon.k_
cfg

14

twolf_cfg
14

gcc.
expr_cfg

15

vorte
x.l1

_cfg
15

A
V

F
M

ea
n

A
bs

ol
ut

e
E

rro
r

IQ Phase 1

IQ Phase 2

ROB Phase 1

ROB Phase 2

Figure 5. Prediction results on different configurations

Figure 6. Empirical CDF on absolute errors in the cross-configuration study.

Figure 7. Measured and predicted IQ AVF curves for gcc.integrate and

crafty in the within-configuration study.

dicted below absolute errors of 4.6 and 2.1 for IQ and
ROB AVFs, respectively.

4.3 AVF Behavior Analysis and Model Interpreta-
tions and Comparison

Figure 7 provides another approach to compare the
predicted and measured IQ AVF curves for two work-
loads gcc.integrate and crafty which are randomly se-
lected as an example. Although the measured AVF be-
havior shows extremely strong variation over time, our
prediction method is able to faithfully capture this be-
havior, and therefore confirms the high accuracy of
BRT-based prediction.

Additionally, one can refer to Figure 8 and 9 for the
partial dependence plots of the AVFs on the most im-

portant variables. As described in Section 2.2, Partial
Dependence Function summarizes the effect of a subset
of variables on the response (i.e. the AVF) after ac-
counting for the average effect of other variables in the
model. Therefore, partial dependence of the AVF pro-
vides computer architects with visible interactions be-
tween important performance metrics, and also implies
the vulnerability trends and bottlenecks.

Specifically, Figure 8 illustrates that how the two
most important variables contribute to the IQ AVF in
the within-configuration study. This figure shows two
hills in which variations of the parameters results in
significant changes of the AVF and one plateau in
which the AVF is insensitive to the variables’ changes.
Obviously, when the issue_q_cumulative_latency (the Y

Figure 8. Partial dependence of the IQ AVF on the two most important variables in the within-
configuration study.

Figure 9. Partial dependence of the ROB AVF on Figure 10. R-Square stability comparison
 the most important variable in the within- between the BRT model and the Linear
 configuration study. Regression model in [23].

axis) is less than 5.8e+06, increasing this latency boosts
the AVF from 18 to 24. In addition, when the
ready_q_cumulative_count (the X axis) is less than
350K, decreasing the cumulative Ready Queue count
leads to a further AVF increasing from 26 to 36. A lar-
ger cumulative IQ latency means that the ACE instruc-
tions were kept for a longer time in IQ. A lower Ready
Queue count indicates a worse congestion in IQ where
the issued instructions wait for their operands. Both of
the two cases contribute to a higher vulnerability of the
IQ. The gray area in this figure represents a plateau
where variations of the two metrics rarely affect the
AVF and other processor variables should be considered
to reduce the AVF in this situation. In [12], the authors
also used a nonparametric model and contour maps to
analyze the roughness and bottlenecks of processor de-
sign topologies.

The proposed model can also quantify the AVF’s
partial dependence to one very important variable. For
example, the contribution of the ROB average count to
the ROB AVF is shown in Figure 9. We can observe
that the increasing of the ROB average count results in
the increasing of the ROB AVF. This can be easily ex-
plained as the proportion of the valid ROB entries ap-
proximately characterizes the vulnerability of the ROB.
The vulnerability saturates at around 23 when the ROB
average count exceeds 48, in which case the ROB aver-
age count is no longer a driving factor to the AVF and
other variables should be considered.

We also make a quantitative comparison between our
suggested BRT method and classical linear regression
approach. For linear regression, we followed Walcott et
al.’s approach in [23]. Figure 10 illustrates the compari-
son result. Here we only consider the IQ AVF predic-
tion for the within-configuration case. It shows the R-

squares on the training and test sets with different num-
ber of variables included in the model in the linear re-
gression approach and our BRT method. We see that
although the R-squares increase monotonically on the
training set for both linear regression and BRT, the test
R-squares do not. Particularly in linear regression, the
test R-square goes below zero when five to eight vari-
ables are included in the model. Therefore, the test R-
square in BRT is much more stable than linear regres-
sion. This comparison demonstrates the robustness of
our BRT model.

5. Fast AVF Estimation

In practice, a simpler AVF prediction mechanism is
easier to be adopted. In order to reduce the model com-
plexity, we further propose to use a PRIM-based tech-
nique described in Section 2.3 to summarize some sim-
ple and interpretable “IF-ELSE” rules that can be ap-
plied on the important performance variables selected in
Section 4 during run time to quickly identify the inter-
vals with high AVF values. Due to the page limit, we
demonstrate the effectiveness of this method by only
illustrating the ROB AVF prediction results within the
baseline configuration. Other AVF predictions can also
be applied.

The results of fast ROB AVF estimation in the
within-configuration study are shown in Figure 11. We
intend to find the top ~10% of the intervals in terms of
the vulnerability level. Note that we denote a high vul-
nerable interval as a black “o” while an interval with a
low vulnerability as a gray “+” in this figure. The train-
ing and test sets are the same as those in Section 4.1,
that is, the training set shown in the left part of Figure
11 contains 3,000 intervals (white columns in Table 2)
while the test set contains 4,600 intervals from the

Figure 11. Fast Estimation of the ROB AVF in the within-configuration study.

benchmarks and phases listed in gray columns of Table
2. The rules extracted from the training data can be de-
scribed as:

IF ((rob_average_count > 18.668504)

AND (rob_cumulative_latency > 6920604)
AND (cumulative_slip_latency > 12009627)
AND (load_q_writes_count < 204513))

THEN {
The interval is declared to have a high
ROB AVF value

}
One can refer to Table 3 for the explanation of vari-

able names. The only one here that was not listed in
Table 3 indicates the cumulative latency that the com-
mitted instructions spent in passing the whole pipeline.
From the testing results shown in the right part of Figure
11, we can see that applying these simple rules to the
test set makes an accurate AVF estimation, i.e. the AVF
of current interval is high or not. The derived rules can
be explained in an architectural way. Again, the valid
ROB entries and the cumulative latency to go through it
perform the estimation in the first place. Longer cumula-
tive slip latency reflects a lower instruction processing
speed of the whole pipeline, and infrequent writes to the
Load Queue also make the vulnerable instructions stay
long in the pipeline. Hence, all the identified rules show
strong significance in estimating the architectural vul-
nerability.

6. Related Work

[15] compared the advantages and disadvantages of
three different RMT techniques: (1) Lockstepping, a
cycle-by-cycle synchronization that has long been used
on commercial fault-tolerant systems; (2) Simultaneous
and Redundantly Threading (SRT), which was first dis-
cussed in [18], utilizes the dynamic resource sharing
from SMT processors to reduce performance degrada-
tion due to redundancy; and (3) Chip-Level Redundant
Threading (CRT), which extends SRT to CMP envi-
ronment, explores significant performance benefit on
multithreaded workloads. Vijaykumar et al. [22] and
Gomaa et al. [11] proposed the recovery schemes for
SRT and CRT, respectively.

The concept of AVF was originally termed in [16],
and Biswas et al. [2] extended it to address-based proc-
essor structures. There are two main approaches to cal-
culate the AVF values: ACE analysis and Statistical
Fault Injection (SFI). The former provides a (tight, if the
underlying system is appropriately modeled [3]) lower
bound on the reliability level of various processor struc-
tures, and has been adopted in many research works on
performance models. Fu et al. [10] quantitatively char-
acterized vulnerability phase behavior of four microar-
chitecture structures based on a system framework pro-

posed in [9], which is also the simulator used in this
paper. Zhang et al. [27] performed a similar analysis on
SMT architectures. Soundararajan et al. [21] described a
simple infrastructure to estimate an upper bound of the
ROB AVF, and also proposed two mechanisms (Dis-
patch Throttling and Selective Redundancy) to bound
the vulnerability to any limit.

Alternatively, SFI randomly (or statistically) injects
into program execution a set of faults, each being inde-
pendently analyzed and determined to see a visible error
of the outcome. The AVF is the ratio of the number of
trials that eventually raise an error to the total number of
trials performed. Wang et al. [25] implemented a latch-
accurate Verilog model to simulate an Alpha processor
while Li et al. [14] incorporated a similar probabilistic
model of error generation and propagation into an archi-
tecture-level tool. Wang et al. [24] compared ACE
analysis to their fault-injection IVM, and claimed that
ACE analysis was highly conservative by identifying
two sources of its conservatism (lack of system detail
and single-pass simulation). However, a recent publica-
tion [3] refuted their claim by stating that a small
amount of additional details can result in a much tighter
AVF bound and quantifying the small effect of Y-bits
on system simulation.

Besides [10][23], some other works also addressed
the problem of AVF prediction at run time. Cho et al.
[5] examined workload dynamics in a design space of
microarchitecture configurations. For each workload,
they trained a set of neural networks with series of
wavelet coefficients decomposed from AVF behaviors
under different configurations, predicted the wavelet
coefficients of any other configuration, and recon-
structed the AVF curve (of the target configuration)
from the predicted coefficients. Their work is com-
pletely different from ours in this paper because they
required a separate (or different) set of neural networks
for each workload while our model has been demon-
strated to be validated across workloads, phases and
configurations. Very recently, Li et al. [13] developed
an algorithm to estimate processor structures’ vulner-
ability online using a modified error injection and
propagation scheme from their previous work [14].
Their method does not need any offline simulation (ex-
cept some experimental experience to determine key
parameters), but requires hardware modification of the
processor to support error propagation and detection
rules.

7. Conclusions

In this paper, we have proposed to use Boosted Re-
gression Trees, a nonparametric tree-based predictive
modeling scheme, to identify the correlation (across
different workloads, execution phases, and processor
configurations) between a key processor structure’s

AVF and various performance metrics. Experimental
results showed that our model can accurately predict the
AVF in the above situations. In addition, the proposed
model provides valid interpretation tools for computer
architects to quantify important variables and the AVF’s
dependence on them. Finally, to reduce the prediction
complexity, we also utilize another technique named
Patient Rule Induction Method to extract some simple
selecting rules to monitor a few important metrics,
which can be used to quickly identify the execution in-
tervals with a relatively high AVF.

Acknowledgement

This work is supported in part by the Louisiana
Board of Regents grant LEQSF (2006-09)-RD-A-10 and
the Louisiana State University. Anonymous referees
provide helpful comments.

References
[1] 100 Million Interval Size Multiple Simulation Points.

http://www.cse.ucsd.edu/~calder/simpoint/points/standar
d/spec2000- multiple-std-100M.html

[2] A. Biswas, P. Racunas, R. Cheveresan, J. Emer, S. Muk-
herjee, and R. Rangan. Computing Architectural Vulner-
ability Factors for Address-Based Structures. In Interna-
tional Symposium on Computer Architecture (ISCA)
2005.

[3] A. Biswas, P. Racunas, J. Emer, and S. Mukherjee.
Computing Accurate AVFs using ACE Analysis on Per-
formance Models: a Rebuttal. In Computer Architecture
Letters Vol. 7, 2008.

[4] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Clas-
sification and Regression Trees. Wadsworth Interna-
tional Group, Belmont, California, 1984.

[5] C. Cho, W. Zhang, and T. Li. Informed Microarchitec-
ture Design Space Exploration using Workload Dynam-
ics. In International Symposium on Microarchitecture
(MICRO) 2007.

[6] R. Deskan, D. Burger, S. Keckler, and T. Austin. Sim-
alpha: A Validated, Execution-Driven Alpha 21264
Simulator. Tech Report TR-01-23, The University of
Texas at Austin, 2001.

[7] J. Friedman. Greedy Function Approximation: A Gradi-
ent Boosting Machine. In The Annuals of Statistics, 29,
1189-1232, 2001.

[8] J. Friedman and N. Fisher. Bump Hunting in High-
dimensional Data. In Statistics and Computing, 9, 123-
143, 1999.

[9] X. Fu, T. Li, and J. Fortes. Sim-SODA: A Unified
Framework for Architectural Level Software Reliability
Analysis. In Workshop on Modeling, Benchmarking and
Simulation 2006.

[10] X. Fu, J. Poe, T. Li, and J. Fortes. Characterizing Mi-
croarchitecture Soft Error Vulnerability Phase Behavior.
In International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems
(MASCOTS) 2006.

[11] M. Gomaa, C. Scarbrough, T. Vijaykumar, and I. Pom-
eranz. Transient-Fault Recovery for Chip Multiproces-
sors. In ISCA 2003.

[12] B. Lee and D. Brooks, Roughness of Microarchitectural
Design Topologies and its Implications for Optimization.
In International Symposium on High-Performance Com-
puter Architecture (HPCA) 2008.

[13] X. Li, S. Adve, P. Bose, and J. Rivers. Online Estimation
of Architectural Vulnerability Factor for Soft Errors. In
ISCA 2008.

[14] X. Li, S. Adve, P. Bose, and J. Rivers. SoftArch: An
Architecture-Level Tool for Modeling and Analyzing
Soft Errors. In International Conference on Dependable
Systems and Networks (DSN) 2005.

[15] S. Mukherjee, M. Kontz, and S. Reinhardt. Detailed
Design and Evaluation of Redundant Multithreading Al-
ternatives. In ISCA 2002.

[16] S. Mukherjee, C. Weaver, J. Emer, S. Reinhardt, and T.
Austin. A Systematic Methodology to Compute the Ar-
chitectural Vulnerability Factors for a High-Performance
Microprocessor. In MICRO 2003.

[17] J. Neter, and et al. Applied Linear Statistical Models,
McGraw-Hill/Irwin; 4th edition, Feb. 1996.

[18] S. Reinhardt and S. Mukherjee. Transient Fault Detec-
tion via Simultaneous Multithreading. In ISCA 2000.

[19] G. Reis, J. Chang, N. Vachharajani, R. Rangan, D. Au-
gust, and S. Mukherjee. Design and Evaluation of Hy-
brid Fault-Detection Systems. In ISCA 2005.

[20] T. Sherwood and et al. Automatically Characterizing
Large Scale Program Behavior. In International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS) 2002.

[21] N. Soundararajan, A. Parashar, and A. Sivasubrama-
niam. Mechanisms for Bounding Vulnerabilities of
Processor Structures. In ISCA 2007.

[22] T. Vijaykumar, I. Pomeranz, and K. Cheng. Transient-
Fault Recovery Using Simultaneous Multithreading. In
ISCA 2002.

[23] K. Walcott, G. Humphreys, and S. Gurumurthi. Dynamic
Prediction of Architectural Vulnerability from Microar-
chitectural State. In ISCA 2007.

[24] N. Wang, A. Mahesri, and S. Patel. Examining ACE
Analysis Reliability Estimates Using Fault-Injection. In
ISCA 2007.

[25] N. Wang, J. Quek, T. Rafacz, and S. Patel. Characteriz-
ing the Effects of Transient Faults on a High-
Performance Processor Pipeline. In DSN 2004.

[26] C. Weaver, J. Emer, S. Mukherjee, and S. Reinhardt.
Techniques to Reduce the Soft Error Rate of a High-
Performance Microprocessor. In ISCA 2004.

[27] W. Zhang and et al. An Analysis of Microarchitecture
Vulnerability to Soft Errors on Simultaneous Multi-
threaded Architectures. In International Symposium on
Performance Analysis of Systems and Software (ISPASS)
2007.

[28] J. Ziegler and et al. IBM Experiments in Soft Fails in
Computer Electronics (1978-1994). IBM Journal of Re-
search and Development, Volume 40, Number 1, 1996.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

