
 

Versatile Prediction and Fast Estimation of Architectural Vulnerability  
Factor from Processor Performance Metrics 

 
Lide Duan, Bin Li and Lu Peng 

Louisiana State University, Baton Rouge, LA 70803 
{lduan1, bli, lpeng}@lsu.edu 

 
 

Abstract 
 

The shrinking processor feature size, lower threshold 
voltage and increasing clock frequency make modern 
processors highly vulnerable to transient faults. Archi-
tectural Vulnerability Factor (AVF) reflects the possibil-
ity that a transient fault eventually causes a visible error 
in the program output, and it indicates a system’s sus-
ceptibility to transient faults. Therefore, the awareness 
of the AVF especially at early design stage is greatly 
helpful to achieve a trade-off between system perform-
ance and reliability. However, tracking the AVF during 
program execution is extremely costly, which makes 
accurate AVF prediction extraordinarily attractive to 
computer architects.  

In this paper, we propose to use Boosted Regression 
Trees, a nonparametric tree-based predictive modeling 
scheme, to identify the correlation across workloads, 
execution phases and processor configurations between 
a key processor structure’s AVF and various perform-
ance metrics. The proposed method not only makes an 
accurate prediction but quantitatively illustrates indi-
vidual performance variable’s importance to the AVF. 
Moreover, to reduce the prediction complexity, we also 
utilize a technique named Patient Rule Induction 
Method to extract some simple selecting rules on impor-
tant metrics. Applying these rules during run time can 
fast identify execution intervals with a relatively high 
AVF. 

 
1. Introduction 

The electronic noise, which usually comes from large 
power supplies, strong radiations, or high-energy parti-
cle strikes [28], may invert the state of a logic device 
when the resulted charge has been accumulated to a 
sufficient amount. The introduced logic fault is termed 
as a soft error or a transient fault [16]. The shrinking 
trend in processor feature size, particularly the exponen-
tial growth rate of on-chip transistors, along with lower 
supply voltage and increasing clock frequency make 
modern processors extremely vulnerable to transient 
faults. Fortunately, not all such faults eventually affect 
the final program outcome. For example, a bit flip in an 
empty Reorder Buffer entry will not cause any effect in 

the program execution. Based on this observation, Muk-
herjee et al. [16] defined a structure’s Architectural 
Vulnerability Factor (AVF) as the probability that a 
transient fault in that structure will finally produce a 
visible error in the output of a program. At any point of 
time, a structure’s AVF can be derived via counting all 
the important bits that are required for Architecturally 
Correct Execution (ACE) in the structure, and dividing 
them by the total number of bits of the structure. Using 
the ACE analysis method, many publications (e.g. 
[16][9][10]) have reported a large masking effect of 
transient faults at the architectural level, that is, a key 
processor structure usually shows an AVF below 40%, 
but with a large variation over time.  

The AVF values provide computer architects with an 
indicator, or actually an upper bound, of the system’s 
susceptibility to transient faults. Dynamically tracking 
the AVF would be greatly helpful to achieve a trade-off 
between system performance and reliability. However, 
tracking a processor structure’s vulnerability during 
program execution is extremely costly. In [16][9], the 
authors implemented a post-commit analysis window 
which tracks the most recent 40K committed instruc-
tions to determine the exact type of each instruction, and 
then used this information backward to estimate the reli-
ability of various hardware structures. In other words, 
the AVF calculations were not performed on the fly.  

Under this limitation, some mechanisms were intro-
duced to predict, instead of measuring, the instantaneous 
AVF values at any point of program execution. By ob-
serving a fuzzy correlation between the hardware AVF 
and some common performance metrics such as IPC, 
branch prediction rate, cache miss rate, etc, Fu et al. [10] 
concluded that a simple performance metric was not a 
good indicator to the program reliability behavior. Wal-
cott et al. [23] reexamined the correlation by extending 
the variable set to 160 easily-measured time-varying 
processor metrics. They adopted a multivariate regres-
sion-based statistical model using 22 workloads as a 
training set to extract a quantitative relationship between 
the AVF and a small subset of the variables, and then 
applied the obtained predictor to another 4 workloads. 
By demonstrating a very accurate prediction of the reli-
ability behaviors, their work convincingly proved the 



 

existence of a correlation between the AVF and various 
processor performance metrics. However, they restricted 
their model training/test within one configuration, and 
only focused on the first SimPoints [20] of SPEC2000 
suite. It is not clear that the predictor obtained from one 
set of phases (i.e. the first SimPoints) will give accurate 
estimation for another set of phases (e.g. the second 
SimPoints), and most likely the model developed under 
one configuration would not work for other configura-
tions, which significantly narrows its applicability.  

In this paper, by employing Boosted Regression 
Trees (BRTs), a nonparametric tree-based predictive 
modeling scheme, we propose a versatile method which 
accurately predicts the AVF across different workloads, 
execution phases and processor configurations. Initially, 
a statistical model is trained with the first SimPoints 
measured from a set of workloads under a BRT-based 
algorithm, and then is tested by other workloads that are 
not included in the training set. The testing results show 
that the prediction is very accurate. Within the same 
configuration, the trained model also succeeds in pre-
dicting the vulnerabilities of the second SimPoints of all 
the workloads. We then extend our model by adding the 
configuration parameters to the training variable set, and 
demonstrate a very high accuracy in predicting the AVF 
variations under different configurations. Finally, to 
make our method easier to be used in practice, we pro-
pose a fast estimation approach which utilizes a Patient 
Rule Induction Method (PRIM) to extract some simple 
selecting “IF-ELSE” rules on important performance 
metrics. These rules can be used to monitor the per-
formance variables during a program execution, and 
then to efficiently identify vulnerable intervals experi-
encing high AVF values.  

In summary, the main contributions of this paper are 
the followings:  
• Versatile AVF Predictions: our proposed method 

accurately predicts the AVF across different work-
loads, execution phases and processor configurations. 

• Model Interpretation: the proposed model can quan-
tify performance metrics’ importance and the AVF’s 
dependence on these variables. This provides com-
puter architects with a scientific view on the proces-
sor AVF variation.  

• Fast AVF Estimations: the selecting “IF-ELSE” 
rules generated from the PRIM-based algorithm 
greatly reduce the prediction complexity. This en-
ables computer architects to efficiently identify 
highly vulnerable execution intervals during a pro-
gram’s run time. 
The remainder of this paper is organized as follows. 

Section 2 introduces the statistical methods and their 
specific algorithms used in this paper. Section 3 de-
scribes our experimental setup. In Section 4, we first 
illustrate the influence of a variable on the vulnerabili-

ties, and then demonstrate our model’s applicability 
across workloads, phases, and configurations. In Section 
5, we use PRIM-based scheme to fast estimate AVF 
online by generating some simple rules on a small set of 
performance variables. Section 6 lists the related work, 
and we finally draw the conclusions in Section 7. 
 
2. Background and Methodology  

We propose to use a nonparametric tree-based pre-
dictive modeling method, named Boosted Regression 
Trees, to predict the architectural vulnerability from the 
processor performance metrics. BRT is capable of iden-
tifying a few important features from a large number of 
performance variables and accurately capturing the cor-
relation between a processor structure’s AVF and these 
selected features. Although the fitted BRT model con-
sists of an ensemble of (hundreds to thousands of) re-
gression trees, it can be summarized, interpreted and 
visualized similarly to conventional regression models 
through measuring of relative variable importance and 
partial dependence functions. For a fast AVF prediction, 
we employ another scheme, i.e. Patient Rule Induction 
Method (PRIM), which is able to identify the “highly 
vulnerable” intervals based on a few interpretable “IF-
ELSE” rules. 

  
2.1 Boosted Regression Trees 

Boosted regression trees, originally proposed by 
Friedman [7], is an ensemble technique that aims to im-
prove the performance of a single model by fitting many 
models and combining them for prediction. BRT em-
ploys two algorithms: “regression trees” from Classifi-
cation And Regression Tree (CART) [4] and “boosting” 
which builds and combines a collection of models, i.e. 
trees.  

CART is a binary recursive partitioning algorithm 
and provides an alternative to traditional parametric 
models for regression problems. The term “binary” im-
plies that CART first splits the space into two regions, 
and models the response by a constant for each region. 
Then the optimal variable and the split-point are chosen 
to achieve the best fit again on one or both of these re-
gions. Thus, each node can be split into two child nodes, 
in which case the original node is called a parent node. 
The term “recursive” refers to the fact that the binary 
partitioning process can be applied over and over again. 
Thus, each parent node can give rise to two child nodes 
and, in turn, each of these child nodes may themselves 
be split to generate additional children. Although CART 
represents information in a way that is intuitive and easy 
to be visualized, it is not usually as accurate as its com-
petitors. 

Boosting is one of the recent enhancements to tree-
based methods that have met with considerable success 
in prediction accuracy. In boosting, models such as re-



 

gression trees are fitted iteratively to the training data, 
using appropriate methods to gradually increase empha-
sis on observations modeled poorly by the existing col-
lection of trees. 

The detailed BRT algorithm used in our paper is de-
scribed in Algorithm 1. We consider a problem with n 
observations {yi, xi}, i=1,2,…,n, where xi is a p-
dimensional input vector (i.e. the performance variables) 
and yi is the response (i.e. the AVF). 
1. Initialize ( ) yf i =x0̂ , where y  is the average for 

{ }iy . 

2. Repeat for :,...,2,1 Mm =  
a) Compute the current residuals 

( ) .,...,1  ,ˆ
1 nifyr imiim =−= − x  

b) Partition the input space into H disjoint regions 
{ }H

hhmR 1=  based on { }n
iiimr 1, =x . 

c) For each region, compute the constant fit 
( )∑

∈

−=
hmi R

imhm r
x

2minarg γγ
γ

. 

d) Update the fitted model 
( ) ( ) ( )hmhmmm RIff ∈×+= − xxx γν1

ˆˆ . 
3. End algorithm. 

Algorithm 1. BRT-based algorithm  
used in this paper. 

 
Note that in Step 2.d, ( )•I   is an indicator function 

which returns 1 if its argument is satisfied, otherwise 0, 
and ν  which controls the learning rate of the procedure 
is the “shrinkage” parameter between 0 and 1. Empirical 
results (see e.g. [7]) have shown that small values of ν  
always lead to better generalization errors. In this study, 
we fixed ν  at 0.01.  

From a user’s point of view, BRT has the following 
advantages. First, BRT is inherently nonparametric and 
can handle mixed-type of input variables naturally. Not 
like other parametric models, BRT doesn’t need to make 
any assumptions regarding the underlying distribution of 
the values for the input variables. For example, BRT can 
make researchers to avoid determining whether vari-
ables are normally distributed, and making transforma-
tions if they are not. Second, tree is adept at capturing 
complex-structured behaviors. In other words, complex 
interactions among predictors are routinely and auto-
matically handled with relatively few inputs required 
from the analyst. This is in contrast to some other multi-
variate nonlinear modeling methods, in which extensive 
inputs from the analyst, analysis of interim results, and 
subsequent modifications of the method are required. 
Third, tree is insensitive to outliers. It is unaffected by 

monotone transformations and different scales of meas-
urement among inputs.  

 
2.2 Interpretation and Visualization from BRT 

Even producing a model with hundreds to thousands 
of trees, BRT does not have to be treated like a black 
box. A BRT model can be summarized, interpreted and 
visualized similarly to conventional regression models. 
This includes identifying parameters that are most influ-
ential in contributing to the response’s variation, and 
visualizing the nature of dependence of the fitted model 
on these important parameters. 

The relative variable importance measures are based 
on the number of times a variable is selected for split-
ting, weighted by the squared improvement to the model 
as a result of each split, and then average over all trees. 
The relative influence is scaled so that the sum adds to 
100%, with a higher number indicating a stronger influ-
ence on the response. 

Visualization of fitted functions in a BRT model 
can be easily achieved through a partial dependence 
function, which shows the effect of a subset of variables 
on the response after accounting for the average effects 
of all other variables in the model. Given any subset sx  

of the input variables indexed by { }p,,1 ⋅⋅⋅⊂s . The 
partial dependence of ( )xf  is defined as  

( ) ( )[ ]xx
sxs fEFs \

= , 

where [ ]⋅
sx \

E  means expectation over the joint distribu-

tion of all the input variables with index not in s . In 
practice, partial dependence can be estimated from the 
training data by  

( ) ( ) ( )∑
=

=
n

i
ifnF

1
\,ˆ1ˆ

ssss xxx , 

where { }n
i 1\sx  are the data values of sx\ .  

 
2.3 Patient Rule Induction Method 

The objective of PRIM, which was originally pro-
posed by Friedman and Fisher [8], is to find a set of 
subregions in the input space such as performance meas-
ures with relatively high values for the output (the AVF 
in this paper). The subregion (or “box”) is described in 
an interpretable form involving simple “rules” taking 

the form ( )jj

p

j
sxB ∈=∩

=1
. For continuous variables, 

the subset js  are represented by contiguous subinter-

vals [ ]+−= jjj bbs , . Thus, the projection of a box B on 

the subspace of real valued inputs is a hyper-rectangle. 
The box construction strategy of PRIM consists of two 



 

phases: (1) patient successive top-down peeling process; 
(2) bottom-up recursive pasting process.  

The top-down peeling begins with the box B that 
covers all the data. At each iteration, a small subbox b 
within the current box B is removed, which yields the 
largest output mean value with the next box B-b. For 
each real valued variable, the two eligible subboxes bj- 
and bj+ border its respective lower and upper boundaries 
of the current box B { }αjjj xxb <=− |x   and 

{ })1(| α−+ >= jjj xxb x . Here xjα is the α-quantile of 

the xj-values for data within the current box. The peel-
ing procedure stops when the support of the current box 
B is below a chosen threshold β. Hence, in this study, α 
is the proportion of intervals removed in each peeling 
process while β is the approximate proportion of inter-
vals identified as high AVF regions. We fixed α at 0.05 
and β at 0.1 in this study. 

The pasting algorithm is the inverse of the peeling 
procedure. Starting with the peeling solution, the current 
box B is iteratively enlarged by pasting onto it a small 
subbox that maximizes the output mean in the new (lar-
ger) box. The bottom-up pasting is iteratively applied, 
successively enlarging the current box, until the addition 
of the next subbox causes the output mean to decrease. 

 
3. Experimental Setup  

We use Sim-SODA [9], a unified simulation frame-
work that models software reliability of different mi-
croarchitecture structures in a microprocessor system, to 
measure the AVFs and a large set of performance met-
rics. Sim-SODA was developed based on Sim-alpha [6] 
which has been validated as an accurate Alpha 21264 
simulator, and has been incorporated microarchitecture 
level AVF calculation methods for key processor struc-
tures. In this work, we use Sim-SODA to dump the time-
varying AVF values for Integer Issue Queue (IQ) and 
Reorder Buffer (ROB). We believe that these two struc-

tures produce significant impact on the processor vul-
nerability. Without losing generality, our methods can 
be also used for other processor components. 

Table 1 shows the Alpha-21264-like baseline ma-
chine configuration which will remain unchanged in 
Section 4.1. In Section 4.2, several key parameters will 
be tuned to generate 15 different configurations. For the 
experiments, all the benchmarks except one from the 
SPEC CINT 2000 suite are evaluated. The only excep-
tion is gzip whose simulation cannot be finished in a 
reasonable time in Sim-SODA. The floating point 
benchmarks of SPEC 2000 suite are not included in our 
experiments because Sim-alpha cannot accurately model 
Alpha 21264 floating point pipeline (thus Sim-SODA 
does not support AVF measurements for FP workloads). 
In order to perform a sufficient model training/test, we 
provide each benchmark with different inputs if possi-
ble, and the total 19 workloads are listed in Table 2 in 
which the training set includes the white columns and 
the test set consists of the gray columns. Note that the 
training and test sets are disjoint.  

Each workload is run for two 100-Million Instruction 
SimPoints [1]. Table 2 also gives the number of instruc-
tions (unit: 100M) fast-forwarded to reach the Sim-
Points that we are interested in. In this paper, we term 
each SimPoint (i.e. the execution of 100M instructions) 
as a “phase”, and each 500K instructions within a Sim-
Point as an “interval”. In other words, for each work-
load, we simulate 2 phases, each containing 200 inter-
vals. The granularity of dumping the AVFs and per-
formance metrics is “interval”, that is, the system re-
cords the AVF values (of IQ and ROB) and the values 
of 217 performance variables after the execution of 
every interval. We don’t list all of them due to the page 
limit; instead, the following subsections will analyze the 
most important ones. Table 3 explains the abbreviation 
of variable names. 

Pipeline stages 8 
Fetch/slot/map/issue/commit width 4/4/4/4/11 
Fetch/slot queue size 4/4 
Issue queue size 20 
Reorder buffer size 80 
Load/store queue size 32/32 
Integer register file size 41 (1-cycle read latency) 
Integer ALUs/multipliers 4/4 (latency: 1/7) 
Branch predictor Hybrid (local: 1K+1K; global: 4K; choice: 4K) 
L1 instruction cache 64KB (64B block, 2-way, 1-cycle latency) 
L1 data cache 64KB (64B block, 2-way, 3-cycle latency) 
L2 cache 2MB (64B block, 1-way, 7-cycle latency) 
ITLB/DTLB Each: 128 entries, fully-associative 
Victim buffer 8 entries, 1-cycle latency 

Table 1. The Alpha-21264-like machine configuration (our baseline setting) 



 

4. Versatile AVF Prediction  
Generally, we believe that the AVF value of a key 

processor structure is a complex function of a large set 
of processor performance metrics. The exact form of the 
function may vary in different execution stages or dif-
ferent configurations. Nevertheless, our proposed 
method (i.e. BRT) is capable of identifying important 
features from a large set of performance variables and 
accurately predicting the vulnerabilities across work-
loads, execution phases, and different configurations. 
We show the AVF prediction in this section.  

 
4.1 Prediction within the Same Processor Configura-
tion 

This subsection discusses the model training and test 
under our baseline setting (Table 1) to demonstrate that 
BRT accurately predicts the vulnerabilities of other 
workloads and future execution phases. Specifically, 15 
phase files (workloads in the white columns in Table 2) 
are used to train a BRT model, which is then applied to 
other 4+19 phase files (phase 1 of 4 workloads and 
phase 2 of all workloads, as shown in the gray columns 
in Table 2).  

We first apply Algorithm 1 (described in Section 2.1) 
using all 217 performance variables. Recall that, in each 
iteration, some variables are selected in Step 2.b of Al-
gorithm 1 as features to partition the input space into H 
disjoint regions. We term variable importance as the 
average number of times (weighted by the contribution 
to the squared improvement made by the corresponding 
variable) a variable is selected in this step. The 10 most 
influential variables are listed in Figure 1. Note that the 
values shown have been scaled to a sum of 100%, with 

a higher percentage indicating a stronger influence on 
the AVF. As can be seen, the number of valid entries 
(cumulative_count, average_count) and the cumulative 
latency that the committed instructions spent in the 
structure significantly contribute to the vulnerability of 
the structure. In addition, states of some other microar-
chitecture components (e.g. Ready Queue, Load/Store 
Queue, Register File, etc) also show strong effects on 
the vulnerabilities of the IQ and ROB structures. 

After identifying the 10 most important performance 
metrics, we refit the BRT model by only using the 10 
selected variables. The prediction results of the work-
loads in the test set are shown in Figure 2. Note that in 
this paper all the AVF values are shown in a range of 0 
to 100. As can be seen, for the 4 workloads (phase 1) on 
the left, the mean absolute errors (MAEs) for IQ and 
ROB AVFs are 0.93 and 0.55, respectively, validating 
the ability of our model to accurately predict the AVF 
variation on different workloads. Furthermore, the 
MAEs for the second phases of all 19 workloads are 
almost all below 4 with only two exceptions mcf and vpr 
whose IQ errors reach about 8. The small average 
MAEs (2.23 for IQ and 1.16 for ROB) of the phase 2 
files indicate that the cross-phase correlation between 
the vulnerability and performance metrics can be cap-
tured by our model. Besides, the overall R2 on the test 
set is 0.737 for IQ AVF, and 0.950 for ROB AVF, 
meaning that 73.7% of the variation in the IQ AVF and 
95% of the variation in the ROB AVF can be captured 
by our predicted curves. On the other hand, Figure 3 
depicts the overall empirical cumulative density func-
tion (CDF) for the absolute error values on the test set. 
We see that over 90% of the intervals are predicted be-

Benchmark Phase 1 Phase 2 Benchmark Phase 1 Phase 2 Benchmark Phase 1 Phase 2 
bzip2.source 4 104 mcf 1 37 crafty 114 252 
eon.cook 78 187 parser 173 309 gcc.200 101 137 
eon.kajiya 389 410 perlbmk.makerand 0 5 gcc.integrate 1 11 
eon.rushmeier 210 213 twolf 2 122 vortex.lendian3 97 311 
gap 83 239 vortex.lendian1 78 127    
gcc.166 0 20 vortex.lendian2 164 422    
gcc.expr 8 24 vpr.route 2 265    
gcc.scilab 38 112       

Table 2. Workloads and SimPoints used in our experiments 

Abbreviation Example Meaning 
xxx_count load_q_writes_count # writes to load queue in current interval 
xxx_cumulative_count ready_q_cumulative_count the cumulative # ready queue entries  

in all cycles of current interval 
xxx_average_count rob_average_count rob_cumulative_count / # cycles of current interval 
xxx_cumulative_latency fu_cumulative_latency the cumulative # cycles  

that the committed instructions  
of current interval stayed in functional unit 

xxx_occupant_rate issue_q_occupant_rate issue_q_average_count / issue_q_size 
Table 3. Explanation of variable names 



 

low absolute errors of 4.5 and 2.2 for IQ and ROB 
AVFs, respectively. 

 

4.2 Prediction across Different Processor Configura-
tions 

The previous subsection demonstrates a correlation 
between the AVFs and a small set of performance met-

 

Figure 1. Relative variable importance (within the same configuration). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Prediction results on different workloads (4 phase 1 on the left) and  
future phases (19 phase 2 on the right). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Empirical CDF on absolute errors in the within-configuration study 
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rics across workloads and phases but within a specified 
processor configuration. In this subsection, we further 
extend our methodology to address the cross-
configuration situation. Specifically, we tune the 7 pa-
rameters (4 of them are the same) listed in Table 4 to 
generate 15 different configurations because these pa-
rameters are believed to be dominant in producing the 
vulnerabilities of IQ and ROB. Note that cfg1 is the 
baseline setting described in Table 1. We still employ 
the BRT methodology to perform the prediction in this 
case. However, in order to characterize the changing of 
configuration, we also include the tuned parameters in 
the performance metrics set as additional variables. Two 
randomly selected workloads, each also containing two 
phases, are simulated under each configuration. The 
training set consists of the phases under cfg1 to cfg12 

(48 phase files in total) while the test set is composed of 
the other 3 configurations (12 phase files shown in 
gray). 

Similar to the within-configuration study, we first 
apply BRT using all 217+7 input variables, and select 
the most important 10 features. After that, we refit the 
BRT model with the 10 metrics. The relative variable 
influences for this case are quantified in Figure 4. We 
see that the variable importance distribution (percentage 
and ranking) shown in Figure 4 is quite different from 
those depicted in Figure 1. This happens due to the mul-
ticollinearity problem in multiple regression models 
[17]. When many correlated input variables exist, the 
estimate of variable coefficients and their importance 
can be unstable since the effect from one variable may 
be disguised by its correlated variable(s). For example, 

 Fetch/slot/map 
/issue widths 

Commit 
width 

Issue queue 
size 

Reorder buffer 
size 

Simulated workloads  
(2 phases for each) 

cfg1 4 11 20 80 mcf, vpr 
cfg2 4 11 40 40 eon.cook, gap 
cfg3 4 11 30 60 crafty, perlbmk.makerand 
cfg4 4 11 40 80 eon.cook, eon.rushmeier 
cfg5 2 7 20 80 eon.kajiya, gap 
cfg6 2 7 40 40 gcc.166, gcc.200 
cfg7 2 7 20 40 gcc.expr, gcc.integrate 
cfg8 2 7 40 80 gcc.scilab, mcf 
cfg9 1 3 20 80 parser, perlbmk.makerand 
cfg10 1 3 40 40 twolf, vortex.lendian1 
cfg11 1 3 20 40 vortex.lendian2, vortex.lendian3 
cfg12 1 3 40 80 vpr.route, bzip2.source 
cfg13 4 11 20 40 bzip2.source, crafty 
cfg14 2 7 30 60 eon.kajiya, twolf 
cfg15 1 3 30 60 gcc.expr, vortex.lendian1 

 
Table 4. Configurations used in Section 4.2. The training set contains the 48 phase files of cfg1 to cfg12 

(white), and the test set includes the 12 phase files of cfg13 to cfg15 (gray). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Relative variable importance (across different configurations). 
 



 

rob_average_count and rob_occupant_rate are two 
highly corrected variables, but show completely differ-
ent influences to the response in Figure 1 and 4.  

As for the prediction performance illustrated in Fig-
ure 5, only one workload (bzip2 under cfg13) is pre-
dicted with mean absolute errors of AVFs above 3, and 
the other 5 workloads under test show very high predic-
tion accuracies in both IQ and ROB AVFs. Specifically, 
the overall MAEs of all the 6 workloads in the test set 
are 2.91 for IQ AVF (Phase 1), 2.0 for IQ AVF (Phase 

2), 1.17 for ROB AVF (Phase 1), and 1.56 for ROB 
AVF (Phase 2). Note that the 6 workloads are simulated 
under 3 different configurations which also differ from 
the configurations used in the training set. Hence, the 
accurate prediction results validate that our model is 
capable of predicting vulnerability behaviors across 
configurations. The overall R2 on the test set turns out to 
be 0.874 and 0.906 for IQ and ROB AVFs. In addition, 
Figure 6 shows that over 90% of the intervals are pre-
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Figure 5. Prediction results on different configurations 
 

 

Figure 6. Empirical CDF on absolute errors in the cross-configuration study. 
 

 
Figure 7. Measured and predicted IQ AVF curves for gcc.integrate and  

crafty in the within-configuration study. 
 



 

dicted below absolute errors of 4.6 and 2.1 for IQ and 
ROB AVFs, respectively. 

 
4.3 AVF Behavior Analysis and Model Interpreta-
tions and Comparison 

Figure 7 provides another approach to compare the 
predicted and measured IQ AVF curves for two work-
loads gcc.integrate and crafty which are randomly se-
lected as an example. Although the measured AVF be-
havior shows extremely strong variation over time, our 
prediction method is able to faithfully capture this be-
havior, and therefore confirms the high accuracy of 
BRT-based prediction.  

Additionally, one can refer to Figure 8 and 9 for the 
partial dependence plots of the AVFs on the most im-

portant variables. As described in Section 2.2, Partial 
Dependence Function summarizes the effect of a subset 
of variables on the response (i.e. the AVF) after ac-
counting for the average effect of other variables in the 
model. Therefore, partial dependence of the AVF pro-
vides computer architects with visible interactions be-
tween important performance metrics, and also implies 
the vulnerability trends and bottlenecks. 

Specifically, Figure 8 illustrates that how the two 
most important variables contribute to the IQ AVF in 
the within-configuration study. This figure shows two 
hills in which variations of the parameters results in 
significant changes of the AVF and one plateau in 
which the AVF is insensitive to the variables’ changes. 
Obviously, when the issue_q_cumulative_latency (the Y 

 

Figure 8. Partial dependence of the IQ AVF on the two most important variables in the within-
configuration study. 

 

 
Figure 9. Partial dependence of the ROB AVF on        Figure 10. R-Square stability comparison  
   the most important variable in the within-                      between the BRT model and the Linear 
   configuration study.                                                          Regression model in [23]. 



 

axis) is less than 5.8e+06, increasing this latency boosts 
the AVF from 18 to 24. In addition, when the 
ready_q_cumulative_count (the X axis) is less than 
350K, decreasing the cumulative Ready Queue count 
leads to a further AVF increasing from 26 to 36. A lar-
ger cumulative IQ latency means that the ACE instruc-
tions were kept for a longer time in IQ. A lower Ready 
Queue count indicates a worse congestion in IQ where 
the issued instructions wait for their operands. Both of 
the two cases contribute to a higher vulnerability of the 
IQ. The gray area in this figure represents a plateau 
where variations of the two metrics rarely affect the 
AVF and other processor variables should be considered 
to reduce the AVF in this situation. In [12], the authors 
also used a nonparametric model and contour maps to 
analyze the roughness and bottlenecks of processor de-
sign topologies.  

The proposed model can also quantify the AVF’s 
partial dependence to one very important variable. For 
example, the contribution of the ROB average count to 
the ROB AVF is shown in Figure 9. We can observe 
that the increasing of the ROB average count results in 
the increasing of the ROB AVF. This can be easily ex-
plained as the proportion of the valid ROB entries ap-
proximately characterizes the vulnerability of the ROB. 
The vulnerability saturates at around 23 when the ROB 
average count exceeds 48, in which case the ROB aver-
age count is no longer a driving factor to the AVF and 
other variables should be considered. 

We also make a quantitative comparison between our 
suggested BRT method and classical linear regression 
approach. For linear regression, we followed Walcott et 
al.’s approach in [23]. Figure 10 illustrates the compari-
son result. Here we only consider the IQ AVF predic-
tion for the within-configuration case. It shows the R-

squares on the training and test sets with different num-
ber of variables included in the model in the linear re-
gression approach and our BRT method. We see that 
although the R-squares increase monotonically on the 
training set for both linear regression and BRT, the test 
R-squares do not. Particularly in linear regression, the 
test R-square goes below zero when five to eight vari-
ables are included in the model. Therefore, the test R-
square in BRT is much more stable than linear regres-
sion. This comparison demonstrates the robustness of 
our BRT model. 
 
5. Fast AVF Estimation  

In practice, a simpler AVF prediction mechanism is 
easier to be adopted. In order to reduce the model com-
plexity, we further propose to use a PRIM-based tech-
nique described in Section 2.3 to summarize some sim-
ple and interpretable “IF-ELSE” rules that can be ap-
plied on the important performance variables selected in 
Section 4 during run time to quickly identify the inter-
vals with high AVF values. Due to the page limit, we 
demonstrate the effectiveness of this method by only 
illustrating the ROB AVF prediction results within the 
baseline configuration. Other AVF predictions can also 
be applied. 

The results of fast ROB AVF estimation in the 
within-configuration study are shown in Figure 11. We 
intend to find the top ~10% of the intervals in terms of 
the vulnerability level. Note that we denote a high vul-
nerable interval as a black “o” while an interval with a 
low vulnerability as a gray “+” in this figure. The train-
ing and test sets are the same as those in Section 4.1, 
that is, the training set shown in the left part of Figure 
11 contains 3,000 intervals (white columns in Table 2) 
while the test set contains 4,600 intervals from the 

 

Figure 11. Fast Estimation of the ROB AVF in the within-configuration study. 
 



 

benchmarks and phases listed in gray columns of Table 
2. The rules extracted from the training data can be de-
scribed as: 

 
IF   ((rob_average_count > 18.668504) 

AND (rob_cumulative_latency > 6920604) 
AND (cumulative_slip_latency > 12009627) 
AND (load_q_writes_count < 204513)) 

THEN { 
The interval is declared to have a high 
ROB AVF value 

} 
One can refer to Table 3 for the explanation of vari-

able names. The only one here that was not listed in 
Table 3 indicates the cumulative latency that the com-
mitted instructions spent in passing the whole pipeline. 
From the testing results shown in the right part of Figure 
11, we can see that applying these simple rules to the 
test set makes an accurate AVF estimation, i.e. the AVF 
of current interval is high or not. The derived rules can 
be explained in an architectural way. Again, the valid 
ROB entries and the cumulative latency to go through it 
perform the estimation in the first place. Longer cumula-
tive slip latency reflects a lower instruction processing 
speed of the whole pipeline, and infrequent writes to the 
Load Queue also make the vulnerable instructions stay 
long in the pipeline. Hence, all the identified rules show 
strong significance in estimating the architectural vul-
nerability. 
 
6. Related Work  

[15] compared the advantages and disadvantages of 
three different RMT techniques: (1) Lockstepping, a 
cycle-by-cycle synchronization that has long been used 
on commercial fault-tolerant systems; (2) Simultaneous 
and Redundantly Threading (SRT), which was first dis-
cussed in [18], utilizes the dynamic resource sharing 
from SMT processors to reduce performance degrada-
tion due to redundancy; and (3) Chip-Level Redundant 
Threading (CRT), which extends SRT to CMP envi-
ronment, explores significant performance benefit on 
multithreaded workloads. Vijaykumar et al. [22] and 
Gomaa et al. [11] proposed the recovery schemes for 
SRT and CRT, respectively.  

The concept of AVF was originally termed in [16], 
and Biswas et al. [2] extended it to address-based proc-
essor structures. There are two main approaches to cal-
culate the AVF values: ACE analysis and Statistical 
Fault Injection (SFI). The former provides a (tight, if the 
underlying system is appropriately modeled [3]) lower 
bound on the reliability level of various processor struc-
tures, and has been adopted in many research works on 
performance models. Fu et al. [10] quantitatively char-
acterized vulnerability phase behavior of four microar-
chitecture structures based on a system framework pro-

posed in [9], which is also the simulator used in this 
paper. Zhang et al. [27] performed a similar analysis on 
SMT architectures. Soundararajan et al. [21] described a 
simple infrastructure to estimate an upper bound of the 
ROB AVF, and also proposed two mechanisms (Dis-
patch Throttling and Selective Redundancy) to bound 
the vulnerability to any limit.  

Alternatively, SFI randomly (or statistically) injects 
into program execution a set of faults, each being inde-
pendently analyzed and determined to see a visible error 
of the outcome. The AVF is the ratio of the number of 
trials that eventually raise an error to the total number of 
trials performed. Wang et al. [25] implemented a latch-
accurate Verilog model to simulate an Alpha processor 
while Li et al. [14] incorporated a similar probabilistic 
model of error generation and propagation into an archi-
tecture-level tool. Wang et al. [24] compared ACE 
analysis to their fault-injection IVM, and claimed that 
ACE analysis was highly conservative by identifying 
two sources of its conservatism (lack of system detail 
and single-pass simulation). However, a recent publica-
tion [3] refuted their claim by stating that a small 
amount of additional details can result in a much tighter 
AVF bound and quantifying the small effect of Y-bits 
on system simulation.  

Besides [10][23], some other works also addressed 
the problem of AVF prediction at run time. Cho et al. 
[5] examined workload dynamics in a design space of 
microarchitecture configurations. For each workload, 
they trained a set of neural networks with series of 
wavelet coefficients decomposed from AVF behaviors 
under different configurations, predicted the wavelet 
coefficients of any other configuration, and recon-
structed the AVF curve (of the target configuration) 
from the predicted coefficients. Their work is com-
pletely different from ours in this paper because they 
required a separate (or different) set of neural networks 
for each workload while our model has been demon-
strated to be validated across workloads, phases and 
configurations. Very recently, Li et al. [13] developed 
an algorithm to estimate processor structures’ vulner-
ability online using a modified error injection and 
propagation scheme from their previous work [14]. 
Their method does not need any offline simulation (ex-
cept some experimental experience to determine key 
parameters), but requires hardware modification of the 
processor to support error propagation and detection 
rules.  
 
7. Conclusions 

In this paper, we have proposed to use Boosted Re-
gression Trees, a nonparametric tree-based predictive 
modeling scheme, to identify the correlation (across 
different workloads, execution phases, and processor 
configurations) between a key processor structure’s 



 

AVF and various performance metrics. Experimental 
results showed that our model can accurately predict the 
AVF in the above situations. In addition, the proposed 
model provides valid interpretation tools for computer 
architects to quantify important variables and the AVF’s 
dependence on them. Finally, to reduce the prediction 
complexity, we also utilize another technique named 
Patient Rule Induction Method to extract some simple 
selecting rules to monitor a few important metrics, 
which can be used to quickly identify the execution in-
tervals with a relatively high AVF.  
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