
Power Efficient IP Lookup with Supernode Caching

Lu Peng, Wencheng Lu* and Lide Duan

Department of Electrical & Computer Engineering
Louisiana State University
Baton Rouge, LA 70803
{lpeng, lduan1}@lsu.edu

*Dept. of Computer & Information Science & Engineering
University of Florida

Gainesville, FL 32611
wlu@cise.ufl.edu

Abstract— In this paper, we propose a novel supernode caching
scheme to reduce IP lookup latencies and energy consumption in
network processors. In stead of using an expensive TCAM based
scheme, we implement a set associative SRAM based cache. We
organize the IP routing table as a supernode tree (a tree bitmap
structure) [5]. We add a small supernode cache in-between the
processor and the low level memory containing the IP routing
table in a tree structure. The supernode cache stores recently
visited supernodes of the longest matched prefixes in the IP rout-
ing tree. A supernode hitting in the cache reduces the number of
accesses to the low level memory, leading to a fast IP lookup.
According to our simulations, up to 72% memory accesses can be
avoided by a 128KB supernode cache for the selected three trace
files. Average supernode cache miss ratio is as low as 4%. Com-
pared to a TCAM with the same size, 77% of energy consump-
tion can be reduced.

Keywords-Network processor; Tree bitmap; IP lookup;
Supernode; Caching;

I. INTRODUCTION
Packet routing is a critical function of network processors.

An IP router determines the next network hop of incoming IP
packets by destination addresses inside the packets. A widely
used algorithm for IP lookup is Longest Prefix Matching
(LPM). The adoption of a technique Classless Inter-Domain
Routing (CIDR) [11] had made address allocation more effi-
cient. In an IP router with CIDR, a <route prefix, prefix
length> pair denotes an IP route, where the prefix length is
between 1 and 32 bits. For every incoming packet, the router
determines the next network hop in two steps: First, a set of
routes with prefixes that match the beginning of the incoming
packet’s IP destination address are identified. Second, the IP
route with the longest prefix among this set of routes is selected
to route the incoming IP packet.

IP routing table organization and storage is a challenging
design problem for routers with increasingly large tables. Many
commercial network processors [6][8][10] achieve wire speed
IP routing table lookup through high speed memories such as
Ternary Content Addressable Memories (TCAMs) and special-
ized hardware. TCAMs have an additional “don’t care” bit for
every tag bit. When the “don’t care” bit is set the tag bit be-
comes a wildcard and matches anything. TCAM’s fully-
associative organization makes it parallelly search all the routes
simultaneously, leading to low access latency. However, its
high cost and high power consumption [15][9] hamper TCAM
being widely used.

Recently, researchers proposed the replacement of TCAMs
by relative less expensive SRAMs. With well organizations,
SRAMs can also achieve high throughput and low latency for
IP routing table lookup [4][9][12]. In this paper, we propose a
supernode based caching scheme to efficiently reduce IP
lookup latency in network processors. A supernode is a tree
bitmap node proposed in [5]. In a 32-level binary tree, we rep-
resent it by an 8-level supernode tree if we compress all 4-level
subtrees, whose roots are at a level that is a multiple of 4 (level
0, 4, .. 28), to be supernodes. We add a small supernode cache
in-between the processor and the low level memory containing
the IP routing table in a tree structure. The supernode cache
stores recently visited supernodes of the longest matched pre-
fixes in the IP routing tree. A supernode hitting in the cache
reduces the number of accesses to the low level memory, lead-
ing to a fast IP lookup.

In our simulation, we compared the proposed supernode
caching scheme with another two caches: a simple set-
associative IP address cache and a fully-associative TCAM.
Several results can be summarized from our experiments: (1)
Average 69%, up to 72%, of total memory accesses can be
avoided by using a small 128KB supernode cache for the se-
lected three IP trace files. (2) A 128KB of our proposed super-
node cache outperforms a same size of set-associative IP ad-
dress cache 34% in the average number of memory accesses.
(3) Compared to a TCAM with the same size, the proposed
supernode cache saves 77% of energy consumption.

The left of this paper is organized as follows. Section 2 in-
troduces related concept of the tree bitmap structure. Section 3
explains the proposed supernode caching scheme. Section 4
lists our experiment results. Section 5 makes a conclusion.

II. RELATED WORK
Many of the data structures developed for the representa-

tion of a forwarding table are based on the binary trie structure
[7]. A binary trie is a binary tree structure in which each node
has a data field and two children fields. Branching is done
based on the bits in the search key. A left child branch is fol-
lowed at a node at level i (the root is at level 0) if the ith bit of
the search key (the leftmost bit of the search key is bit 0) is 0;
otherwise a right child branch is followed. Level i nodes store
prefixes whose length is i in their data fields. The node in
which a prefix is to be stored is determined by doing a search
using that prefix as key.

Figure 1(a) shows a set of 5 prefixes. The * shown at the
right end of each prefix is used neither for the branching de-
scribed above nor in the length computation. So, the length of
P2 is 1. Figure 1(b) shows the binary trie corresponding to this
set of prefixes. Shaded nodes correspond to prefixes in the rule
table and each contains the next hop for the associated prefix.

Tree bitmap (TBM) [5] has been proposed to improve the
lookup performance of binary tries. In TBM we start with the
binary trie for our forwarding table and partition this binary trie
into subtries that have at most S levels each. Each partition is
then represented as a (TBM) supernode. Figure 2 (a) shows a
partitioning of the binary trie of Figure 2 (b) into 4 subtries W--
Z that have 2 levels each. Although a full binary trie with S = 2
levels has 3 nodes, X has only 2 nodes and Y and Z have only
one node each. Each partition is represented by a supernode
(Figure 2 (b)) that has the following components:

1. A (2S – 1)-bit bit map IBM (internal bitmap) that in-
dicates whether each of the up to 2S – 1 nodes in the partition
contains a prefix. The IBM is constructed by superimposing
the partition nodes on a full binary trie that has S levels and
traversing the nodes of this full binary trie in level order. For
node W, the IBM is 110 indicating that the root and its left
child have a prefix and the root's right child is either absent or
has no prefix. The IBM for X is 010, which indicates that the
left child of the root of X has a prefix and that the right child
of the root is either absent or has no prefix (note that the root
itself is always present and so a 0 in the leading position of an
IBM indicates that the root has no prefix). The IBM's for Y
and Z are both 100.

2. A 2S-bit EBM (external bit map) that corresponds to
the 2S child pointers that the leaves of a full S-level binary trie
has. As was the case for the IBM, we superimpose the nodes
of the partition on a full binary trie that has S levels. Then we
see which of the partition nodes has child pointers emanating
from the leaves of the full binary trie. The EBM for W is
1011, which indicates that only the right child of the leftmost
leaf of the full binary trie is null. The EBMs for X, Y and Z
are 0000 indicating that the nodes of X, Y and Z have no chil-
dren that are not included in X, Y, and Z, respectively. Each
child pointer from a node in one partition to a node in another
partition becomes a pointer from a supernode to another su-
percode. To reduce the space required for these inter-
supernode pointers, the children supernodes of a supernode are

stored sequentially from left to right so that using the location
of the first child and the size of a supernode, we can compute
the location of any child supernode.

3. A child pointer that points to the location where the
first child supernode is stored.

4. A pointer to a list NH of next-hop data for the pre-
fixes in the partition. NH may have up to 2S – 1 entries. This
list is created by traversing the partition nodes in level order.
The NH list for W is H1 and H2. The NH list for X is H3.
While the NH pointer is part of the supernode, the NH list is
not. The NH list is conveniently represented as an array.

The NH list (array) of a supernode is stored separate from
the supernode itself and is accessed only when the longest
matching prefix has been determined and we now wish to de-
termine the next hop associated with this prefix. If we need b
bits for a pointer, then a total of 2S+1 + 2b - 1 bits (plus space
for an NH list) are needed for each TBM supernode. Using the
IBM, we can determine the longest matching prefix in a super-
node; the EBM is used to determine whether we should move
next to the first, second, etc. child of the current supernode. If a
single memory access is sufficient to retrieve an entire super-
node, we can move from one supernode to its child with a sin-
gle access. The total number of memory accesses to search a
supernode trie becomes the number of levels in the supernode
trie plus 1 (to access the next hop for the longest matching pre-
fix).

III. SUPERNODE CACHING
We compress the binary routing table tree into a supernode

tree which is stored in low level memory. If a supernode corre-
sponds to an 8-level subtree, a 32-level binary tree is com-
pressed into a 4-level supernode tree. Assume that each super-
node access takes one memory access, the maximum number
of memory accesses for an IP lookup is five: it reads three su-
pernodes plus the root nodes and searches the next hop for the
longest matching prefix. When the root supernode is always
held in cache, this number becomes 4. Obviously, maintaining
a small cache will help to reduce the number of memory ac-
cesses.

Figure 3 illustrates an example of a supernode cache. In this
example, the 32-level binary IP routing table is compressed
into a 4-level supernode tree. Each supernode contains an 8-
level subtree. The compressed 4-level supernode tree is stored
in low level memory. We use a cache to store supernode ad-
dresses in low level memory. We store the root (level 1) and

Figure 2: TBM for binary trie of Figure 1(b)
Figure 1: Prefixes and corresponding binary trie.

the second level supernode addresses containing 8 bits prefixes
into a fully associative cache which is not shown in this figure.
This is practical because there are at most 28 + 1 = 257 ad-
dresses. For the third level and the fourth level supernodes, we
reduce the search latency by introducing a set-associative
cache. As shown by Figure 3, for a destination IP address, we
search the corresponding set by its left most 12 bits (step 1).
Bits 12 to 23 and bits 12 to 15 are used as tags for 24-bit and
16-bit IP prefixes (step 2). To implement the longest prefix
matching, we identify the above two type of tags (12 bits and 4
bits) by a mask bit. For example, the mask bit 0 represents a 4-
bit tag while a mask bit 1 means the tag has 12 bits. If both tags
match, we select the longer one (step 3). After tag comparison,
we select the corresponding entry in the cache’s data array
which is the address of the supernode in memory (step 4). A
cache miss will result in cache update and replacement. We
employ an LRU replacement policy. The search continues from
the matched supernode in memory and proceeds downwards
until the longest matching prefix is found. If a 4-level super-
node is found in the cache, we only need one memory access
for the next hop.

By leveraging the above cache design, we directly jump to
a supernode in the search path of the bitmap tree, skipping over
its ancestor supernodes along the path. However, we may fail
to find the longest matching prefix if it exists in one of these
ancestor supernodes. For example, consider the tree bitmap in
Figure 2 and an incoming packet with the destination address
001*. We start the search of cache, if the address of supernode
X is found, then the search continues at X and returns no
match, though prefix 0* of binary node b should be returned.
We solve this problem by pushing to the underlying binary root
of each supernode a valid prefix from its lowest ancestor binary
node. In this case, 0* of b is pushed down to d, and the search
of X will successfully return 0* for the longest match of the
destination address 0001*.

IV. EXPERIMENT RESULTS
To evaluate the proposed supernode caching scheme, we

download a routing table RS1221 from [2] and download three
trace files from routers ipls, svl and upcb in the website [1]. In
the following experiments, we collect statistics of first 1.5 mil-
lion IP addresses whose longest prefix is larger than zero, i.e,

matching an inner node in the IP prefix tree. Totally, we im-
plement four schemes with the longest prefix matching algo-
rithm for IP routing: (1) without cache; (2) with an IP address
cache; (3) with a TCAM; (4) with a supernode cache. For each
scheme, we count the average memory access time. If there is a
cache, we also measure miss ratios. In addition, we simulate
energy consumption for each cache scheme.

In our experiments, we assume a 4-bit stride tree bitmap.
Assuming that L denotes the number of steps taken to find the
longest prefix node, the number of memory access for an IP
lookup in the no cache scheme is L/4 + 1. In the second
scheme, we design an IP address cache which contains the
next hop information pointer in each entry. It can easily be
implemented as a set associative cache by selecting part of the
IP address bits as the set index and left bits as the tag. If an
incoming IP address matches an entry in the IP address cache,
it requires only one memory access to obtain the next hop.
Otherwise, it needs L/4 + 1 memory access. In the third
scheme, we assume that there exists a Tenary CAM. If an in-
coming IP address matches an entry in the TCAM, it requires
only one memory access to obtain the next hop. Otherwise, it
needs L/4 + 1 memory access. In the forth scheme, if the su-
pernode cache hits, it takes   14/ +− CP memory ac-
cesses. Here P denotes the length of the longest prefix and C
denotes the length of supernode prefix hit in the cache. Other-
wise, if the supernode cache misses, it requires L/4 + 1 mem-
ory accesses. In all of our experiments, we don’t prefetch the
routing tables into cache. Therefore, compulsory misses will
be also included as misses.

Figure 4 shows the average numbers of memory accesses
for the three selected trace files. Among the three files, IPLS
has the smallest average number of memory accesses while
SVL has the largest number. To understand the details, we fur-
ther collect distributions of longest prefix matching (LPM) in
Figure 5. Two observations can be made from it: (1) Most
LPM hit the range from prefix length 8 to length 24. There is
no matching for prefix length less than 8, therefore we do not
show this range, while there are only a very few LPM hit pre-
fixes longer than 24. (2) Three trace files show different distri-
bution. IPLS has the largest group with prefix length 8 while
SVL and UPCB have the largest two groups with length 16 and
17. One can expect that the proposed supernode caching
scheme will have more performance benefits for SVL and
UPCB than for IPLS because more relatively long supernode
prefixes can be found from the supernode cache, resulting in
less memory accesses.

Figure 3. An example of a supernode cache

Trace File IPLS SVL UPCB

Date 06/01/2004 03/18/2005 02/19/2004

Avg. Memory Access 4.28 4.73 4.64

Figure 4. Average memory access of 1.5 million IP ad-

dresses from each trace file

To illustrate the effect of supernode cache, we simulate dif-
ferent cache sizes ranging from 8KB to 128KB. We assume
each cache entry has a four-byte width which can only store
one unit because no spatial locality for IP addresses streams
[4][13]. To implement the supernode cache, we set the Index
field with 8 bits in Figure 3. There are five types of supernodes
with different lengths will store in this cache: 12, 16, 20, 24
and 28. We use the mask field in the cache tag array to find the
longest prefix matching. For all 8-bit supernodes, we assume
that they are stored in a separate small cache. This is reasonable
because the maximum size of this additional cache is 256 * 4 =
1KB. This implementation makes all supernode caches with
fixed 256 sets. When the total cache size increases, we increase
the set size instead of increasing the number of sets. To make
comparison consistent, we also design the same total sizes and
set sizes of IP address caches. In the combined cache scheme,
we design half size as the IP address cache and another half as
the supernode cache. For example, in a combined 32KB cache,
the IP address cache is 16KB and the supernode cache is also
16KB.

Figure 6 illustrates average numbers of memory access with

three caching schemes for each trace file. In general, all cach-
ing schemes reduce the average number of memory accesses. A
32KB IP address cache, TCAM and supernode cache reduce
the average number of memory accesses from 4.73 to 2.11,
2.08 and 1.57, representing 55%, 56% and 67% reduction re-
spectively, for SVL. In this case, the supernode cache outper-
forms the IP address cache 34% and the TCAM 32%. The av-
erage memory access reductions of the three caching schemes
with 32KB are 50%, 51% and 62% separately for the selected
three trace files. The supernode cache shows the best perform-
ance among the three caching schemes in all cases. When the
cache size reaches 128KB, the supernode caching scheme’s
average memory access numbers for the three trace files are
1.51, 1.31 and 1.46, which means that 65%, 72% and 69%
memory accesses are reduced. The average memory access
reductions of the three caching schemes are 52%, 54% and
69% respectively for the selected three trace files with a 128KB
cache size.

We also collect cache miss ratio information and present
them in Figure 7. Several observations can be made: (1) the
supernode cache has the smallest miss ratio, catching the

(a) Average Memory Access - IPLS

1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4

8 16 32 64 128
Cache Size (KB)

IP Address Cache

TCAM
Supernode Cache

(b) Average Memory Access - SVL

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

8 16 32 64 128
Cache Size (KB)

IP Address Cache
TCAM
Supernode Cache

(c) Average Memory Access - UPCB

1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8

8 16 32 64 128
Cache Size (KB)

IP Address Cache
TCAM
Supernode Cache

Figure 6. Average memory access of the three trace files.

(a) Miss Ratio - IPLS

0%

5%

10%

15%

20%

25%

30%

35%

40%

8 16 32 64 128
Cache Size (KB)

IP Address Cache

TCAM

Supernode Cache

(b) Miss Ratio - SVL

0%

5%

10%

15%

20%

25%

30%

35%

40%

8 16 32 64 128
Cache Size (KB)

IP Address Cache

TCAM

Supernode Cache

(c) Miss Ratio - UPCB

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

8 16 32 64 128
Cache Size (KB)

IP Address Cache

TCAM

Supernode Cache

Figure 7. Miss ratios of three caching schemes for each trace file.

(a) LPM Distribution - IPLS

0

5
10

15

20

25

30
35

40

8 10 12 14 16 18 20 22 24

Prefix Length

LP
M

 H
its

 P
er

ce
nt

ag
e

(

(b) LPM Distribution - SVL

0

5

10

15

20

25

30

8 10 12 14 16 18 20 22 24

Prefix Length

LP
M

 H
its

 P
er

ce
nt

ag
e

(

(c) LPM Distribution - UPCB

0

5

10

15

20

25

30

35

8 10 12 14 16 18 20 22 24

Prefix Length

LP
M

 H
its

 P
er

ce
nt

ag
e

(

Figure 5. LPM distributions of the three trace files

strongest temporal locality in all cases. This is reasonable be-
cause a supernode, representing a subtree, will get reused if any
node inside the subtree appears. The IP address cache and the
TCAM will hit only if the same IP address recurs. For the three
trace files, the miss ratios for a 32 KB supernode cache are 8%,
10% and 15% respectively. When the cache size reaches
128KB, the miss ratios for a supernode cache can be further
reduced to 3%, 4% and 5% separately; (2) the slope of the IP
address cache and the TCAM miss ratio lines are more flat than
that of the supernode cache. This means that temporal locality
of the IP address streams are limited. The possibility of recur-
rence of a supernode is larger than that of an IP address. Actu-
ally, this is the theory foundation of that a supernode cache
outperforms an IP address cache.

To illustrate power efficiency of the proposed supernode
cache, we simulate energy consumption of the three caching
scheme. We use CACTI [14] to simulate the IP address cache
and the supernode cache because they are set-associative cache.
To make comparison fair, we also include power consumption
of the small 1KB fully-associative cache which includes all 8-
bits supernodes in the supernode cache scheme. According to
Figure 5, the average activity of this small cache is about 20%
for all three trace files. Therefore, in our simulation, we include
20% power consumption for this fully associative cache. We
also simulate TCAM’s power consumption using a recent
model [3]. All three schemes are simulated under 0.18µm tech-
nology. Figure 8 depicts read energy which represents most of
energy consumption of three caching schemes. From this fig-
ure, we can see that the supernode cache has a little higher en-
ergy consumption than the simple IP address cache because
20% additional searches fall into the small 1KB fully-
associative 8-bit supernode cache. However, even in a 128KB
cache size setting, the supernode cache consumes only 3.61nJ
read energy. Compared with the TCAM’s 15.64nJ read energy
consumption, our proposed supernode caching scheme saves
77% energy consumption.

V. CONCLUSION
In this paper, we propose a novel supernode caching

scheme to reduce IP lookup latencies and energy consumption
in network processors. In stead of using an expensive TCAM
based scheme, we implement a set associative SRAM based
caching scheme. We organize the IP routing table as a tree bit-

map structure. We add a small supernode cache in-between the
processor and the low level memory containing the IP routing
table in a tree structure. The supernode cache stores recently
visited supernodes of the longest matched prefixes in the IP
routing tree. A supernode hitting in the cache reduces the num-
ber of accesses to low level memory, leading to a fast IP
lookup. According to our results, an average 69%, up to 72%,
of total memory accesses can be avoided by using a small
128KB supernode cache for the selected three IP trace files. A
128KB of our proposed supernode cache outperforms a same
size of set-associative IP address cache 34% in the average
number of memory accesses. Compared to a TCAM with the
same size, the proposed supernode cache saves 77% of energy
consumption. The supernode cache works better for a trace file
with larger groups LPM hits in relatively long prefixes. Our
results also illustrate that the supernode cache catches stronger
temporal locality than the other two cache schemes do.

ACKNOWLEDGMENT
This work is supported in part by the Louisiana Board of

Regents grants NSF (2006)-Pfund-80 and LEQSF (2006-09)-
RD-A-10, the Louisiana State University and an ORAU Ralph
E. Powe Junior Faculty Enhancement Award. The authors
thank Dr. Sartaj Sahni for his comments on the draft. Anony-
mous referees provide helpful comments.

REFERENCES
[1] ftp://pma.nlanr.net/traces/
[2] http://bgp.potaroo.net/as1221/bgptable.txt
[3] B. Agrawal and T. Sherwood, “Modelling TCAM Power for Next

Generation Network Devices”, In the Proceedings of IEEE Intl. Symp.
on Performance Analysis of Systems and Software (ISPASS-2006).

[4] T. Chiueh and P. Pradhan, “Cache Memory Design for Network
Processors.” In Proc.of the 6th International Symposium on High
Performance Computer Architecture, pp. 409-418, Feb. 2000.

[5] W. Eatherton, G. Varghese, Z. Dittia, Tree bitmap: hardware/software IP
lookups with incremental updates, Computer Communication Review,
34(2): 97-122, 2004.

[6] EZ Chip Network Processors. http://ezchip.com
[7] E. Horowitz, S.Sahni, and D.Mehta, Fundamentals of Data Structures in

C++, W. H. Freeman, NY, 1995
[8] Intel IXP2850 Network Processor.

http://www.intel.com/design/network/products/npfamily/ixp2850.htm
[9] S. Kaxrias and G. Keramidas, “IPStash: a Power-Efficient Memory

Architecture for IP-lookup,” In Proc. of the 36th International
Symposium on Microarchitecture, Dec. 2003.

[10] Network and Communications ICs.
www.agere.com/enterprise_metro_access/network_processors.html

[11] Y. Rekhter, T. Li, “An Architecture for IP Address Allocation with
CIDR.” RFC 1518, Sept. 1993.

[12] T. Sherwood, G. Varghese and B. Calder, “A Pipelined Memory
Architecture for High Throughput Network Processors,” In Proc. of the
30th Intl. Symp. on Computer Architecture (ISCA), Jun. 2003.

[13] B. Talbot, T. Sherwood, B. Lin, “IP Caching for Terabit Speed Routers.”
Globecom'99, pp. 1565-1569, Dec., 1999.

[14] D. Tarjan, S. Thoziyoor and N. P. Jouppi, CACTI 4.0 Technical Report,
http://www.hpl.hp.com/techreports/2006/HPL-2006-86.pdf

[15] F. Zane, G. Narlikar, A. Basu, “CoolCAMs: Power-Efficient TCAMs for
Forwarding Engines.” IEEE INFOCOM, Apr. 2003.

Read Energy

0

2

4

6

8

10

12

14

16

18

8 16 32 64 128
Cache Size (KB)

n
J

IP Address Cache

TCAM

Supernode Cache

Figure 8. Read energy comparison of the three caching
schemes.

