
Power Efficient IP Lookup with Supernode Caching 
 
 

Lu Peng, Wencheng Lu* and Lide Duan 
 

Department of Electrical & Computer Engineering 
Louisiana State University 
Baton Rouge, LA 70803 
{lpeng, lduan1}@lsu.edu 

*Dept. of Computer & Information Science & Engineering  
University of Florida 

Gainesville, FL 32611 
wlu@cise.ufl.edu 

 
 

Abstract— In this paper, we propose a novel supernode caching 
scheme to reduce IP lookup latencies and energy consumption in 
network processors. In stead of using an expensive TCAM based 
scheme, we implement a set associative SRAM based cache. We 
organize the IP routing table as a supernode tree (a  tree bitmap 
structure) [5]. We add a small supernode cache in-between the 
processor and the low level memory containing the IP routing 
table in a tree structure. The supernode cache stores recently 
visited supernodes of the longest matched prefixes in the IP rout-
ing tree. A supernode hitting in the cache reduces the number of 
accesses to the low level memory, leading to a fast IP lookup. 
According to our simulations, up to 72% memory accesses can be 
avoided by a 128KB supernode cache for the selected three trace 
files. Average supernode cache miss ratio is as low as 4%. Com-
pared to a TCAM with the same size, 77% of energy consump-
tion can be reduced. 
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I.  INTRODUCTION 
Packet routing is a critical function of network processors. 

An IP router determines the next network hop of incoming IP 
packets by destination addresses inside the packets. A widely 
used algorithm for IP lookup is Longest Prefix Matching 
(LPM). The adoption of a technique Classless Inter-Domain 
Routing (CIDR) [11] had made address allocation more effi-
cient. In an IP router with CIDR, a <route prefix, prefix 
length> pair denotes an IP route, where the prefix length is 
between 1 and 32 bits. For every incoming packet, the router 
determines the next network hop in two steps: First, a set of 
routes with prefixes that match the beginning of the incoming 
packet’s IP destination address are identified. Second, the IP 
route with the longest prefix among this set of routes is selected 
to route the incoming IP packet. 

IP routing table organization and storage is a challenging 
design problem for routers with increasingly large tables. Many 
commercial network processors [6][8][10] achieve wire speed 
IP routing table lookup through high speed memories such as 
Ternary Content Addressable Memories (TCAMs) and special-
ized hardware. TCAMs have an additional “don’t care” bit for 
every tag bit. When the “don’t care” bit is set the tag bit be-
comes a wildcard and matches anything. TCAM’s fully-
associative organization makes it parallelly search all the routes 
simultaneously, leading to low access latency. However, its 
high cost and high power consumption [15][9] hamper TCAM 
being widely used.   

Recently, researchers proposed the replacement of TCAMs 
by relative less expensive SRAMs. With well organizations, 
SRAMs can also achieve high throughput and low latency for 
IP routing table lookup [4][9][12]. In this paper, we propose a 
supernode based caching scheme to efficiently reduce IP 
lookup latency in network processors. A supernode is a tree 
bitmap node proposed in [5]. In a 32-level binary tree, we rep-
resent it by an 8-level supernode tree if we compress all 4-level 
subtrees, whose roots are at a level that is a multiple of 4 (level 
0, 4, .. 28), to be supernodes. We add a small supernode cache 
in-between the processor and the low level memory containing 
the IP routing table in a tree structure. The supernode cache 
stores recently visited supernodes of the longest matched pre-
fixes in the IP routing tree. A supernode hitting in the cache 
reduces the number of accesses to the low level memory, lead-
ing to a fast IP lookup.  

In our simulation, we compared the proposed supernode 
caching scheme with another two caches: a simple set-
associative IP address cache and a fully-associative TCAM. 
Several results can be summarized from our experiments: (1) 
Average 69%, up to 72%, of total memory accesses can be 
avoided by using a small 128KB supernode cache for the se-
lected three IP trace files. (2) A 128KB of our proposed super-
node cache outperforms a same size of set-associative IP ad-
dress cache 34% in the average number of memory accesses. 
(3) Compared to a TCAM with the same size, the proposed 
supernode cache saves 77% of energy consumption.    

The left of this paper is organized as follows. Section 2 in-
troduces related concept of the tree bitmap structure. Section 3 
explains the proposed supernode caching scheme. Section 4 
lists our experiment results. Section 5 makes a conclusion. 

II. RELATED WORK 
Many of the data structures developed for the representa-

tion of a forwarding table are based on the binary trie structure 
[7]. A binary trie is a binary tree structure in which each node 
has a data field and two children fields. Branching is done 
based on the bits in the search key. A left child branch is fol-
lowed at a node at level i (the root is at level 0) if the ith bit of 
the search key (the leftmost bit of the search key is bit 0) is 0; 
otherwise a right child branch is followed. Level i nodes store 
prefixes whose length is i in their data fields. The node in 
which a prefix is to be stored is determined by doing a search 
using that prefix as key.  



Figure 1(a) shows a set of 5 prefixes. The * shown at the 
right end of each prefix is used neither for the branching de-
scribed above nor in the length computation. So, the length of 
P2 is 1. Figure 1(b) shows the binary trie corresponding to this 
set of prefixes. Shaded nodes correspond to prefixes in the rule 
table and each contains the next hop for the associated prefix. 

Tree bitmap (TBM) [5] has been proposed to improve the 
lookup performance of binary tries. In TBM we start with the 
binary trie for our forwarding table and partition this binary trie 
into subtries that have at most S levels each. Each partition is 
then represented as a (TBM) supernode. Figure 2 (a) shows a 
partitioning of the binary trie of Figure 2 (b) into 4 subtries W--
Z that have 2 levels each. Although a full binary trie with S = 2 
levels has 3 nodes, X has only 2 nodes and Y and Z have only 
one node each. Each partition is represented by a supernode 
(Figure 2 (b)) that has the following components: 

1. A (2S – 1)-bit bit map IBM (internal bitmap) that in-
dicates whether each of the up to 2S – 1 nodes in the partition 
contains a prefix. The IBM is constructed by superimposing 
the partition nodes on a full binary trie that has S levels and 
traversing the nodes of this full binary trie in level order. For 
node W, the IBM is 110 indicating that the root and its left 
child have a prefix and the root's right child is either absent or 
has no prefix. The IBM for X is 010, which indicates that the 
left child of the root of X has a prefix and that the right child 
of the root is either absent or has no prefix (note that the root 
itself is always present and so a 0 in the leading position of an 
IBM indicates that the root has no prefix). The IBM's for Y 
and Z are both 100. 

2. A 2S-bit EBM (external bit map) that corresponds to 
the 2S child pointers that the leaves of a full S-level binary trie 
has. As was the case for the IBM, we superimpose the nodes 
of the partition on a full binary trie that has S levels. Then we 
see which of the partition nodes has child pointers emanating 
from the leaves of the full binary trie. The EBM for W is 
1011, which indicates that only the right child of the leftmost 
leaf of the full binary trie is null. The EBMs for X, Y and Z 
are 0000 indicating that the nodes of X, Y and Z have no chil-
dren that are not included in X, Y, and Z, respectively. Each 
child pointer from a node in one partition to a node in another 
partition becomes a pointer from a supernode to another su-
percode. To reduce the space required for these inter-
supernode pointers, the children supernodes of a supernode are 

stored sequentially from left to right so that using the location 
of the first child and the size of a supernode, we can compute 
the location of any child supernode.  

3. A child pointer that points to the location where the 
first child supernode is stored. 

4. A pointer to a list NH of next-hop data for the pre-
fixes in the partition. NH may have up to 2S – 1 entries. This 
list is created by traversing the partition nodes in level order. 
The NH list for W is H1 and H2. The NH list for X is H3. 
While the NH pointer is part of the supernode, the NH list is 
not. The NH list is conveniently represented as an array. 

The NH list (array) of a supernode is stored separate from 
the supernode itself and is accessed only when the longest 
matching prefix has been determined and we now wish to de-
termine the next hop associated with this prefix. If we need b 
bits for a pointer, then a total of 2S+1 + 2b - 1 bits (plus space 
for an NH list) are needed for each TBM supernode. Using the 
IBM, we can determine the longest matching prefix in a super-
node; the EBM is used to determine whether we should move 
next to the first, second, etc. child of the current supernode. If a 
single memory access is sufficient to retrieve an entire super-
node, we can move from one supernode to its child with a sin-
gle access. The total number of memory accesses to search a 
supernode trie becomes the number of levels in the supernode 
trie plus 1 (to access the next hop for the longest matching pre-
fix). 

III. SUPERNODE CACHING  
We compress the binary routing table tree into a supernode 

tree which is stored in low level memory. If a supernode corre-
sponds to an 8-level subtree, a 32-level binary tree is com-
pressed into a 4-level supernode tree. Assume that each super-
node access takes one memory access, the maximum number 
of memory accesses for an IP lookup is five: it reads three su-
pernodes plus the root nodes and searches the next hop for the 
longest matching prefix. When the root supernode is always 
held in cache, this number becomes 4. Obviously, maintaining 
a small cache will help to reduce the number of memory ac-
cesses. 

Figure 3 illustrates an example of a supernode cache. In this 
example, the 32-level binary IP routing table is compressed 
into a 4-level supernode tree. Each supernode contains an 8-
level subtree. The compressed 4-level supernode tree is stored 
in low level memory. We use a cache to store supernode ad-
dresses in low level memory. We store the root (level 1) and 

 
 

Figure 2: TBM for binary trie of Figure 1(b) 
Figure 1: Prefixes and corresponding binary trie. 



the second level supernode addresses containing 8 bits prefixes 
into a fully associative cache which is not shown in this figure. 
This is practical because there are at most 28 + 1 = 257 ad-
dresses. For the third level and the fourth level supernodes, we 
reduce the search latency by introducing a set-associative 
cache. As shown by Figure 3, for a destination IP address, we 
search the corresponding set by its left most 12 bits (step 1). 
Bits 12 to 23 and bits 12 to 15 are used as tags for 24-bit and 
16-bit IP prefixes (step 2). To implement the longest prefix 
matching, we identify the above two type of tags (12 bits and 4 
bits) by a mask bit. For example, the mask bit 0 represents a 4-
bit tag while a mask bit 1 means the tag has 12 bits. If both tags 
match, we select the longer one (step 3). After tag comparison, 
we select the corresponding entry in the cache’s data array 
which is the address of the supernode in memory (step 4). A 
cache miss will result in cache update and replacement. We 
employ an LRU replacement policy. The search continues from 
the matched supernode in memory and proceeds downwards 
until the longest matching prefix is found. If a 4-level super-
node is found in the cache, we only need one memory access 
for the next hop.   

By leveraging the above cache design, we directly jump to 
a supernode in the search path of the bitmap tree, skipping over 
its ancestor supernodes along the path. However, we may fail 
to find the longest matching prefix if it exists in one of these 
ancestor supernodes. For example, consider the tree bitmap in 
Figure 2 and an incoming packet with the destination address 
001*. We start the search of cache, if the address of supernode 
X is found, then the search continues at X and returns no 
match, though prefix 0* of binary node b should be returned. 
We solve this problem by pushing to the underlying binary root 
of each supernode a valid prefix from its lowest ancestor binary 
node. In this case, 0* of b is pushed down to d, and the search 
of X will successfully return 0* for the longest match of the 
destination address 0001*. 

IV. EXPERIMENT RESULTS  
To evaluate the proposed supernode caching scheme, we 

download a routing table RS1221 from [2] and download three 
trace files from routers ipls, svl and upcb in the website [1]. In 
the following experiments, we collect statistics of first 1.5 mil-
lion IP addresses whose longest prefix is larger than zero, i.e, 

matching an inner node in the IP prefix tree. Totally, we im-
plement four schemes with the longest prefix matching algo-
rithm for IP routing: (1) without cache; (2) with an IP address 
cache; (3) with a TCAM; (4) with a supernode cache. For each 
scheme, we count the average memory access time. If there is a 
cache, we also measure miss ratios. In addition, we simulate 
energy consumption for each cache scheme. 

In our experiments, we assume a 4-bit stride tree bitmap. 
Assuming that L denotes the number of steps taken to find the 
longest prefix node, the number of memory access for an IP 
lookup in the no cache scheme is L/4 + 1. In the second 
scheme, we design an IP address cache which contains the 
next hop information pointer in each entry. It can easily be 
implemented as a set associative cache by selecting part of the 
IP address bits as the set index and left bits as the tag. If an 
incoming IP address matches an entry in the IP address cache, 
it requires only one memory access to obtain the next hop. 
Otherwise, it needs L/4 + 1 memory access. In the third 
scheme, we assume that there exists a Tenary CAM. If an in-
coming IP address matches an entry in the TCAM, it requires 
only one memory access to obtain the next hop. Otherwise, it 
needs L/4 + 1 memory access. In the forth scheme, if the su-
pernode cache hits, it takes   14/ +− CP  memory ac-
cesses. Here P denotes the length of the longest prefix and C 
denotes the length of supernode prefix hit in the cache. Other-
wise, if the supernode cache misses, it requires L/4 + 1 mem-
ory accesses. In all of our experiments, we don’t prefetch the 
routing tables into cache. Therefore, compulsory misses will 
be also included as misses. 

Figure 4 shows the average numbers of memory accesses 
for the three selected trace files. Among the three files, IPLS 
has the smallest average number of memory accesses while 
SVL has the largest number. To understand the details, we fur-
ther collect distributions of longest prefix matching (LPM) in 
Figure 5. Two observations can be made from it: (1) Most 
LPM hit the range from prefix length 8 to length 24. There is 
no matching for prefix length less than 8, therefore we do not 
show this range, while there are only a very few LPM hit pre-
fixes longer than 24. (2) Three trace files show different distri-
bution. IPLS has the largest group with prefix length 8 while 
SVL and UPCB have the largest two groups with length 16 and 
17. One can expect that the proposed supernode caching 
scheme will have more performance benefits for SVL and 
UPCB than for IPLS because more relatively long supernode 
prefixes can be found from the supernode cache, resulting in 
less memory accesses. 

Figure 3. An example of a supernode cache 

Trace File IPLS SVL UPCB 

Date 06/01/2004 03/18/2005 02/19/2004 

Avg. Memory Access 4.28 4.73 4.64 

 
Figure 4. Average memory access of 1.5 million IP ad-

dresses from each trace file 



To illustrate the effect of supernode cache, we simulate dif-
ferent cache sizes ranging from 8KB to 128KB. We assume 
each cache entry has a four-byte width which can only store 
one unit because no spatial locality for IP addresses streams 
[4][13]. To implement the supernode cache, we set the Index 
field with 8 bits in Figure 3. There are five types of supernodes 
with different lengths will store in this cache: 12, 16, 20, 24 
and 28. We use the mask field in the cache tag array to find the 
longest prefix matching. For all 8-bit supernodes, we assume 
that they are stored in a separate small cache. This is reasonable 
because the maximum size of this additional cache is 256 * 4 = 
1KB. This implementation makes all supernode caches with 
fixed 256 sets. When the total cache size increases, we increase 
the set size instead of increasing the number of sets. To make 
comparison consistent, we also design the same total sizes and 
set sizes of IP address caches. In the combined cache scheme, 
we design half size as the IP address cache and another half as 
the supernode cache. For example, in a combined 32KB cache, 
the IP address cache is 16KB and the supernode cache is also 
16KB.  

Figure 6 illustrates average numbers of memory access with  

three caching schemes for each trace file. In general, all cach-
ing schemes reduce the average number of memory accesses. A 
32KB IP address cache, TCAM and supernode cache reduce 
the average number of memory accesses from 4.73 to 2.11, 
2.08 and 1.57, representing 55%, 56% and 67% reduction re-
spectively, for SVL. In this case, the supernode cache outper-
forms the IP address cache 34% and the TCAM 32%. The av-
erage memory access reductions of the three caching schemes 
with 32KB are 50%, 51% and 62% separately for the selected 
three trace files. The supernode cache shows the best perform-
ance among the three caching schemes in all cases. When the 
cache size reaches 128KB, the supernode caching scheme’s 
average memory access numbers for the three trace files are 
1.51, 1.31 and 1.46, which means that 65%, 72% and 69% 
memory accesses are reduced. The average memory access 
reductions of the three caching schemes are 52%, 54% and 
69% respectively for the selected three trace files with a 128KB 
cache size.     

We also collect cache miss ratio information and present 
them in Figure 7. Several observations can be made: (1) the 
supernode cache has the smallest miss ratio, catching the 
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Figure 6. Average memory access of the three trace files. 

(a) Miss Ratio - IPLS
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(c) Miss Ratio - UPCB
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Figure 7. Miss ratios of three caching schemes for each trace file. 

(a) LPM Distribution - IPLS 
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(c)  LPM Distribution - UPCB
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Figure 5. LPM distributions of the three trace files 



strongest temporal locality in all cases. This is reasonable be-
cause a supernode, representing a subtree, will get reused if any 
node inside the subtree appears. The IP address cache and the 
TCAM will hit only if the same IP address recurs. For the three 
trace files, the miss ratios for a 32 KB supernode cache are 8%, 
10% and 15% respectively. When the cache size reaches 
128KB, the miss ratios for a supernode cache can be further 
reduced to 3%, 4% and 5% separately; (2) the slope of the IP 
address cache and the TCAM miss ratio lines are more flat than 
that of the supernode cache. This means that temporal locality 
of the IP address streams are limited. The possibility of recur-
rence of a supernode is larger than that of an IP address. Actu-
ally, this is the theory foundation of that a supernode cache 
outperforms an IP address cache.    

To illustrate power efficiency of the proposed supernode 
cache, we simulate energy consumption of the three caching 
scheme. We use CACTI [14] to simulate the IP address cache 
and the supernode cache because they are set-associative cache. 
To make comparison fair, we also include power consumption 
of the small 1KB fully-associative cache which includes all 8-
bits supernodes in the supernode cache scheme. According to 
Figure 5, the average activity of this small cache is about 20% 
for all three trace files. Therefore, in our simulation, we include 
20% power consumption for this fully associative cache. We 
also simulate TCAM’s power consumption using a recent 
model [3]. All three schemes are simulated under 0.18µm tech-
nology. Figure 8 depicts read energy which represents most of 
energy consumption of three caching schemes. From this fig-
ure, we can see that the supernode cache has a little higher en-
ergy consumption than the simple IP address cache because 
20% additional searches fall into the small 1KB fully-
associative 8-bit supernode cache. However, even in a 128KB 
cache size setting, the supernode cache consumes only 3.61nJ 
read energy. Compared with the TCAM’s 15.64nJ read energy 
consumption, our proposed supernode caching scheme saves 
77% energy consumption. 

V. CONCLUSION 
In this paper, we propose a novel supernode caching 

scheme to reduce IP lookup latencies and energy consumption 
in network processors. In stead of using an expensive TCAM 
based scheme, we implement a set associative SRAM based 
caching scheme. We organize the IP routing table as a tree bit-

map structure. We add a small supernode cache in-between the 
processor and the low level memory containing the IP routing 
table in a tree structure. The supernode cache stores recently 
visited supernodes of the longest matched prefixes in the IP 
routing tree. A supernode hitting in the cache reduces the num-
ber of accesses to low level memory, leading to a fast IP 
lookup. According to our results, an average 69%, up to 72%, 
of total memory accesses can be avoided by using a small 
128KB supernode cache for the selected three IP trace files. A 
128KB of our proposed supernode cache outperforms a same 
size of set-associative IP address cache 34% in the average 
number of memory accesses. Compared to a TCAM with the 
same size, the proposed supernode cache saves 77% of energy 
consumption. The supernode cache works better for a trace file 
with larger groups LPM hits in relatively long prefixes. Our 
results also illustrate that the supernode cache catches stronger 
temporal locality than the other two cache schemes do. 
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