
SecCMP: A Secure Chip-Multiprocessor Architecture

Li Yang
Department of CSEE

University of Tennessee at Chattanooga
Chattanooga, TN 37405
Li-Yang@utc.edu

Lu Peng

Department of ECE
Louisiana State University
Baton Rouge, LA 70803

lpeng@lsu.edu

ABSTRACT
Security has been considered as an important issue in
processor design. Most of the existing mechanisms address
security and integrity issues caused by untrusted main
memory in single-core systems. In this paper, we propose a
secure Chip-Multiprocessor architecture (SecCMP) to handle
security related problems such as key protection and core
authentication in multi-core systems. Threshold secret
sharing scheme is employed to protect critical keys because
secret sharing is a distributed security scheme that matches
the nature of multi-core systems. A critical secret is divided
and distributed among multiple cores instead of keeping a
single copy that is sensitive to exposure. The proposed
SecCMP can not only enhance the security and fault-
tolerance in key protection but also support core
authentication. It is designed to be an efficient and secure
architecture for CMPs.

Categories and Subject Descriptors
C.1.2 [Multiple Data Stream Architectures
(Multiprocessors)]: Interconnection architectures,
Multiple-instruction-stream, multiple-data-stream
processors (MIMD), Connection machines.

General Terms
Algorithms, Design, Security

Keywords
Chip-Multiprocessor, Security, fault-tolerance, encryption

1. INTRODUCTION
Computer networking makes every computer component
vulnerable to security attacks. Examples of such attacks
include passive eavesdropping over communication between
CPU cores and off-chip devices, injection of malicious code
like buffer overflow, denial of service attacks by malicious
code, and attacks from compromised off-chip or on-chip
devices. Security has been considered as an important issue
in processor design because pure software solutions are not
secure enough. Many proposed work focus on hardware

memory encryption and authentication in single-core sys-
tems [2, 8, 10, 11]. They usually consider the processor chip
as one safe and trusted unit. However, because Chip-
Multiprocessors (CMP) have become mainstream products,
adversaries could steal on-chip shared critical secrets by
compromising one core. Approaches to protect shared
critical secrets for CMPs are demanded.

In this paper, we propose a novel Secure Chip-
Multiprocessor (SecCMP) architecture which employs a
distributed Secret Sharing [6] approach to protect and
distribute critical secrets shared by all processor cores.
Secret Sharing is a robust distributed security scheme with
low overheads and improved fault-tolerance. The distributed
security management matches multi-core architecture in
CMPs very well. By employing a threshold Secret Sharing
implementation, critical secrets can be protected safely in a
CMP processor even when one or more processor cores are
compromised. Moreover, confidentiality and authentication
among cores are supported in SecCMP. The proposed
SecCMP architecture enhances system security and fault-
tolerance by critical secrets protection and core
authentication. It is designed to be an efficient and secure
architecture for CMPs. We use an application to
demonstrate secure and remote critical information access
and sharing supported by our SecCMP. Integrated with
identity based cryptography [1], the SecCMP provides a
secure and reliable way to generate and distribute
encryption keys between local host and remote site when
prior distribution of keys is not available.

The rest of this paper is organized as follows. Section 2
introduces related work. Section 3 states the attack and
thread model of this paper. We discuss the master private
key protection and core authentication of the SecCMP
architecture in Section 4. An application of the SecCMP is
to support critical information remote access and sharing is
given in Section 5, followed by security and computational
complexity analysis in Section 6. Finally, we summarize
this paper and briefly introduce the future work in Section 7.

2. RELATED WORK

Lee et. al. [3] proposes a “secret-protected (SP)”
architecture focusing on key protection and management,
featured by secure on-line access of users’ keys from
different network computing devices. The keys are
organized as a tree structured key chain rooted at a secret
“User Master Key”. With helps from additional hardware
features supporting Concealed Execution Mode (CEM) and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ASID’06, October 21, 2006, San Jose, California, USA.
Copyright 2006 ACM 1-59593-576-2.

Trusted Software Module (TSM), the SP architecture
protects confidentiality and integrity of sensitive data
transmitted between processor chip and off-chip devices.
Our proposed mechanism can enhance the security for the
SP processor architecture working on a CMP. With a
threshold distributed secret sharing, even if one or more
pieces of critical secrets are released, the adversaries still
cannot obtain the secrets.

In [9], the authors present an integrated framework utilizing
multi-core processors to detect intrusions and recover from
infected states. The processor cores are divided as
resurrectors and resurrectees and memory space is also
insulated. Resurrectees cannot access resurrectors’ memory
but resurrectors can access all the memory space. Fine grain
internal state logging for low privileged cores, resurrectees,
is employed. Resurrectors dynamically check the states of
resurrectees. If any suspicious intrusions are detected, a
logged state will be recovered.

Other works [2,8,10,11] emphasize on memory encryption
and authentication by efficient hardware approaches in
single-core systems. Our proposed scheme focuses on on-
chip secret protection in multi-core processors.
Collaborating with the above memory protection and
recovery schemes, our proposal will further enhance
security and fault-tolerance of CMP systems.

3. ATTACK AND THREAT MODELS
In this paper, we focus on the remote exploit attacks from
networks, which intrude on-chip critical secrets in multi-
core processors. An attacker will try to learn critical secrets
of authorized users or elevate his/her privilege or consume
the victim’s resources. Encryption technologies, firewalls
and intrusion detection systems have been designed to
protect the users from attacks such as password sniffing,
password cracking, buffer overflow, deny-of-service etc.
However, the adversaries still are able to launch attacks if
the encryption key is not proper managed or databases of
firewall or IDSs are not up to date.

During an eavesdropping attack, an attacker tries to learn
critical secrets that he/she was unable to access such as the
root password. Buffer overflow attack happens when a
process attempts to store data beyond the boundaries of a
fixed length buffer, the extra data overwrites adjacent
memory locations. By doing so, possible malicious code is
injected into an execution path. If executed, the injected
malicious code grants attackers unauthorized privileges.
Therefore, both eavesdrops and buffer overflow try to
increase privileges of an attacker and expose the critical
information to unauthorized attackers.

We describe countermeasures of the proposed SecCMP by
an application of remote critical information access and
sharing in Section 5.

4. SECURE CHIP MULTIPROCESSOR AR-
CHITECTURE
Each processor has a pair of master public key and master
private key. The master public key is available to all other
network devices and hosts. The master private key is
protected by a threshold secret sharing scheme in the
SecCMP. Protection of the master private key allows critical
information related to an application to be stored and
accessed over public network. Each core in the processor
also employs new hardware features to supported trusted
applications. Trusted applications generate and distribute
application related keys and encrypt, decrypt the remotely
shared critical information. Because all the key computa-
tions, distributions and critical information encryptions and
communications are protected by the trusted applications, an
adversary can not observe other cores’ secret share even
when one or more cores are compromised. Most importantly,
the SecCMP comprises two unique components: protection
of a master (chip) private key and core authentication.

4.1 Protection of the Master Private Key

(a) (b)

Figure 1. A Four-Core CMP System with Secure Chip
Multiprocessor (SecCMP) Architecture.

(a) Processor Chip with a Master Private Key MRK.
(b) Off-chip Devices

The master private key is used to generate and an
application private key (we call it as an account private key
in Section 5) and decrypt the application related critical
information stored on-line and accessed over public network,
i.e., banking PIN, PGP keys. To avoid a central failure
point in a single processor system like [3], the master
private key is divided and distributed among multiple CPU
cores in a processor chip. In (k, n)-threshold secret sharing,
each core holds a secret share , and any k of these n
cores can reconstruct the master private key. Any collection
of less than k partial shares can not get any information
about the master private key. Here, k is the threshold
parameter such that 1 ≤ k ≤ n. Each processor will
authenticate itself in fine grained intervals. Therefore, it is
difficult for adversaries to obtain k or more pieces of secret
shares during a short time.

ic iss

Figure 1(a) is an example of (2, 4)-threshold scheme among
4 cores where a master private key MRK is divided into 4
unique pieces (Secret Share 0, 1, 2, 3), such that any 2 of
them can be used to reconstruct the master private key MRK.
Traditional Shamir’s secret sharing scheme suffers from the
requirement of a trust authority and the absence of share
verification. We employ a scheme based on [6], which is an
extension to Shamir’s secret sharing without the support of
a trust authority. We also deploy the verifiable secret
sharing [7] to detect the invalid share that some shareholders
generate to prevent reconstruction of the master private key.

4.2 Core Authentication
One or more cores may be compromised and their secret
share is exposed to an attacker. We assume that an honest
core will present the correct share to authenticate itself, and
a compromised core will present a random number instead
of the correct share. The attacker learns the secret shares
from compromised cores and interrupt the master private
key reconstruction. Failure of master private key recon-
struction will result in a denial of service attack (DoS). In
order to exchange secret share securely, each core hold a

public/private key pair {< , >} to encrypt the secret
share and authenticate each other. Each core signs its secret
share and hash code with its private key (digital signature).
Then the signed message is encrypted with requesting core’s
public key. The requesting core decrypts the message with
its private key. Then requesting node checks the signature to
authenticate the sender, checks the hash code to make sure
the integrity of the secret share. The key pair is created
during core installation based on each core’s identity. An
adversary is not able to observe the encrypted share without
a correct key pair. The private key also serves similar
function as Device Master Key in CEMs discussed in Lee’s
work [3] and is used to encrypt the critical key sent to and
from off-chip devices.

ic

iuk irk

We not only passively protect the master private key, but
also actively detect the compromised core. In order to detect
the compromised cores, we design a series of m master
private keys such that none of the participants knows
beforehand which is correct. The master private keys are
ordered incrementally based on their values, except for the
real key. The participants combine their shares to generate
one key after the other, until they create a correct key that is
less than the previous key. This helps us to expose the
compromised core early, before the correct master private
key is generated. The detection and prevention of cheaters in
threshold schemes [4] will be adopted in our approach.
Once the compromised core is detected, we isolate the
compromised one. The work in [5] allows a new sharing
scheme to be activated instantly once one of the cores
becomes untrustworthy.

5. SecCMP SUPPORTED CRITICAL INFOR-
MATION ACCESS AND SHARING
An application of the SecCMP is to support critical infor-
mation remote access and sharing. SecCMP provides secure
channels to generate, store and exchange encryption keys
for local host and remote sites to share critical information
associated with a specific account (i.e., a bank account, an
email account). Each host has a pair of master public key
(MUK) and master private key (MRK). In addition, each
account has a pair of account public key (AUK) and account
private key (ARK). Based on the identity-based crypto-
graphy [1], a user account public key can be any arbitrary
string. In other words, users may use some well-known
information, such as email address, IP address, URL as their
account public key.

When a local host tries to retrieve critical information from
a remote site, it creates a pair of MUK and MRK. The MUK
is available to the remote site, and the MRK is distributed
and stored in multiple cores of the local host. Such
distributed design of the master private key is resistant to
eavesdrops since at least k cores need to be compromised in
the active session to reconstruct master private key.
Moreover, k out of n cores need to be contacted in order to
create an account private key based on the account ID. A
buffer overflow attack may expose secret share of a core or
interrupt private key generation from a core. Our core
authentication service could detect such attacks. Because an
attack from network exploits usually cannot be performed in
a very short duration, the undergoing attack can be reported
and blocked before k cores are compromised.

5.1 Identity-based Cryptography
Identity-based systems [1] allow any party to generate a
public key from a known identity value such as an ASCII
string. The Private Key Generator (PKG) generates the
corresponding private keys. To operate, the PKG first
publishes a master public key, and keeps the corresponding
master private key. Given the master public key, a public
key can be generated corresponding to the identity by any
party. To obtain a corresponding private key, PKG is
contacted to generate the private key using master private
key based on the identity. As a result, messages may be
encrypted without prior key distribution between individual
participants. Such solution is helpful when the pre-
distribution of the authentication keys is not available. A
major challenge of this approach is that the PKG must by
highly trusted since it generates any user’s private key and
thus decrypt messages. In the SecCMP, multiple cores work
together to provide secure private key generation service
when there is no prior distribution of keys.

5.2 Remote Information Access and Sharing
When a local host tries to access or retrieve critical
information from a remote site. The local host and remote

site need to authenticate and exchange master public key
with each other. How two remote hosts authenticate each
other and how local host authenticate the current user is
valid or not are out of the scope of this paper. The former
can be accomplished either by a Certificate Authority (CA)
or a trusted third party. The later can be achieved through
access control or biometrics. We focus on how remote site
and local host generate, store and distribute master public
key, master private key, account public key and account
private key.

Figure 2 shows the general procedure of remote information
access and sharing. To initiate the remote critical infor-
mation access, the local host sends its master public key to
remote site in the step 1. In step 2, the local host also sends
account ID (AcctID) whose critical infor-mation the user
would like to access. The remote site com-putes an account
public key based on a master public key and an account ID
(AcctID). After that, the remote host encrypts requested
critical information with the account public key and
transmits requested critical information to public networks
in step three. In step 4, the local host computes account
private key by interacting at least k out of n cores in the
local host processor, and uses the account private key to
decrypt the received encrypted critical information.

Figure 2: Remote Critical Information Access

Figure 3: Account Public Key Generation and Encryption in

the Remote Site

T

The local host genera private key by which

e encrypted critical information is decrypted, as shown in

plication that can
ccess the secret share in registers of a core. When a trusted

he remote site needs to generate an account public key to
ical information andencrypt requested crit send it to public

networks. The local host will obtain account private key to
decrypt the critical information encrypted using its
corresponding public key. Figure 3 shows the account
public key generation and critical information encryption in
remote site.

AcctID from Authenticated User

(1)

Figure 4: Account Private Key Generation and Decryption in

the Local Host

tes an account
th
Figure 4. The method to obtain the account private key is to
contact at least k cores, present the account identity and
request private key generation service.

The trusted application is the only ap
a
application sends the MUK to remote site, the MRK was
divided into n secret shares and kept in n cores respectively.

Trusted Application

(2)

Account Private
Key Share

Account Private
Key Share

Secret Share

Public Key Pair

L1 L2

Execution Unit

Encryption and
Hashing

Private Key
for AcctID

Secret Share

Public Key Pair

L1 L2

Encrypted critical info

Critical Info Encryption

Critical
info

(3)

(4)

Execution Unit

Encryption and

Hashing

Local host
2.
AcctID

3. Encrypted
critical info

4. Decrypt

1. Master
Public Key

Remote
site

(2)

(1) Account Public Key Generator

Master Public Key AcctID

Critical
info Account

Public Key

Critical Info Encryption

Encrypted critical info

The general procedure of the account private key generation
and decryption in the local host is listed as follows:
(1) Authenticated users input to the trusted application and

AcctID whose related critical information will be

(2)
(3) es of the account private key construct the

user can

6. S

ption and hash function performed on secret share.

TURE WORK
itecture
ploys a

LEDGMENTS
he Louisiana Board of
0 and LEQSF (2006-

Weil Pairing,” Advances in Cryptology, CRYPTO 2001,
puter Science, Vol. 2139, pp. 213-229,
.

[3] ,
ecrets in

ings of the 32nd

[4] ing

ogy-ASIACRYPT ’91 Proceedings, Springer-

[5] rfect
,

arendon Press, 1993, pp.

[6]

[7] , Non-Interactive and Information-

yreva,

gs of

[9]

ulticore Processors, In

[10] .

entication, In
 On

[11] cessor

tional Symposium on

retrieved through public network by an authenticated
user.
Each core generates an account private key share.
K shar
corresponding ARK for AUK of the AcctID.

(4) The ARK is used to decrypt the cipher text encrypted by
the corresponding AUK. By doing so, a
securely access and share critical information remotely.

ECURITY AND COMPLEXITY ANALY-
SIS
Confidentiality and Integrity are taken care of by the
encry
Hash function guarantees that a share being transferred is
never corrupted due to non-benign failure. Availability
ensures the survivability of a processor chip despite denial
of service attack. In our schema we take care of this
problem by making use of (k, n) threshold secret sharing
algorithm, as any k out of n cores work together for critical
master key reconstruction. Thus our security solution is
tolerant to k-1 compromised cores. Authentication is taken
care of by digital signature that enables a core to ensure the
identity of the peer core it is communicating with. No
adversary can masquerade a core, thus gaining unauthorized
secret share. Main computations in our approach come from
secret share reconstruction and encryption. The recon-
struction computational complexity depends on the number
of thresholds. The encryption computational complexity is
same as the traditional schemes and depends on the size of
shares. The shorter length of a share results in less resource
consumption. The computations will be accelerated by
involvement of multi-cores.

7. SUMMARY AND FU
In this paper, we briefly introduce a secure arch
design for CMPs. The proposed architecture em
threshold Secret Sharing scheme to protect critical secrets
and support core authentication for a CMP system. Moving
forward, we will implement the proposed scheme and
evaluate its performance and security by software
simulations.

. ACKNOW8
This work is supported in part by t
Regents grants NSF (2006)-Pfund-8
09)-RD-A-10 and the LSU Faculty Research Grant program.
This work is also supported in part by Tennessee Higher
Education Commission's Center of Excellence in Applied
Computational Science and Engineering under grants R04-
1302-005. Anonymous referees provide helpful comments.

9. REFERENCES
[1] D. Bonh and M. Franklin, “Identity-Based Encryption from

Lecture Notes in Com
Springer Verlag, 2001

[2] B. Gassend, G. Suh, D. Clarke, M. Dijk, and S.
Devadas, Caches and Hash Trees for Efficient Memory
Integrity Verification, In Proceedings of the 9th Intl.
Symposium on High-Performance Computer
Architecture (HPCA), 2003.
R. B. Lee, P. C. S. Kwan, J. P. McGregor, J. Dwoskin
Z. Wang, Architecture for Protecting Critical S
Microprocessors, In Proceed
International Symposium on Computer Architecture,
2005.
H.-Y. Lin, L. Harn, A Generalized Secret Shar
Scheme with Cheater Detection, Advances in
Cryptol
Verlag, 1993, pp. 149-158.
K.M.Martin, Untrustworthy Participants in Pe
Secret Sharing Schemes, Cryptography and Coding III
M.J. Ganley, ed., Oxford: Cl
255-264.
T. P. Pedersen, A Threshold Cryptosystem without A
Trusted Party, In Proceedings of EUROCRYPT, 1991.
T. P. Pederson
Theoretic Secure Verifiable Secret Sharing, Lecture
Notes in Computer Science, pp. 129-140, 1992.

[8] W. Shi, H.-H. Lee, M. Ghosh, C. Lu, and A. Bold
High Efficiency Counter Mode Security Architecture
via Prediction and Precomputation, In Proceedin
the 32nd International Symposium on Computer
Architecture, 2005.
W. Shi, H-H Lee, L.Falk and M.Ghosh, An Integrated
Framework for Dependable and Revivable
Architectures Using M
Proceedings of the 33rd International Symposium On
Computer Architecture, 2006.

 C. Yan, B. Rogers, D. Englender, Y. Solihin, M
Prvulovic, Improving Cost, Performance, and Security
of Memory Encryption and Auth
Proceedings of the 33rd International Symposium
Computer Architecture, 2006.

 J. Yang, Y. Zhang, and L. Gao, Fast Secure Pro
for Inhibiting Software Piracy and Tampering, In
Proceedings of the 36th Interna
Microarchitecture, 2003.

	8. ACKNOWLEDGMENTS
	9. REFERENCES

