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ABSTRACT 
Security has been considered as an important issue in 
processor design. Most of the existing mechanisms address 
security and integrity issues caused by untrusted main 
memory in single-core systems.  In this paper, we propose a 
secure Chip-Multiprocessor architecture (SecCMP) to handle 
security related problems such as key protection and core 
authentication in multi-core systems. Threshold secret 
sharing scheme is employed to protect critical keys because 
secret sharing is a distributed security scheme that matches 
the nature of multi-core systems. A critical secret is divided 
and distributed among multiple cores instead of keeping a 
single copy that is sensitive to exposure.  The proposed 
SecCMP can not only enhance the security and fault-
tolerance in key protection but also support core 
authentication.  It is designed to be an efficient and secure 
architecture for CMPs.   
 

Categories and Subject Descriptors 
C.1.2 [Multiple Data Stream Architectures 
(Multiprocessors)]: Interconnection architectures, 
Multiple-instruction-stream, multiple-data-stream 
processors   (MIMD), Connection machines.   

General Terms 
Algorithms, Design, Security 

Keywords 
Chip-Multiprocessor, Security, fault-tolerance, encryption 

 
1. INTRODUCTION 
Computer networking makes every computer component 
vulnerable to security attacks.  Examples of such attacks 
include passive eavesdropping over communication between 
CPU cores and off-chip devices, injection of malicious code 
like buffer overflow, denial of service attacks by malicious 
code, and attacks from compromised off-chip or on-chip 
devices. Security has been considered as an important issue 
in processor design because pure software solutions are not 
secure enough. Many proposed work focus on hardware 

memory encryption and authentication in single-core sys-
tems [2, 8, 10, 11]. They usually consider the processor chip 
as one safe and trusted unit. However, because Chip-
Multiprocessors (CMP) have become mainstream products, 
adversaries could steal on-chip shared critical secrets by 
compromising one core. Approaches to protect shared 
critical secrets for CMPs are demanded.   
 
In this paper, we propose a novel Secure Chip-
Multiprocessor (SecCMP) architecture which employs a 
distributed Secret Sharing [6] approach to protect and 
distribute critical secrets shared by all processor cores. 
Secret Sharing is a robust distributed security scheme with 
low overheads and improved fault-tolerance. The distributed 
security management matches multi-core architecture in 
CMPs very well. By employing a threshold Secret Sharing 
implementation, critical secrets can be protected safely in a 
CMP processor even when one or more processor cores are 
compromised. Moreover, confidentiality and authentication 
among cores are supported in SecCMP. The proposed 
SecCMP architecture enhances system security and fault-
tolerance by critical secrets protection and core 
authentication. It is designed to be an efficient and secure 
architecture for CMPs. We use an application to 
demonstrate secure and remote critical information access 
and sharing supported by our SecCMP.  Integrated with 
identity based cryptography [1], the SecCMP provides a 
secure and reliable way to generate and distribute 
encryption keys between local host and remote site when 
prior distribution of keys is not available.    
 
The rest of this paper is organized as follows. Section 2 
introduces related work. Section 3 states the attack and 
thread model of this paper. We discuss the master private 
key protection and core authentication of the SecCMP 
architecture in Section 4. An application of the SecCMP is 
to support critical information remote access and sharing is 
given in Section 5, followed by security and computational 
complexity analysis in Section 6. Finally, we summarize 
this paper and briefly introduce the future work in Section 7.  
 
2. RELATED WORK  

Lee et. al. [3] proposes a “secret-protected (SP)” 
architecture focusing on key protection and management, 
featured by secure on-line access of users’ keys from 
different network computing devices.  The keys are 
organized as a tree structured key chain rooted at a secret 
“User Master Key”. With helps from additional hardware 
features supporting Concealed Execution Mode (CEM) and 
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Trusted Software Module (TSM), the SP architecture 
protects confidentiality and integrity of sensitive data 
transmitted between processor chip and off-chip devices. 
Our proposed mechanism can enhance the security for the 
SP processor architecture working on a CMP. With a 
threshold distributed secret sharing, even if one or more 
pieces of critical secrets are released, the adversaries still 
cannot obtain the secrets.  
 
In [9], the authors present an integrated framework utilizing 
multi-core processors to detect intrusions and recover from 
infected states. The processor cores are divided as 
resurrectors and resurrectees and memory space is also 
insulated. Resurrectees cannot access resurrectors’ memory 
but resurrectors can access all the memory space. Fine grain 
internal state logging for low privileged cores, resurrectees, 
is employed. Resurrectors dynamically check the states of 
resurrectees. If any suspicious intrusions are detected, a 
logged state will be recovered.  
 
Other works [2,8,10,11] emphasize on memory encryption 
and authentication by efficient hardware approaches in 
single-core systems. Our proposed scheme focuses on on-
chip secret protection in multi-core processors. 
Collaborating with the above memory protection and 
recovery schemes, our proposal will further enhance 
security and fault-tolerance of CMP systems.       
 
3. ATTACK AND THREAT MODELS  
In this paper, we focus on the remote exploit attacks from 
networks, which intrude on-chip critical secrets in multi-
core processors. An attacker will try to learn critical secrets 
of authorized users or elevate his/her privilege or consume 
the victim’s resources. Encryption technologies, firewalls 
and intrusion detection systems have been designed to 
protect the users from attacks such as password sniffing, 
password cracking, buffer overflow, deny-of-service etc. 
However, the adversaries still are able to launch attacks if 
the encryption key is not proper managed or databases of 
firewall or IDSs are not up to date.   
 
During an eavesdropping attack, an attacker tries to learn 
critical secrets that he/she was unable to access such as the 
root password. Buffer overflow attack happens when a 
process attempts to store data beyond the boundaries of a 
fixed length buffer, the extra data overwrites adjacent 
memory locations. By doing so, possible malicious code is 
injected into an execution path. If executed, the injected 
malicious code grants attackers unauthorized privileges. 
Therefore, both eavesdrops and buffer overflow try to 
increase privileges of an attacker and expose the critical 
information to unauthorized attackers.   
 
We describe countermeasures of the proposed SecCMP by 
an application of remote critical information access and 
sharing in Section 5.     

4. SECURE CHIP MULTIPROCESSOR AR-
CHITECTURE 
Each processor has a pair of master public key and master 
private key.  The master public key is available to all other 
network devices and hosts. The master private key is 
protected by a threshold secret sharing scheme in the 
SecCMP. Protection of the master private key allows critical 
information related to an application to be stored and 
accessed over public network. Each core in the processor 
also employs new hardware features to supported trusted 
applications.  Trusted applications generate and distribute 
application related keys and encrypt, decrypt the remotely 
shared critical information. Because all the key computa-
tions, distributions and critical information encryptions and 
communications are protected by the trusted applications, an 
adversary can not observe other cores’ secret share even 
when one or more cores are compromised. Most importantly, 
the SecCMP comprises two unique components: protection 
of a master (chip) private key and core authentication.  
 
4.1 Protection of the Master Private Key  
 

 
(a)           (b) 

Figure 1. A Four-Core CMP System with Secure Chip 
Multiprocessor (SecCMP) Architecture.  

(a) Processor Chip with a Master Private Key MRK.  
(b) Off-chip Devices 

 
The master private key is used to generate and an 
application private key (we call it as an account private key 
in Section 5) and decrypt the application related critical 
information stored on-line and accessed over public network, 
i.e., banking PIN, PGP keys.  To avoid a central failure 
point in a single processor system like [3], the master 
private key is divided and distributed among multiple CPU 
cores in a processor chip. In (k, n)-threshold secret sharing, 
each core  holds a secret share , and any k of these n 
cores can reconstruct the master private key. Any collection 
of less than k partial shares can not get any information 
about the master private key.  Here, k is the threshold 
parameter such that 1 ≤ k ≤ n. Each processor will 
authenticate itself in fine grained intervals. Therefore, it is 
difficult for adversaries to obtain k or more pieces of secret 
shares during a short time.  
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Figure 1(a) is an example of (2, 4)-threshold scheme among 
4 cores where a master private key MRK is divided into 4 
unique pieces (Secret Share 0, 1, 2, 3), such that any 2 of 
them can be used to reconstruct the master private key MRK. 
Traditional Shamir’s secret sharing scheme suffers from the 
requirement of a trust authority and the absence of share 
verification. We employ a scheme based on [6], which is an 
extension to Shamir’s secret sharing without the support of 
a trust authority. We also deploy the verifiable secret 
sharing [7] to detect the invalid share that some shareholders 
generate to prevent reconstruction of the master private key.   
 
4.2 Core Authentication  
One or more cores may be compromised and their secret 
share is exposed to an attacker.  We assume that an honest 
core will present the correct share to authenticate itself, and 
a compromised core will present a random number instead 
of the correct share. The attacker learns the secret shares 
from compromised cores and interrupt the master private 
key reconstruction. Failure of master private key recon-
struction will result in a denial of service attack (DoS). In 
order to exchange secret share securely, each core  hold a 

public/private key pair {< ,  >} to encrypt the secret 
share and authenticate each other. Each core signs its secret 
share and hash code with its private key (digital signature).  
Then the signed message is encrypted with requesting core’s 
public key. The requesting core decrypts the message with 
its private key. Then requesting node checks the signature to 
authenticate the sender, checks the hash code to make sure 
the integrity of the secret share. The key pair is created 
during core installation based on each core’s identity. An 
adversary is not able to observe the encrypted share without 
a correct key pair.  The private key also serves similar 
function as Device Master Key in CEMs discussed in Lee’s 
work [3] and is used to encrypt the critical key sent to and 
from off-chip devices.   
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We not only passively protect the master private key, but 
also actively detect the compromised core. In order to detect 
the compromised cores, we design a series of m master 
private keys such that none of the participants knows 
beforehand which is correct. The master private keys are 
ordered incrementally based on their values, except for the 
real key.  The participants combine their shares to generate 
one key after the other, until they create a correct key that is 
less than the previous key. This helps us to expose the 
compromised core early, before the correct master private 
key is generated. The detection and prevention of cheaters in 
threshold schemes [4] will be adopted in our approach. 
Once the compromised core is detected, we isolate the 
compromised one. The work in [5] allows a new sharing 
scheme to be activated instantly once one of the cores 
becomes untrustworthy.   
 

5. SecCMP SUPPORTED CRITICAL INFOR-
MATION ACCESS AND SHARING  
An application of the SecCMP is to support critical infor-
mation remote access and sharing.  SecCMP provides secure 
channels to generate, store and exchange encryption keys 
for local host and remote sites to share critical information 
associated with a specific account (i.e., a bank account, an 
email account).   Each host has a pair of master public key 
(MUK) and master private key (MRK).  In addition, each 
account has a pair of account public key (AUK) and account 
private key (ARK).  Based on the identity-based crypto-
graphy [1], a user account public key can be any arbitrary 
string. In other words, users may use some well-known 
information, such as email address, IP address, URL as their 
account public key.   
 
When a local host tries to retrieve critical information from 
a remote site, it creates a pair of MUK and MRK. The MUK 
is available to the remote site, and the MRK is distributed 
and stored in multiple cores of the local host. Such 
distributed design of the master private key is resistant to 
eavesdrops since at least k cores need to be compromised in 
the active session to reconstruct master private key.  
Moreover, k out of n cores need to be contacted in order to 
create an account private key based on the account ID.  A 
buffer overflow attack may expose secret share of a core or 
interrupt private key generation from a core. Our core 
authentication service could detect such attacks.  Because an 
attack from network exploits usually cannot be performed in 
a very short duration, the undergoing attack can be reported 
and blocked before k cores are compromised.     
 
5.1 Identity-based Cryptography 
Identity-based systems [1] allow any party to generate a 
public key from a known identity value such as an ASCII 
string. The Private Key Generator (PKG) generates the 
corresponding private keys. To operate, the PKG first 
publishes a master public key, and keeps the corresponding 
master private key. Given the master public key, a public 
key can be generated corresponding to the identity by any 
party.  To obtain a corresponding private key, PKG is 
contacted to generate the private key using master private 
key based on the identity. As a result, messages may be 
encrypted without prior key distribution between individual 
participants. Such solution is helpful when the pre-
distribution of the authentication keys is not available. A 
major challenge of this approach is that the PKG must by 
highly trusted since it generates any user’s private key and 
thus decrypt messages.  In the SecCMP, multiple cores work 
together to provide secure private key generation service 
when there is no prior distribution of keys.  
 
5.2 Remote Information Access and Sharing  
When a local host tries to access or retrieve critical 
information from a remote site. The local host and remote 



site need to authenticate and exchange master public key 
with each other.  How two remote hosts authenticate each 
other and how local host authenticate the current user is 
valid or not are out of the scope of this paper.  The former 
can be accomplished either by a Certificate Authority (CA) 
or a trusted third party.  The later can be achieved through 
access control or biometrics.  We focus on how remote site 
and local host generate, store and distribute master public 
key, master private key, account public key and account 
private key.   
 
Figure 2 shows the general procedure of remote information 
access and sharing. To initiate the remote critical infor-
mation access, the local host sends its master public key to 
remote site in the step 1.  In step 2, the local host also sends 
account ID (AcctID) whose critical infor-mation the user 
would like to access. The remote site com-putes an account 
public key based on a master public key and an account ID 
(AcctID). After that, the remote host encrypts requested 
critical information with the account public key and 
transmits requested critical information to public networks 
in step three.  In step 4, the local host computes account 
private key by interacting at least k out of n cores in the 
local host processor, and uses the account private key to 
decrypt the received encrypted critical information.  

  
Figure 2: Remote Critical Information Access 

 

 
Figure 3: Account Public Key Generation and Encryption in  

the Remote Site 
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Figure 4: Account Private Key Generation and Decryption in

the Local Host 
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contact at least k cores, present the account identity and 
request private key generation service.    
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The general procedure of the account private key generation 
and decryption in the local host is listed as follows: 
(1) Authenticated users input to the trusted application and 

AcctID whose related critical information will be 

(2) 
(3) es of the account private key construct the 

user can 
  

 
6. S

ption and hash function performed on secret share. 

TURE WORK 
itecture 
ploys a 

LEDGMENTS 
he Louisiana Board of 
0 and LEQSF (2006-

    

Weil Pairing,” Advances in Cryptology, CRYPTO 2001, 
puter Science, Vol. 2139, pp. 213-229, 
. 

[3] , 
ecrets in 

ings of the 32nd 

[4] ing 

ogy-ASIACRYPT ’91 Proceedings, Springer-

[5] rfect 
, 

arendon Press, 1993, pp. 

[6] 

[7] , Non-Interactive and Information-

yreva, 
 

gs of 

[9] 

ulticore Processors, In 

[10] . 
 

entication, In 
 On 

[11] cessor 

tional Symposium on 

retrieved through public network by an authenticated 
user.   
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(4) The ARK is used to decrypt the cipher text encrypted by 
the corresponding AUK. By doing so, a 
securely access and share critical information remotely.   

ECURITY AND COMPLEXITY ANALY-
SIS 
Confidentiality and Integrity are taken care of by the 
encry
Hash function guarantees that a share being transferred is 
never corrupted due to non-benign failure. Availability 
ensures the survivability of a processor chip despite denial 
of service attack. In our schema we take care of this 
problem by making use of (k, n) threshold secret sharing 
algorithm, as any k out of n cores work together for critical 
master key reconstruction. Thus our security solution is 
tolerant to k-1 compromised cores. Authentication is taken 
care of by digital signature that enables a core to ensure the 
identity of the peer core it is communicating with. No 
adversary can masquerade a core, thus gaining unauthorized 
secret share. Main computations in our approach come from 
secret share reconstruction and encryption. The recon-
struction computational complexity depends on the number 
of thresholds. The encryption computational complexity is 
same as the traditional schemes and depends on the size of 
shares. The shorter length of a share results in less resource 
consumption. The computations will be accelerated by 
involvement of multi-cores.   
  
7. SUMMARY AND FU
In this paper, we briefly introduce a secure arch
design for CMPs. The proposed architecture em
threshold Secret Sharing scheme to protect critical secrets 
and support core authentication for a CMP system. Moving 
forward, we will implement the proposed scheme and 
evaluate its performance and security by software 
simulations.   
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