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Abstract—Recent graphic processing units (GPUs) often come 

with large on-board physical memory to accelerate diverse 

parallel program executions on big datasets with regular access 

patterns, including machine learning (ML) and data mining 

(DM). Such a GPU may underutilize its physical memory during 

lengthy ML model training or DM, making it possible to lend 

otherwise unused GPU memory to applications executed 

concurrently on the host machine.  This work explores an 

effective approach that lets memory-intensive applications run 

on the host machine CPU with its memory expanded dynamically 

onto available GPU on-board DRAM, called GPU-assisted 

memory expansion (GAME). Targeting computer systems 

equipped with the recent GPUs, our GAME approach permits 

speedy executions on CPU with large memory footprints by 

harvesting unused GPU on-board memory on-demand for 

swapping, far surpassing competitive GPU executions. 

Implemented in user space, our GAME prototype lets GPU 

memory house swapped-out memory pages transparently, 

without code modifications for high usability and portability.  

The evaluation of NAS-NPB benchmark applications 

demonstrates that GAME expedites monotasking (or 

multitasking) executions considerably by up to 2.1× (or 3.1×), 

when memory footprints exceed the CPU DRAM size and an 

equipped GPU has unused VDRAM available for swapping use. 

Keywords—GPUs (graphic processing units), NVMe (non-

volatile memory express), PCI Express, Virtual Memory Page 

Swapping. 

I. INTRODUCTION 

The graphic processing unit (GPU) widely adopted recently 
by computer systems possesses a growing on-board memory 
capacity, up to 32 GB for the latest most powerful NVIDIA 
GPU V100 and 24 GB for TITAN RTX GPUs [4].  
Meanwhile, AMD RDNA 2 (Radeon RX 6800 Family) has 16 
GB memory. Parallel software libraries, such as Nvidia CUDA 
(compute unified device architecture) [1] and OpenCL [2], 
expose GPU programming to users for accelerating application 
executions ranging from simple web browsing to machine 
learning (ML) and data mining (DM).  Although the GPU has 
sparked interest in parallelized tasks with regular data access 
patterns (e.g., ML and DM), it is not preferred for applications 
with large execution memory footprints and irregular data 
accesses.  The GPU execution time rises markedly under 
irregular data accesses (in many scientific applications) and is 
observed to surge greatly in our experiments when memory 

footprints approach or exceed the on-board GPU physical 
memory size, as observed previously [5], [6]. 

We have evaluated off-load GPU execution performance 
for different parallel applications with a range of execution 
memory footprints, confirming significant performance 
degradation caused by the virtual memory subsystem when 
execution memory footprints approach or exceed the GPU on-
board memory, which is also referred to as video DRAM 
(VDRAM) size, as detailed in Section 4 and also pointed out 
earlier [5].  Specifically, the execution times of NAS Parallel 
Benchmarks (NPB) [22] under the OpenMP version for CPU 
workloads and under the CUDA version [23] for GPU 
workloads, have been obtained by our experiments on the 
testbeds whose host computers (Dell servers) are equipped 
with TITAN RTX GPUs [4], as shown in Fig. 1.  Their 
accompanying workload memory footprints are listed in Table 
I.  From the table, it is evident that GPU workloads take far 
more memory than the CPU counterparts, as also found 
previously [8].  This is due chiefly to the heavy CUDA 
software stack available to ease GPU-accelerated application 
development.  Such exceedingly high memory footprint 
overhead caused by the CUDA toolkit can make GPU 
executions inferior to their CPU counterparts when the 
workload memory footprint approaches the GPU physical 
memory size.  It is observed from Fig. 1(a) that GPU execution 
times can dwarf their CPU counterparts as a result of much 
larger memory footprints and thus far more page faults, besides 
naïve GPU memory virtualization support.  This makes it 
unsuitable to run applications with large data sizes on the GPU, 
unless hardware provisions are made (like the addition of 
NVLink 2.0 [10] for pooling VDRAM of two GPUs together, 
as attempted in [5]).  Recent studies on swapping GPU pages 
to host machine memory smartly [6] and on tensor 
eviction/prefetching and recomputation [7] during deep ML 
training aim to let GPUs handle enlarged memory footprints, 
but they target solely at workloads with regular computation 
structures or predictable data access patterns known prior to 
execution, not at general parallel workloads without regular 
computation structures or predictable access patterns. 

In contrast, CPU executions, with efficient virtual memory 
support, are seen in Fig. 1(a) to exhibit gradually degraded 
performance as the SP footprint grows (caused mainly by more 
virtual memory page swapping), free from abrupt, drastic 
performance declines.  Other applications in the NPB 
benchmark suite [22] follow similar trends when comparing 
their GPU executions versus compatible CPU executions.  



Hence, a server-grade computer equipped with the GPU 
accelerator(s) can favor CPU executions over their GPU 
counterparts for general parallel applications under (1) 
monotasking with large memory footprints and irregular data 
accesses, and (2) multitasking for resource consolidation [9] 
with the aggregate memory footprint of co-running tasks to 
exceed the GPU VDRAM size. 

CPU executions on such a computer can avoid performance 
degradation even when their memory footprints exceed the 
host machine memory size by borrowing available GPU-side 
memory on demand, called GPU-assisted memory expansion 
(GAME).  This work addresses GAME in support of memory-
intensive CPU executions for better performance.  The GAME 
approach can be promising in such a computer system because 
(1) an equipped GPU usually has unoccupied on-board 
memory, when applied for lengthy ML training because it is 
often provisioned to handle extremely deep and wide ML 
models, instead of regular ones, (2) communication bandwidth 
between CPU and GPU will increase significantly under the 
future PCIe 5.0 [11], and (3) multiple GPUs may exist in a 
system, each leaving a portion of its memory unoccupied when 
conducting its ML/DM executions; collectively, available GPU 
memory can be aggregated to accelerate CPU executions that 
take place concurrently.  Our GPU testbeds, for example, are 
established for weather parameter prediction based on the 
LSTM ML model, whose model training memory footprint is 
found to be far smaller than 24 GB (of VDRAM in each 
equipped TITAN RTX GPU [4]).  Two GPU cards exist for 
each of our testbeds in order to train many weather parameter 
models simultaneously [12], knowing that certain 
motherboards can support many GPU cards (even up to 20 
each via PCIe over USB or Thunderbolt).  Available GPU 
memory so exposed serves as the swap partition to house cold 
pages that are claimed by the operating system (OS) to free up 
host memory needed upon page faults.  Page faults come 
naturally with memory virtualization that enables application 
executions with arbitrarily large memory footprints on the CPU 
[13].  In essence, GAME keeps swapped-out pages in GPU’s 
fast VDRAM transparently instead of a slow storage device, 
realizing low-latency memory page swapping efficiently to 
boost execution performance without any additional hardware 
cost, since GPUs are equipped to expedite ML training and 
DM tasks (and not to serve dedicatedly as backing store). 

GAME is implemented in user space to prototype testbeds 
for evaluation, by employing a Linux network block device 
framework, called nbdkit, to let GPU memory house fault-
memory pages (as swap-out partitions) transparently, without 
any modification to application codes upon executed on CPU 
for high usability and portability.  The implemented GAME 
testbed (under Ubuntu 20.04 Focal Fossa) has demonstrated 
that CPU executions with an aid of GAME under multitasking 
workloads (when aggregate memory footprints far exceed the 
VDRAM size) can be an order of magnitude faster (see Fig. 3) 
than their compatible GPU executions, confirming the 
potentials of substantial advantages of CPU executions on 
server-grade machines equipped with GPU accelerators.  
GAME achieves marked speedups up to 2.1× (or 1.6×) in 
comparison to its counterpart without GAME support for large 
monotasking workloads under ample (or limited) VDRAM 
available from the GPU for swapping use.  

Although current GAME design has demonstrated its 
advantages in support of general parallel executions on 
computer systems equipped with GPU cards, further 
improvement is possible.  Specifically, instead of estimating 
the maximal unused GPU memory before a GPU execution 
starts (according to [14]), one can monitor and predict available 
GPU memory amounts dynamically during execution (see 
Section III.D).  In addition, one may schedule the best 
swapping use of available VDRAM over multiple GPUs in a 
computer system or even two systems connected by the 
NVLink 2.0 [10], taking GPU memory availability and PCIe 
communication load into consideration. 

II. RELATED BACKGROUND 

GAME harvests available GPU memory for use to 

accelerate CPU executions with big memory footprints.  Its 

related background is outlined below. 

A. GPU Applications and Memory Consumption 

GPU application executions usually have different resource 
needs (e.g., streaming multiprocessor counts, VDRAM, 
communication bandwidth, etc.) at different execution stages, 
just like CPU executions as documented previously [13].  
Effort has been made for profiling GPU resource needs [15] or 
for estimating GPU memory consumption [14] during GPU 
executions.  In particular, ML applications have regular 
computation structures with orderly, known data access 
patterns, making it possible to estimate memory consumption 
reasonably precisely.  For example, GPU memory 
consumption under deep ML of VGG-16 (with the min-batch 
size of 128) and TensorFlow is estimated to be 16.9 GB versus 
the actual measured 17.4 GB, whereas LSTM under 
TensorFlow is estimated to consume 4.3 GB versus the actual 
4.1 GB [14].  When ML models are trained on a GPU, the 
unused memory amount over the often lengthy training 
duration is model-dependent and is known apriori, so that 
GAME can easily utilize it to expedite CPU executions which 
take place in the duration.  We evaluate GAME on one of our 
testbeds under varying amounts of GPU memory available to 
hold CPU execution swapped-out pages on demand. 

B. Network Block Devices 

This work was support in part by the NSF under Grants 1948374 and 
2019511. 

  

(a) Benchmark SP execution time       (b) Operations per second (billions)               
(in minutes) versus problem size               versus problem size 

Fig. 1. CPU and GPU execution performance comparison. 
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TABLE I.   TOTAL WORKLOAD MEMORY FOOTPRINTS 

Problem size 450 460 470 480 490 500 

SP CUDA 29.3 GB 31.2 GB 32.8 GB 34.6 GB 36.7 GB 38.5 GB 

SP OpenMP 15.4 GB 16.4 GB 17.5 GB 18.6 GB 19.8 GB 21.0 GB 

 



The network block device (NBD) is a network protocol that 
exposes software-emulated data blocks to the network. There 
are many NBD implementations available in various types and 
forms. Linux NBD is a basic NBD library included in the 
Linux kernel, and it provides simple functionalities employing 
the standard TCP/IP socket for communication.  Mellanox 
nbdX and NVMe over communication fabrics aim to provide 
block devices through RDMA and Fiber channels [16].  Being 
flexible, nbdkit, developed and maintained by Red Hat [17], is 
a high-performance software framework for block devices.  It 
permits users to write plugins for managing unconventional 
sources.  We exploit nbdkit to realize our GAME for 
intercepting every swapped-out and swap-in page request.  
Additionally, NBDs are software emulated solutions, and 
hence, they are not bonded to any hardware and available in 
user space.  Although the user space methods have greater 
flexibility, they incur higher software overhead than their 
kernel-level implementation counterparts. 

III. DESIGN AND IMPLEMENTATION 

The virtual memory (VM) subsystem is widely adopted by 
OS for efficient memory utilization.  It possesses many 
benefits for execution processes, such as contiguous private 
address space, process isolation, security, page frame sharing, 
demand paging, and copy-on-write.  VM allows the running 
processes to allocate memory with the size far larger than that 
of the system physical memory.  Nvidia CUDA exploited the 
VM technique to expand GPU memory onto host machine 
memory, arriving at UVM (unified virtual memory). 

Our GAME utilizes unused GPU memory on-demand to 
quicken CPU execution under the virtual memory paradigm.  It 
aims to lower the CPU execution time by dynamically 
borrowing available GPU VDRAM.  GAME exposes GPU 
memory as a block device to the host OS during low GPU 
memory utilization upon a light GPU load (or an idle state). 

Under Linux OS, GAME is mounted as a swap partition for 
memory expansion via a block device.  During process 
execution, OS claims cold memory pages and evicts them to 
the swap device periodically, known as page frame reclaiming. 
More page frames are reclaimed under higher memory 
pressure.  Instead of a slower block storage devices like a hard 
disk drive (HDD) or a solid-state drive (SSD), GAME keeps 
evicted pages in available GPU memory areas, which is much 
faster than resorting to other block storage devices.  Nvidia 
CUDA library is employed to let GAME transfer data pages 
between GPU and CPU on demand transparently.  Upon 

receiving evicted pages from OS, if GAME observes low GPU 
utilization with available memory to lend, it allocates a 
VDRAM area to store data.  Note that the memory area size is 
configurable and must be a multiple of 4KB; thus, an allocated 
memory area can contain several pages.  Whenever GAME 
predicts that the GPU is highly loaded with its memory mostly 
occupied, GAME writes the evicted pages to a temporary file 
(as one memory area) provisioned for the storage device (say, 
/var/tmp), achieving identical performance as the baseline 
SSD. 

GAME keeps tracks of the GPU memory status using 
memory area descriptors, each of which represents one 
allocated memory area.  The descriptors are managed in an 
LRU linked list, with the least recently used entry placed at its 
front for performance optimization.  Maintained by CPU in 
host memory, a memory area descriptor consists of three fields: 
(1) sector number (the unit of block device referenced by OS), 
(2) GPU memory address (a pointer returned from CUDA 
memory allocation) for GAME to convert between two marked 
locations interchangeably, and (3) the present bit vector (PBV) 
to represent active pages in the memory area.  The ith bit of the 
PBV is raised to convey that the ith page of this memory area is 
in use, and the bit is cleared when the corresponding page is 
freed by OS.  A memory area descriptor is created when its 
associated memory area is first allocated for holding evicted 
pages.  After that, the descriptor is populated and placed at the 
head of the linked list.  On the other hand, whenever the 
system frees a backed swapfile, GAME clears its associated bit 
(set to zero) to denote that the page is no longer in use.  If all 
bits in the PBV are cleared, GAME releases the allocated 
memory area back to GPU, realizing dynamic memory 
expansion. 

Fig. 2 depicts the scenarios when the GAME block daemon 
receives a write-request (page frame reclamation) and read-
request (page fault) from OS.  Under high system memory 
pressure, a page (say, PX) is marked as a cold page and sent to 
the block device subsystem from where the GAME daemon 
intercepts the evicted page PX.  As tracked by the dashed line in 
Fig. 2, upon receiving PX, GAME checks the linked list for the 
corresponding memory area descriptor where PX’s sector 
number has resided.  Suppose the descriptor exists in the list. In 
that case, GAME writes the received PX to the determined 
offset position, sets the corresponding present bit to 1 in the 
PBV, and brings the descriptor to the front of the LRU list.  If 
PX is new and its corresponding descriptor does not exist in the 
LRU list, GAME allocates a new memory area in VDRAM 
along with its descriptor, given that GPU is lightly loaded.  
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Fig. 2. GPU-assisted memory expansion high-level design diagram. 

TABLE II.  NPB SMALL (S) DETAILS 

AND FOOTPRINTS 

Bench

marks 
Problem size 

Footprint 

(GB) 

BT 530*530*530 23.4 

FT 512*1024*1024 20.0 

LU 550*550*550 21.4 

SP 530*530*530 24.5 

MG Class D 26.5 

 



Otherwise, instead of VDRAM, PX is redirected to the system 
storage. 

Similarly, a read request for a page that is previously 
swapped-out (say, PY), causes a page fault.  Intercepting the 
page fault request from a block device interface for PY, GAME 
looks up the memory area descriptor for PY, as denoted by the 
dotted-dash line in Fig. 2.  In this case, GAME always finds the 
corresponding record in the LRU list that points to a target 
location either in VDRAM or in the temporary file (i.e., 
/var/tmp).  After moving the PY to the designated buffer, the 
read request is fulfilled.  Note that, at this point, PY still cannot 
be released, with its present bit still set to 1 since the swapfile 
can be requested by OS multiple times throughout the 
execution course.  All present bits will be cleared only when 
the system explicitly releases them. 

A. Kernel Mode and User Mode 

To allow the system to utilize GPU memory, GAME 
targets VDRAM as a block device that can be realized in both 
kernel space and user space.  The realization under kernel 
space versus user space has different advantages and 
limitations, as discussed next. 

Natively supported by Linux, the block device driver can 
be realized as a kernel module.  The block device driver serves 
as an entry point to a backing hardware device and is 
responsible for orchestrating I/O requests produced by 
applications [18].  Moreover, a block device driver is a glue 
layer that controls hardware and provides random accesses to 
the application's fix-sized block data.  It is a low-level 
implementation that aims at high performance [19]; thus, the 
block driver is tied tightly to the system and is confined in 
kernel space.  Despite having thin overhead and high 
performance, a kernel-level approach suffers from limited 
accesses to high-level libraries, such as Nvidia CUDA. 

Although GAME aims at high-performance support for 
CPU execution to lean its implementation in kernel space, 
major problems and concerns emerge with kernel space 
implementation, since the Linux block driver has no access to 
Nvidia CUDA, which is essential to interface with GPU 
memory.  Our first attempt at GAME implementation is to 
involve three parts: (1) Linux block device driver as an entry 
point (interface) to GPU memory, (2) user-level daemon as a 
background service to orchestrate GPU memory via Nvidia 
CUDA, and (3) a kernel module to provide kernel-user space 
communication between two prior modules.  Netlink Socket is 
chosen for its full-duplex inter-process communication (IPC), 
which can transfer sizeable data [20].  However, according to 
our benchmarking results, the kernel-user solution exhibits 
little to no performance gains over the user-level alternatives 
due to its complex design with considerable software overhead. 

Our ultimate GAME prototype is implemented in user 
space alone for flexibility, portability, and full access to the 
GPU library (Nvidia CUDA).  The block device driver (see 
Section 2.2) framework, called nbdkit, is employed to realize 
the GAME prototype mainly due to three reasons: (1) for high 
performance, old generic NBDs are avoided, (2) among NBD 
variants, nbdkit does not require such specific features or 
infrastructures as RDMA or InfiniBand, and (3) nbdkit is 
available in C language with its proven excellent performance, 

and it fits soundly with Nvidia CUDA API.  We package 
GAME as a nbdkit plugin and make it easy to install on any 
Linux system, arriving at a portable user-level block device 
service. 

B. Nvidia CUDA Memory Management 

 Nvidia CUDA exposes GPU memory to users in three 
memory addressing modes: (1) native cudaMemcpy(), (2) 
unified virtual addressing (UVA), and (3) unified virtual 
memory (UVM).  From the three available methods, native 
cudaMemcpy() is adopted since other two modes fail to meet 
GAME’s requirements, as explained next. 

 UVA permits GPU cores to access CPU memory via direct 
memory access (DMA) with CPU memory pinned and 
registered in GPU’s page table. Hence, UVA serves opposite 
purposes and is unsuitable for GAME. 

 UVM is designed to enable GPU memory virtualization 
and reduce programming complexity in sophisticated tasks.  
However, UVM abstracts the data location, rendering users to 
have little control over data movement.  Plus, GPU virtual 
memory reveals low performance, management, and 
utilization.  These restrictions render UVM less attractive for 
GAME implementation.  On the other hand, all benchmark 
codes executed on the GPUs of our testbeds for comparison 
with compatible CPU executions, are enhanced with the 
CUDA runtime API of cudaMallocManaged(). 

 Being simple, cudaMemcpy() is the most robust and 
reliable method as observed [5], [8], and it is also 
recommended as a performance-optimized choice by Nvidia’s 
guidelines [21].  Our GAME implementation thus adopts 
cudaMemcpy() for high-performance data transfer between 
CPU memory and GPU memory. 

C. Asynchronous Data Transferring 

Nvidia CUDA defines memory transfer from the host to a 
device and from a device to the host as different independent 
tasks that can operate concurrently [21].  However, due to PCIe 
characteristics, only one outstanding transfer in each direction 
is achieved at a time [11].  Thus, it limits the concurrent CPU-
GPU data transfer streams to two. 

By default, all CUDA execution kernels are assigned to the 
default CUDA stream (stream #0); thus, they are synchronized 
and executed in the FIFO order.  To exploit coarse-grain 
parallelism (on top of GPU’s fine-grain nature), programmer 
must create multiple CUDA streams and launch CUDA kernels 
into different streams manually. 

GAME manages two separate CUDA transfer streams over 
the PCIe interconnect (see Fig. 2) and utilizes 
cudaMemcpyAsync() for maximizing the bi-directional data 
transfer throughput of the interconnect. 

D. Memory Expansion Control 

GAME can be provisioned with soft-limit and hard-limit 
thresholds, indicating the GPU memory availability level for 
GAME to act accordingly.  It stops allocating GPU memory if 
its usage reaches soft-limit.  GAME calls for releasing its 
allocated memory areas back to GPU upon reaching hard-limit, 
by gradually transferring the contents staged in GPU VDRAM 
to temporary files (in /var/tmp), making immediate room for 



GPU.  On the other hand, after GPU memory usage drops 
below soft-limit, GAME gradually moves the page contents in 
temporary files back to GPU VDRAM for ensuring its high 
performance.  The current GAME implementation and its 
results presented in the next section are without dynamic 
memory expansion control. 

IV. EVALUATION METHODOLOGY 

Experimental evaluation has been performed on our testbed 
using benchmark codes to characterize GAME’s performance.  
We conduct various experiments under both monotasking to 
multitasking scenarios with varying execution memory 
footprints. Based on the evaluation results, we have subsequent 
findings. 

• Applications with massive memory footprints under 
irregular access patterns perform better on CPU than 
on GPU, due to naïve virtual memory management 
and far smaller CPU execution memory footprints to 
yield fewer page faults, among others. 

• Data access patterns and working sets dictate the 
execution times of memory-intensive applications. 

• For applications that are sensitive to the swap speed 
of different devices, a small speed difference can 
amplify performance gaps under those devices 
significantly. 

A. Testbed Specification 

Each of our established testbeds consists of a Dell Precision 
T7910 workstation equipped with: (1) Intel Xeon E5-2630 v3 
8-Core 2.40 GHz CPU, (2) Samsung DDR4-2133 ECC 64 GB 
memory, (3) one Nvidia TITAN RTX PCIe 3.0 graphic card 
with 24GB GDDR6 on-board memory, and (4) one Kingston 
A400 SATA III 480GB solid-state drive. 

Note that GAME can use at most 23.2 GB from the 
equipped Nvidia TITAN RTX card for swap space, since 
Nvidia CUDA reserves up to 860 MB GPU VDRAM for its 
management purposes, as stated in [21]. 

The workstation runs Ubuntu Server 20.04.2.0 LTS (Focal 
Fossa) with Linux 5.4.0 kernel and Nvidia CUDA 11.2. For 
system environment control, we utilize Linux’s control groups 
(cgroups) to govern memory availability for benchmarks. Note 
that Linux cgroups is the mechanism employed in modern 
container management systems, such as Docker and 
Kubernetes, for low-level resource organizing. 

B. Benchmark Suite and Execution Workloads 

The NAS Parallel Benchmark suite 3.3.1 (NPB) from 
NASA Advanced Supercomputing Division [22] is used for 
performance evaluation.  Among nine available benchmark 
applications in the NPB suite, five most memory-intensive 
benchmarks are chosen: BT (Block Tridiagonal), FT (Fast 
Fourier Transform), LU (Lower-Upper Symmetric Gauss-
Seidel), SP (Scalar Pentadiagonal), and MG (MultiGrid).  
Others are CPU-intensive to have a light memory requirement, 
and hence, are excluded from the testing benchmarks.  Except 
for MG, each of the chosen benchmarks' input parameters are 
re-configured to produce three different problem sizes: small 
(S), medium (M), and large (L), as listed in Table II, Table III, 
and Table IV, respectively.  Note that MG's input parameters 

cannot be customized without heavy source code 
modifications, so we use the default MG class D parameters 
throughout all experiments. 

For multitasking evaluation, one scout workload is always 
included under every workload mix to determine its execution 
time of interest, provided that the scout workload is the 
smallest among all.  Ten groups of benchmark mixes are 
constructed to run, each with the same scout workload (which 
is the small BT, whose footprint equals 23.4 GB; see Table II), 
as shown in Table V.  All component benchmarks in a group 
run concurrently, with the completion time of its included scout 
workload considered as the execution time of interest of the 
group, since all component benchmarks are then co-running.  
The total execution memory footprint of each benchmark mix 
ranges from 68.2 GB to 77.9 GB. 

C. CPU and GPU Execution Outcomes 

Benchmark executions on CPU and on GPU of our 
established testbeds are compared first, utilizing NPB’s 
OpenMP version [22] for CPU workloads and the enhanced 
NPB CUDA version for GPU workloads [23].  Since the 
original NPB CUDA codes do not support virtual memory, 
they are enhanced with the CUDA runtime API of 
cudaMallocManaged() to enable data allocation and accesses 
on both GPU and CPU physical memory transparently when 
executed on the GPU. 

Fig. 1(a) shows the monotasking execution time 
comparison between CPU and GPU for Benchmark SP over a 
range of problem sizes.  For small problem sizes when GPU 
memory can accommodate the execution working set entirely, 
GPU enjoys vastly better performance than CPU.  As the 

TABLE III.  NPB medium (M) details and footprints 

Benchmarks Problem size Footprint (GB) 

BT 600*600*600 33.9 

FT 768*1024*1024 30.0 

LU 650*650*650 35.2 

SP 600*600*600 35.6 

MG Class D 26.5 

TABLE IV.  NPB large (L) details and footprints 

Benchmarks Problem size Footprint (GB) 

BT 680*680*680 49.3 

FT 1024*1024*1024 40.0 

LU 750*750*750 54.0 

SP 680*680*680 51.7 

MG Class D 26.5 

TABLE V.  Multitasking workload details and footprints,  

    with the common scout workload existing in each mix 

Mix # Benchmark 1 Benchmark 2 Total footprint (GB) 

1 BT (S) FT (M) 53.4 (+ 23.4) 

2 BT (S) LU (S) 44.8 (+ 23.4) 

3 BT (S) SP (S) 47.9 (+ 23.4) 

4 BT (S) MG 49.9 (+ 23.4) 

5 FT (M) LU (S) 51.4 (+ 23.4) 

6 FT (M) SP (S) 54.5 (+ 23.4) 

7 FT (S) MG 46.5 (+ 23.4) 

8 LU (S) SP (S) 45.9 (+ 23.4) 

9 LU (S) MG 47.9 (+ 23.4) 

10 SP (S) MG 51.0 (+ 23.4) 

 



problem size rises to near the GPU VDRAM size (of 24GB), 
however, GPU performance drops quickly to become much 
inferior to CPU performance.  Meanwhile, CPU exhibits 
gradually performance degradation when the input size 
increases, as depicted in Fig. 1(a).  The comparative 
performance outcomes measured in the averaged execution 
operation rate (operations per second or OPS) for Benchmark 
SP are illustrated in Fig. 1(b).  Naturally, a higher rate is better.  
From the figure, the CPU execution of SP is seen to be superior 
to its GPU counterpart for the problem size exceeding 485. 

Various other execution scenarios on CPU are also 
compared with those on GPU, with their comparative 
outcomes shown in Fig. 3, where the Y-axis denotes 
normalized outcome values (with respect to the CPU execution 
times) and the X-axis gives multi-tasking workloads.  The 
detailed mixes of those six workloads shown in the figure are 
listed in Table VI.  The workload mixes involve benchmarks 
with myriad problem sizes and thus various aggregate 
execution memory footprint sizes.  For example, Workload W2 
involves 9 concurrent instances of BT with the small problem 
size of Class C.  When executed on CPU, W2 exhibits a very 
small memory footprint, whereas its execution on GPU has an 
excessively large memory footprint.  Similarly, Workload W5 
involves 5 concurrent instances of BT with the small problem 
size of Class C, plus 2 concurrent instances of LU with the 
Class D problem size, to yield the aggregate memory footprint 
size of 21.2 GB when executed on CPU versus the much larger 
aggregate footprint size of 69.3 GB for GPU execution.  In all, 
those six multi-tasking workload mixes exemplify three 
execution scenarios: (1) one single monolithic benchmark (i.e., 
W1), (2) multiple concurrent instances of one benchmark (i.e., 
W2, W3, and W4), and (3) multiple concurrent instances of 
different benchmarks co-existing (i.e., W5 and W6).  All 
evaluation experiments are conducted on our testbeds with the 
host memory set to 64 GB. 

From Fig. 3, we observe that the execution of an 
application with a large problem size (W1) can be inferior on 
GPU when comparing with on CPU, as also revealed in Fig. 1.  
For multi-tasking scenarios (W2 - W6), CPU executions are 
always much faster (by a factor of 3 or more) than its GPU 
counterparts, mainly because GPU executions (1) exhibit 
considerably bigger aggregate memory footprints, (2) are 
subject to far more page faults, each of which may take some 
50 µs, because of relatively smaller GPU on-board memory, 
and (3) suffer from inadequate virtual memory support, as was 
stated earlier [9].  Note that Workload W3 crashes on GPU 
even its aggregate memory footprint is not the biggest among 
all, due to the fact that more than two concurrent LU instances 
always fail, whereas GAME can soundly handle them on CPU.  
Hence, its normalized GPU execution result is absent in the 
figure.  In addition, Workload W4 fails to complete after five 
days on GPU whereas it takes less than 7 hours to finish on 
CPU, chiefly because each SP instance has the large problem 
size of Class D (23.2 GB), each of which barely fits in GPU’s 
VDRAM, making its GPU execution extremely slow. 

For each multi-tasking workload comprising different 
benchmarks (W5 and W6), we recorded its execution time 
when the instance(s) of its first component benchmark finished, 
given that different benchmarks would have different execution 
times.  The comparative results of W5 and W6 in Fig. 3 again 

signify that multi-tasking executions with large memory 
footprints tend to be far inferior on GPU and should be 
avoided, in favor of CPU executions.  The result demonstrates 
that CPU executions under W5 and W6 are respectively 3 and 
10 times faster than their GPU counterparts, since the GPU 
design originally intends for single task executions at a time [9] 
and the mix of different benchmarks with multiple concurrent 
instances amplifies the shortcomings of GPU executions. 

It should be noted that a clear benefit with CPU executions 
on the testbeds is due to larger host machine memory (64 GB) 
than GPU VDRAM (24 GB) so that they incur negligible swap 
activities (see the aggregate memory footprint sizes listed 
under the column of OMP in Table VI), whereas compatible 
GPU executions are subject to heavy swap activities (due to far 
larger aggregate footprint sizes listed under the column of 
CUDA in Table VI).  Swap activities tend to extend the total 
executive time vastly, since each of them may take some 50 µs.  

The next two subsections present GAME performance 
results when unused GPU VDRAM available for swapping 
support equals 18 GB and 6 GB (out of 24 GB for the TITAN 
RTX GPU [4] in a testbed), respectively under monotasking 
and under multitasking CPU executions.  If the GPU is training 
an LSTM ML model (adopted for our weather parameter 
prediction [12]), plentiful GPU VDRAM (~ 18 GB) is 
available for GAME use in the lengthy model training 
duration.  On the other hand, training VGG-16 (with the mini-
batch size of 128) consumes at most ~ 17.4 GB GPU VDRAM 
(see Section II.A), leaving about 6 GB for GAME use. 

D. Monotasking CPU Executions 

We have experimented the monotasking executions of five 

chosen NPB benchmarks on the testbed with its host memory 

sized at 32 GB (via the cgroup controller).  The workload 

sizes of the five benchmarks are listed in Table IV, and they 

are to experience considerable page swapping activities in the 

TABLE VI.  NPB WORKLOAD MIXES FOR COMPARING CPU AND 

GPU EXECUTIONS 

Work

load # 
Benchmarks Problem size 

#  of 

instances 

Footprint (GB) 

OMP CUDA 

W1 SP 490×490×490 1 19.8 36.7 

W2 BT Class C 9 6.1 75.6 

W3 LU Class D 5 44.5 67.0 

W4 SP Class D 2 24.1 46.4 

W5 
BT Class C 5 

21.2 69.3 
LU Class D 2 

W6 

BT Class C 2 

38.9 67.0 LU Class D 2 

SP Class D 1 

 

 

  Fig. 3. Comparative results of CPU and GPU executions, 

with the CPU execution times normalized to 1. 
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course of their CPU executions.  Performance measures of 

interest include: (1) swapping activity and (2) execution time.  

Swapping activities are reflected by the swap-out and swap-in 

counts of the virtual memory subsystem (obtained by vmstat), 

with a larger count indicating more frequent data transfers 

between host memory and swap space.  An application takes 

longer to run when its execution involves more swapping 

activities.  While GPU is executing its ML workload, GAME 

borrows its unused VDRAM to expand host memory on 

demand.  Depending on concurrent running GPU workloads, 

GAME can obtain different amounts of GPU VDRAM to 

support its swapping for accelerated CPU executions.  When 

GPU VDRAM available for GAME support during job 

executions is short of what is required to accommodate swap-

out pages, the swap partition of SSD will be involved. 

The performance results of memory-intensive benchmarks 

are depicted in Fig. 4.  The swap activity counts generally 

depend on (1) the workload memory footprint size and (2) the 

data use profile during execution.  For example, an application 

may allocate large memory (footprint) initially but does not 

require all data in its execution onset [13].  This scenario is 

evident for FT, which exhibits low swapping (see Fig. 4(a)) 

even with a sizeable memory footprint, as listed in Table IV. 

The large memory footprint and execution profile of LU 

hike swap activities to exceed 250 million, whereas SP and 

BT have modest swap activities.  On the other hand, FT and 

MG experience low swapping, especially MG with its 26.5 

GB memory footprint, which is smaller than the host memory 

size of 32 GB.  Hence, MG exhibits virtually no swapping 

during its execution, to yield no execution time reduction 

versus that of the baseline without GAME support, as shown 

in Fig. 4(b), where the execution time results are normalized 

with respect to those under the baseline.  GAME is seen to 

achieve the execution speedup by 2.1× (or 1.6×) versus the 

baseline execution time when 18 GB (or 6 GB) of unused 

GPU VDRAM is available to expedite LU execution, where 

swap activities are highest among all five benchmarks.  

GAME enjoys the average execution speedup of 1.9× across 

all benchmarks examined when plentiful GPU VDRAM (18 

GB) is available for swapping use.  Although the execution 

speedup drops if available GPU VDRAM becomes limited (at 

only 6 GB), GAME still has the impressive mean speedup of 

1.4×. 

 Monotasking evaluation results confirm that CPU 

memory expansion into GPU memory on demand through 

GAME is effective under scientific workloads with big 

memory footprints and without regular data access patterns. 

E. Multitasking CPU Executions 

Execution results under multitasking workloads are 

depicted in Fig. 5, where workload details are provided in 

Table V.  Ten workload mixes, each obtained by pairing two 

benchmarks plus one small benchmark as the scout (i.e., the 

small BT with its memory footprint equal to 23.4 GB, as listed 

in Table II) for a total of three workloads to run 

simultaneously, represent various execution profiles with 

complex memory access patterns for evaluating GAME 

effectiveness.  The three component benchmarks of each 

workload mix execute concurrently on the host machine with 

32 GB memory.  The aggregate footprint of every mix (sized 

from 68.2 GB to 77.9 GB) surpasses the sum of system 

memory (sized 32 GB) and GAME support memory from the 

attached GPU (sized 18 GB), thereby involving the swap 

partition of SSD in its execution as well. 

As expected, swap activities as seen in Figure 5(a) are 

mostly far higher than those under monotasking workloads, 

resulting from larger aggregate footprints.  This is possibly 

due to two reasons: (1) each workload is individually smaller, 

with its memory footprint listed in Table II (for a small one) or 

Table III (for a medium one), and (2) the execution profile of 

each component benchmark tends to have a different memory 

access pattern and thus to peak its memory requirement at 

different points of time during the course of execution, likely 

to let multitasking benchmarks better share host memory.  

Fig. 5(b) reveals that workload mixes which enjoy bigger 

execution speedups, tend to have bigger aggregate memory 

footprints and higher swap activities (see Fig. 5(a)).  This is 

because an execution is accelerated more when it incurs more 

swap activities, which are staged at faster GPU VDRAM 

under GAME support versus at SSD without such support (as 

the baseline for speedup measurement).  GAME results in 

large execution speedups under the high swap activities of 

Mix3, Mix4, and Mix7 (ranging from 320 million to 450 

million), with Mix4 to have its largest speedup exceeding 

3.1×.  Overall, a mean speedup of 2.1× (to cut down the 

execution time by more than one half) is achieved across all 

ten workload mixes examined, signifying that multitasking 

executions can benefit profoundly from GAME even for huge 

aggregate memory footprints (up to some 78 GB; see Table 

V). 

       

       (a) swap activity (in millions)         (b) normalized execution speedups 

Fig. 4.  GAME monotasking execution results under two GPU 

VDRAM sizes for swapping use. 
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      (a) swap activity (in millions)         (b) normalized execution speedups 

Fig. 5. GAME multitasking execution results under 18 GB 

GPU VDRAM for swapping use. 
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V. CONCLUSION 

 Off-loaded GPU executions are known to be advantageous 
for parallelized tasks without large memory footprints and with 
regular data access patterns, like ML and DM applications.  
This work has observed that applications with large memory 
footprints or irregular data accesses can favor CPU executions 
instead.  An effective approach has been pursued to let 
memory-intensive applications run on the host machine CPU 
with its memory expanded on demand onto available GPU on-
board DRAM, dubbed GAME (GPU-assisted memory 
expansion).  Our GAME approach permits both monotasking 
and multitasking memory-intensive executions on CPU to 
harvest unused GPU VDRAM as swapping space for speedier 
execution.  The GAME prototype, implemented in user space, 
employs a network block device driver, called nbdkit, to make 
GPU memory house fault-memory pages transparently, 
without any modification to application codes upon executed 
on CPU for high usability and portability.  Our evaluation 
results of memory-intensive applications from the NAS-NPB 
benchmark reveal that CPU executions with an aid of GAME 
under big workloads can be more than one magnitude faster 
versus their compatible GPU executions, confirming the 
potentials of substantial advantages of CPU executions on 
server-grade machines equipped with GPU accelerators.  In 
addition, GAME can achieve considerable execution speedups 
(by up to 3.1×) in comparison to its baseline counterpart 
without GPU VDRAM for swapping, if multitasking execution 
memory footprints exceed the host machine memory size.  
With larger CPU memory, which is less expensive and easily 
expandable, than GPU VDRAM, the host machine is preferred 
for application executions over off-loading them to GPUs, if 
the execution memory footprints approach or exceed the GPU 
VDRAM size. 
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