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Abstract—Quality of service (QoS) management is widely 
employed to provide differentiable performance to programs with 
distinctive priorities on conventional chip multi-processor (CMP) 
platforms. Recently, heterogeneous architecture integrating diverse 
processor cores on the same silicon has been proposed to better serve 
various application domains and it is expected to be an important 
design paradigm of future processors. Therefore, the QoS 
management on emerging heterogeneous systems will be of great 
significance. On the other hand, parallel applications are becoming 
increasingly important in modern computing community in order to 
explore the benefit of thread-level parallelism on CMPs. However, 
considering the diverse characteristics of thread synchronization, 
data sharing, and parallelization pattern, governing the execution of 
multiple parallel programs with different performance requirements 
becomes a complicated yet significant problem. In this paper, we 
study QoS management for parallel applications running on 
heterogeneous CMP systems. We comprehensively assess a series of 
task-to-core mapping policies on a real heterogeneous hardware 
(QuickIA) by characterizing their impacts on performance of 
individual applications. Our evaluation results show that the 
proposed QoS policies are effective to improve the performance of 
programs with highest priority while striking good tradeoff with 
system fairness. 
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I. INTRODUCTION 

In the past decade, multi-core processors have become the 
mainstream to provide high performance while encapsulating the 
processor power consumption within a reasonable envelope. Most 
commercial multi-core processors to date are homogeneous by 
replicating a number of identical cores on a single chip; however, 
with the rapid development of modern processors, computer 
scientists propose heterogeneous architectures which integrate a 
diversity of processors onto the same die to better serve 
applications from different domains. Heterogeneous architecture 
can be designed in various ways and several products have already 
been released by current industry. The AMD APU and Nvidia 
Tegra3 combine CPU and graphics processing units (GPU) 
together, aiming to mitigate the bottleneck caused by the data 
transfer on PCIe bus. The ARM big.LITTLE multiprocessor 
implements another important design philosophy by including a 
powerful Cortex A15 and a smaller yet power-saving Cortex A7 
on the same chip, in order to deliver remarkable energy efficiency 
via smart task scheduling. In this paper, we concentrate on the 
second category where processors on chip are all general-purpose 
CPUs but deviating in performance, power and area.   

In a practical execution scenario where a number of 
applications are simultaneously running on a chip-multiprocessor 
(CMP), the quality of service (QoS) that each individual program 

gets from the underlying platform largely depends on the 
characteristics of its co-runners and resource management schemes 
engaged by the system. Figure 1 illustrates the architecture of a 
QoS-aware CMP system where the QoS policies are employed in 
different hierarchies: 1) core level, 2) cache level, and 3) memory 
level. This hierarchical infrastructure for QoS management secures 
that distinctive applications (e.g., single-threaded, multi-threaded, 
domain-specific, etc) executed on the common platform match 
their respective performance expectation. To date, QoS polices 
have been extensively studied in cache level (cache size 
partitioning) and memory level (memory bandwidth allocation) in 
previous works [7][8][11][19] since they assume homogeneous 
platforms where appropriate allocation of shared resources is 
critical to the performance of individual programs. However, while 
switching to a heterogeneous platform equipped with diverse 
processors, core level QoS management needs to be carefully 
considered because the task-to-core mapping will impose 
significant impact on the performance of individual programs. In 
this situation, an application should be assigned to either powerful 
big processors (B) or slower small cores (S) based on its 
characteristic and priority, in order to achieve the desired QoS 
targets. 

While running multi-programmed single-threaded workloads 
on homogeneous multi-core platforms are challenging already, 
things become even more complicated when multiple parallel 
applications are executed in a heterogeneous CMP system in 
concurrency. Unlike single-threaded programs, parallel 
applications launch a large number of threads that require more 
than one processor for execution to fully explore the thread-level 
parallelism (TLP). Furthermore, contemporary multi-threaded 
applications demonstrate significantly different characteristics 
including parallelization pattern, data sharing degree, 
synchronization frequency, etc. As a consequence, the amount and 
types of cores that the system should assign to each individual 
application deserve careful consideration. Figure 2 demonstrates 

   
Fig. 1. QoS-aware heterogeneous CMP system: Different types of 
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an example to highlight the importance of task-to-core mapping 
schemes for parallel applications running on heterogeneous 
platforms. We assume that two parallel programs canneal and 
swaptions are running on a system composed of 2 big cores and 2 
small cores. Figure 2(a) graphs the relative performance of both 
applications while executing on different processors in isolation. 
The notation 1S indicates that a small core is used to run the 
program, while 2S, 1B and 2B means using 2 small cores, 1 big 
core and 2 big cores for the execution, respectively. We launch 
four threads for each program in all cases. It is straightforward to 
note the difference between the performance variations of these 
two programs. For swaptions, running it on a big core is around 3X 
faster than the execution on a small core. Program canneal, 
however, exhibits a completely different scaling trend that moving 
the application from a small core to a big core results in only 1.19X 
speedup while giving an extra small core is able to reduce the 
execution time by ~50%. Let us assume swaptions is co-executing 
with canneal on this platform and the former program is assigned 
a higher priority. A QoS-unaware system might blindly distribute 
swaptions to the small cores and canneal to big cores, leading to a 
result as shown by ‘policy 1’ in Figure 2(b). By involving a QoS-
enabled mechanism (i.e., policy 2), swaptions will be assigned to 
big cores and canneal goes to small cores. As can be seen, this 
significantly boosts the performance of the high priority program 
at the expense of acceptable performance degradation of canneal.  

While the motivation of this work is intuitive as justified by 
Figure 2, designing appropriate QoS policies for parallel execution 
scenarios requires in-depth understanding on features of typical  
parallel programs and their interactions with the heterogeneous 
architecture, which are far from obvious. In this work, we conduct 
a comprehensive investigation to address this problem. In general, 
our paper makes the following main contributions: 
• To the best of our knowledge, this paper is the first attempt to 

provide QoS solutions to managing multi-programmed, 
parallel programs executing on heterogeneous CMP system. 
By examining the execution behaviors of representative 
applications, we propose that distinctive task-to-core mapping 
policies should be applied in different execution scenarios. 

• We employ a real heterogeneous hardware to conduct the 
investigation of QoS management. This leads to more 
convincing conclusions as it avoids missing important factors 
that might be overlooked in simulation-based approaches. For 
example, our hardware-based study is able to completely 
execute an application while architectural simulations usually 
concentrate on a specific execution phase of the entire 
program. 

• We propose two categories of task-to-core mapping schemes 
to meet the QoS goals in a large spectrum of parallel execution 
circumstances. Employing an appropriate policy significantly 

improves the performance of the high-priority program while 
leading to a reasonable balance between all programs. 

• We demonstrate that finer-granularity control is important to 
optimize the application performance on given processor 
mixture. This includes un-balanced workload distribution and 
appropriate stage-to-core mapping. 

II. BACKGROUND  

A. Experimental Hetero Platform 
Our evaluation is conducted on a native heterogeneous 

platform QuickIA [5] developed for the exploration of 
heterogeneous systems. It is built on the basis of a dual-socket 
Xeon 5400 series server, where the two CPU sockets are connected 
to the memory controller via the Intel Front Side Bus (FSB). We 
illustrate the specific configuration used in this work in Figure 3. 
As shown in the figure, the system is equipped with a quad-core 
Xeon CPU (Harpertown) with each pair of cores sharing a 1MB 
L2 cache and two Atom CPUs (Silverthorne) which reside on 
another socket. For the purpose of this study, we disable the Intel 
HyperThreading technique on the Atom CPUs and halt two Xeon 
cores, making a total of 2 Xeon and 2 Atom processors visible to 
the operating system. Table 1 lists the architectural parameters of 
integrated CPUs and other information of the system. In the 
following sections, we use small cores (S) to indicate the Atom 
processors and refer to the Xeon processors as big cores (B). 

B. Parallel Applications 

Parallel applications are extremely important for the 
exploration of ubiquitous CMP systems in current computer 
industry. We choose the PARSEC benchmark suite [3] for the 
purpose of this study. PARSEC is a widely used multi-threaded 
program set for contemporary chip multi-processor system 
evaluation. It contains 3 kernels and 10 applications that are 
derived from a large spectrum of real-world and emerging 
applications such as data mining, financial analysis, video 
encoding, recognition, etc. 

                    
(a)                                                  (b) 

Fig. 2. Illustrating the need for QoS: (a) performance scaling with core 
numbers and types (b) performance comparison with different policies 

(policy 1: canneal on 2 big cores and swaptions on 2 small cores. 
policy2: canneal on 2 small cores and swaptions on 2 big cores)
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Fig. 3. Architecture of the QuickIA Experimental Hetero System 

Table 1. Configuration of the QuickIA system 

Parameter 
Xeon 

(Harpertown) 
Atom 

(Silverthorne) 
#Cores 2 enabled (of 4) 2 

Frequency 1.60G 1.60G 
L1 Inst Cache 32KB 32KB 
L1 Data Cache 32KB 24KB 

L2 cache 1MB/2cores 512KB/core 
HyperThreading N/A OFF 

Pipeline Out-of-order In-order 
Memory 16GB DDR2 

Operating System Ubuntu Linux 2.6.32 
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All PARSEC applications follow a common execution pattern 
consisting of program initialization, parallel phase, and the 
completion. The parallel stage is also termed as the Region-of-
Interest (ROI) as it contains all parallel executions of an 
application. Prior studies [3] have shown that PARSEC 
applications demonstrate a variety of data sharing degree, 
parallelization models and synchronization patterns, making them 
compelling tools to assess and steer the design of CMP 
architecture. 

In this study, we simultaneously execute four programs, one of 
which is elected as the high-priority (HP) application while the 
remaining three are treated as the low-priority (LP) ones. Note that 
in later sections of this paper, we use the acronym HP to indicate 
high-priority application and use the terms LP and low-priority 
programs interchangeably. Each program is spawned four threads 
and is fed with the native input for execution. Both the HP and LP 
applications are executed multiple times and we report the average 
performance for each program. With such a setup, we mimic the 
execution scenario when all four applications are contending for 
system resources. 

III. QOS GOALS AND POLICIES 

A. QoS Goals 

A primary goal of our QoS management is to improve 
performance of the program with the highest priority in shared 
execution mode. We use the speedup over a predefined baseline 
case for this program as the evaluation metric. The second goal is 
to increase the system performance. We employ a widely used 
metric [6][22][27], weighted speedup, to assess this goal. The third 
consideration in our QoS management is the fairness among all 
programs. In the scope of this paper, the fairness achieved by a 
specific QoS policy is evaluated with the metric unfairness [6]. A 
smaller unfairness value implies better balance among the 
involved applications. The following expressions give the 
calculation of employed metrics. 

Weight Speedup		 ௦ܹ௣௘௘ௗ௨௣ = ∑ ௉௘௥௙೔ೌ ೗೚೙೐௉௘௥௙೔ೞ೓ೌೝ೐೏ேିଵ௜ୀ଴  

Unfairness ܷܨ = 	୫ୟ୶	(ௌబ,ௌభ…ௌಿషభ)୫୧୬	(ௌబ,ௌభ…ௌಿషభ), where ௜ܵ = 	 ௉௘௥௙೔ೞ೓ೌೝ೐೏௉௘௥௙೔ೌ ೗೚೙೐  

In these expressions, N refers to the total number of 
applications running on the system in concurrency and Perf is 
interpreted by the execution time. Note that in this work, we allow 
multiple parallel applications to simultaneously execute. 
Therefore, the notions ܲ݁ݎ 	݂௔௟௢௡௘ and ܲ݁ݎ 	݂ ௦௛௔௥௘ௗ respectively 
indicate the performance of a program in the dedicated mode and 
shared mode. 

B. QoS Policies 

1) Homogeneous-mapping policies: The QoS policies 
proposed in this work are classified into two categories based on 
the types of cores assigned to the high priority application. The 
first group of policies is defined as the homogeneous-mapping 
policies with which a number of identical cores are reserved for 
the high priority program. This includes assigning either a group 
of big cores or multiple small cores to that program. 

For many parallel applications, increasing the thread-level-
parallelism are more effective for performance improvement 
compared to exploiting the instruction-level-parallelism. For 
instance, a thread might generate substantial off-chip traffic and 
spend fairly long time on waiting for the responses of memory 
requests. In this situation, running the program on big cores does 

not necessarily mean a significant reduction of the execution time, 
because the overall performance tends to depend on the memory 
subsystem. In other words, if the high-priority application exhibits 
such behavior, it is preferable to running it with a reasonable 
number of small cores. 

Assigning an amount of big cores to the high-priority 
application is more straightforward to understand since this 
guarantees superior performance boost for the HP program in most 
scenarios, satisfying the primary QoS goal of this work. We 
illustrate such a policy in Figure 4(a). However, this may easily 
lead to unfairness among programs when low-priority applications 
manifest large performance degradation on small cores. In order to 
avoid unacceptable slowdown for LP programs in practical 
circumstances, it is necessary to introduce heterogeneous-mapping 
policies that assign programs to hybrid cores. 

2) Heterogeneous-mapping policies: Heterogeneous-
mapping policies correspond to the schemes which reserve a 
mixture of cores with diverse computing capability to the high-
priority application. The low-priority programs are executed on 
the remaining available processors. Such strategies are intuitively 
effective to evade the dilemma that might be encountered in 
homogeneous-mapping policies. Specifically, if the HP 
application is granted most big cores, LP programs are thereby 
confined on the small cores, resulting in unacceptable 
performance degradation and potential throughput decrease. On 
the opposite, running the HP application on small cores may fail 
to reach the desired speedup and thus violates the first QoS 
requirement. Heterogeneous-mapping policies provide us a 
solution to effectively utilize the diversity among processors and 
achieve better balance between the high-priority and low-priority 
applications. We illustrate a possible core assignment falling into 
this category in Figure 4(b). 

The proposed homogeneous- and heterogeneous-mapping 
policies both comply with the principle of resource dedication by 
reserving a set of cores for the HP application. We also propose a 
partial-dedicated policy which breaks this law by allowing part of 
the processors to be shared among all programs. More 
specifically, the high-priority application is executed on a 
combination of dedicated and shared cores while the low priority 
programs running on the shared ones and other available cores. 

     
(a)    

      
(b) 

Fig. 4. QoS-aware core mapping strategies: (a) Homogeneous-
mapping (big core) (b) Heterogeneous-mapping 
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C. QoS policy Evaluation 

The specific QoS policies that are evaluated on the QuickIA 
platform are as follows: 

• Big+Big (BB): reserving two big cores to execute the high-
priority application. The low-priority applications run on 
the two Atom cores.  

• Small+Small (SS): running the HP application on two 
small cores and LP applications on all big cores. This policy 
together with BB belongs to the homogeneous-mapping 
category. 

• Big+Small (BS): assigning a big and a small core to run the 
HP applications. All low-priority programs contend for the 
remaining processors. This is a heterogeneous-mapping 
policy. 

• Big+Small+Small (BSS): giving an additional small 
processor to the HP application on the basis of BS. Low 
priority applications run the remaining big core. BSS falls 
to heterogeneous-mapping classification as well. 

• All for HP (BBSS_BS): allowing the high-priority 
application to use all four cores on the platform while the 
low-priority programs use half of the processors (i.e., a big 
and a small core, corresponding to the suffix BS). Note that 
this is a partial-dedicated policy. 

The performance of each application under all QoS policies 
ݎ݁ܲ) ௜݂௦௛௔௥௘ௗ ) is normalized to that when it is running with an 
Atom core alone (ܲ݁ݎ ௜݂௔௟௢௡௘). Note that our QoS evaluation is 
conducted on an assumption that approximate features of programs 
which are about to execute are already known. This is fairly 
reasonable for many real parallel applications such as banking 
transactions. From this perspective, all proposed policies can be 
classified into static policies because the task-to-core mapping of 
a program is permanently set when it is ready to execute. 
Nevertheless, we believe that our observations on the interactions 
between mapping strategies and QoS results also hold in other 
scenarios. Dynamic policies where the core affinitization can be 
adjusted at runtime are left as our future work. 

Note that we apply all these combinations to parallel 
applications, while for single-threaded multi-programmed 
applications, we only experiment with reserving one big core or 
one small core for the high priority application. For domain-
specific application, we divide the four cores into two groups and 
let each application map onto one of them, i.e., each with dedicated 
cores. 

IV. QOS EVALUATION 

In this section, we present the evaluation results of the QoS 
policies. We first demonstrate a general picture of the scaling 
behaviors for selected programs and then analyze the QoS 
evaluation results in detail. After that, we demonstrate the finer-
granularity optimization techniques for different programs on a set 
of given processors. 

A. A General Picture 

The scaling behavior of contemporary parallel benchmarks can 
be found in a large body of prior studies [3][28]. However, most 
of the conclusions presented in those work are derived from 
homogeneous platform, while the execution behavior of multi-
threaded benchmarks on heterogeneous architectures are not well 
understood. 

We start our analysis by comparing the performance of 
PARSEC benchmarks between running on the small and big cores. 
This provides a general picture of characteristics of the program 

collection, with which we can choose the most suitable QoS 
policies in different circumstances. Figure 5 shows the speedup of 
all applications running on a Xeon processor over the execution on 
an Atom processor. Note that in both cases, each program is 
launched with 4 threads. As can be observed, the relative 
performance of these programs between the big and small cores 
ranges from 1.1X to 3.6X. Applications such as canneal which 
generates a large amount of off-chip memory traffic obtain quite 
limited performance gain from the sophisticated Xeon processor, 
since the memory latency is more decisive to its overall 
performance. On the other hand, programs including blackscholes 
and bodytrack contain substantial floating-point operations, thus 
running them on a Xeon processor where more computation 
resources are available can significantly improve the performance. 
According to the relative performance, we approximately classify 
all programs into three categories as marked in the figure: TypeI-
programs (T-I) which demonstrate moderate performance ratio 
(1.1X ~ 2.3X), TypeIII-programs (T-III) that obtain fairly 
impressive performance improvement on the big core (>3X), and 
TypeII-programs (T-II) with relative performance in-between 
them. 

B. Evaluation Results 

To perform a comprehensive evaluation of the proposed QoS 
policies, we should consider as many execution scenarios as 
possible. In this study, we mimic different circumstances by 
combining applications with distinctive scaling behaviors and 
running these combinations on the underlying platform.  

Recall that we classify all programs into three categories based 
on their performance ratios between big and small cores. We select 
a program from each category to be the high-priority application 
and co-execute it with LP workloads from different classifications. 
To give an example, let us assume canneal is chosen to be the HP 
application. Such execution scenarios are referred as HP_T-I 
because canneal is a typical TypeI program as shown in Figure 5. 
Note that the 4T/1B(1S) in the caption indicates 4 threads on a big 
(small) core. If the low-priority applications are also T-I programs, 
the specific combination is denoted by T-I+T-I. Accordingly, T-
I+T-II and T-I+T-III indicate the scenarios where the LP 
applications are positioned in the middle and right segment of the 
curve in Figure 5, respectively. All of these three situations belong 
to the HP_T-I category, but implying distinctive execution 
environments. We define similar notations such as T-II+T-I of 
HP_T-II and T-III+T-III of HP_T-III. By doing this, we cover 
most circumstances that might be encountered in practice. For each 
specific combination like T-I+T-I, we run three different groups of 
programs and report the average result for this specific case.  

1) HP_T-I: We first concentrate on the HP_T-I execution 
scenarios Figure 6(a) demonstrates the speedup of the high-
priority application over the baseline (i.e., the 1S case) when the 
proposed QoS schemes are applied. As we expect, employing 

 
Fig. 5. Relative performance between a big and a small Core 
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more dedicated processors (i.e., BSS) results in higher 
performance improvement for the high-priority application 
regardless of the characteristics of other programs running on the 
system. Take the T-I+T-I combination as an example. The BSS 
policy delivers 2.1X speedup for the high-priority program while 
BB and SS respectively increase the performance by 1.9X and 
1.8X. We have described the reason in section 3.2 that exploring 
TLP is more effective to boost the performance of T-I programs. 
However, the BBSS_BS case is an exception that the performance 
gain from a quad-core execution (i.e., BBSS) is comparable to that 
from a dual-core running (i.e., SS/BS), but apparently worse than 
the situation on three cores (i.e., BSS). This actually justifies the 
importance of resource dedication when fast execution of the HP 
application is a primary QoS goal. In the BBSS_BS case, a big 
core and a small core are shared among all four programs and tend 
to be persistently busy during the execution, thus the OS scheduler 
is likely to assign the HP program to its dedicated cores on which 
only one application is running, in order to achieve a balanced 
load across the system.    

The system performance achieved with each policy is graphed 
in Figure 6(b). Recall that the performance of each application is 
normalized to that when it is running on a dedicated Atom core. 
As can be observed, SS is the optimal among all QoS strategies 
from the perspective of overall performance. For example, the SS 
policy delivers a weighted speedup of 3.16 for the T-I+T-III 
combination while employing BB, BS, BSS and BBSS_BS 
respectively lead to system performance 2.67, 2.92, 2.45 and 2.81. 
It is no surprise to see that the BSS scheme tends to largely degrade 
the system performance since all low-priority applications are 
confined on a single processor, resulting in slow executions due to 
severe resource contention. The BS scheme is more interesting in 
that it leads to comparable performance to SS in the T-I+T-I 
scenario, but significantly falling behind the same competitor in 
both T-I+T-III and T-I+T-II contexts. This is caused by the 
different performance scaling features of those applications. T-II 
and T-III programs are more sensitive to the core types and achieve 
much higher execution rates on a big core. As a consequence, 
decreasing the number of available Xeon cores (i.e., from SS to 
BS) for LP programs significantly prolong their execution time, 
thus leading to lower system performance in both T-I+T-II and T-
I+T-III scenarios. In contrast, T-I programs have small 
performance ratio between big and small cores. Therefore, the 
global performance delivered by SS and BS is fairly close when 
the LP programs belong to the T-I category.  

Figure 6(c) plots the fairness achieved with each mapping 
policy in the HP_T-I scenario. As can be noted, in all the three 
categories, the SS scheme leads to remarkably lower unfairness 
values compared to other policies. This is essentially determined 
by the slowdown of the LP applications because the high-priority 
programs (i.e., T-I) are not sensitive to the core type. As described 
earlier, the performance of individual applications tend to be 
largely degraded due to severe resource contention. This is 

exacerbated when all the shared cores are small ones (i.e., in the 
BB mode). In this configuration, the slowdown of the low-priority 
applications is quite significant, resulting in unreasonably high 
unfairness value. On the other hand, by employing the SS scheme, 
all the powerful big cores are reserved for the LP applications, 
which is beneficial to improving the performance of the programs 
running on the shared cores. Therefore, the SS mapping policy 
results in the most attractive balance among all involved 
applications. In general, the evaluation results demonstrate that 
using a number of small cores to run the high-priority application 
in HP_T-I scenario is the most preferable strategy in a QoS-aware 
system, because it is capable of effectively accelerating the HP 
program while resulting in a good tradeoff to low-priority 
programs. 

2) HP_T-II and HP_T-III: We now shift our focus to 
circumstances where a T-III application is assigned higher 
priority. The speedup of the HP program is shown in Figure 7(a). 
We observe that the BB policy always delivers the optimal 
performance for the high-priority application in all evaluated 
combinations. Specifically, 2 dedicated big cores are able to 
accelerate the high-priority application by 4.68X, 4.82X, 4.31X 
respectively for T-III+T-I, T-III+T-III and T-III+T-II over the 
baseline case. This is fairly reasonable due to the intrinsic 
characteristics of T-III programs. Heterogeneous-mapping 
policies (i.e., BS/BSS) outperform the SS strategy by providing 
intermediate speedup (2X ~ 4X) to the HP program. For the 
BBSS_BS scheme, it leads to slightly better performance than the 
BS scheme. This trend is similar to the observation made in Figure 
7(a), indicating the significance of dedicated processors for high-
priority program.    

The system performance is shown in Figure 7(b). We observe 
that for the T-III+T-I combination, the BB policy outperforms 
other schemes by delivering the system performance up to 6.74. In 
T-III+T-III and T-III+T-II scenarios, however, BB trails the SS 
and BS strategies as it results in relatively lower global 
performance. For example, the system performance under the BS 
scheme is around 6.58 while adopting BB leads to a performance 
not exceeding 6.01 in the T-III+T-III circumstance. This 
observation justifies our induction described in section 3.2 that 
reserving many big cores for an individual application (i.e., the 
high-priority one) is beneficial to boost its performance without 
heavily degrading the performance of other programs if they are 
not sensitive to core types; on the contrary, when low-priority 
programs exhibit large slowdown on small cores, the HP program 
is virtually accelerated at the expense of significant performance 
degradation of low-priority applications.  

We demonstrate the execution fairness among programs for the 
HP_T-III scenario in Figure 8. As can be observed from the 
diagram, heterogeneous-mapping policies briefly lead to more 
balanced performance across the programs than the homogeneous-
mapping schemes because the latter ones tend to cause 
unreasonable disparity between the execution speed of individual 

                      
(a) Speedup of the HP program                          (b)   System Performance                                              (c)  Fairness 

   Fig. 6. Execution behaviors when a TypeI program has high priority (HP_T-I) 
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programs. For example, when a T-III+T-III application mixture 
execute with the BB strategy, all LP programs demonstrate 
significant performance degradation on the shared small cores. 
Meanwhile, the HP application enjoys impressive performance 
boost as it runs on dedicated big cores, implying an unfair 
execution pattern. On the contrary, when both HP and LP 
programs are assigned a mixture of big and small cores (i.e., 
heterogeneous-mapping), the execution disparity can be 
effectively alleviated. In general, by comprehensively evaluating 
the three QoS goals, it is rational for us to conclude that an 
appropriate heterogeneous-mapping policy is the most preferable 
scheme in the HP_T-III circumstance. Note that on our evaluation 
platform, choosing BS is more suitable than using the BSS 
strategy, with which only one processor is reserved for the LP 
programs and a biased execution is encountered as a consequence. 
We observe similar trends from the results of HP_T-II executions, 
thus omitting the detailed analysis. 

C. Performance Optimization on Core Combinations 
For a multi-threaded application, choosing an appropriate 

parallelization model is one of the most important considerations 
since it largely determines the program scalability and other 
execution behaviors. Recall the description listed in section II, the 
selected PARSEC benchmarks generally fall into two categories 
with respect to the parallelization model [3], namely data parallel 
and pipeline. In this situation, understanding the impact of 
parallelization model on performance variation stands as a key 
point to further improve program performance and enhance the 
QoS management at a finer granularity. In this subsection, we 
present simple yet effective approaches to optimize typical data-
parallel and pipeline parallel applications. As we will demonstrate 
shortly, the proposed techniques are capable of efficiently 
utilizing assigned processors for heterogeneous-mapping policies. 

1) Optimizing data-parallel application: Our first study aims 
to optimize the performance of data-parallel programs. We choose 
blackscholes as an example. Blackscholes is an important 
application in the high performance computing (HPC) domain. It 
is derived from a financial analysis problem and calculates the 

prices for a portfolio with the well-known Black-Scholes partial 
differential equation (PDE). The portfolio is denoted by a large 
amount of options which are divided into several work units equal 
to the number of spawned threads. As a data-parallel application, 
the process of each thread in blackscholes is completely parallel. 

Our investigation starts from demystifying the surprising 
phenomenon observed from an experiment that using a big and a 
small core results in even worse performance than engaging an 
exclusive big core when executing blackscholes. To understand the 
program execution behaviors, we use emon [2] (Intel performance 
monitoring tool) to record the CPU utilizations. We observe that 
when blackscholes is executing on a big and a small core, both 
cores enter the parallel phase to process their own threads after the 
initialization stage. The Xeon processor completes its tasks much 
faster than the Atom cores; however, the program cannot proceed 
to the completion stage until the slow threads running on Atom 
finish the computations. In other words, threads assigned to Atom 
cores are the bottleneck of the overall performance. By digging 
into the source code, we find that all options are evenly distributed 
across worker threads, resulting in much longer execution time on 
Atom due to its low computation capability.  

Employing an imbalanced workload distribution policy is a 
simple solution to increase the utilization of big cores. We thereby 
modify the default task division and test four different assignments 
as listed in Table 2. Note that the total number of options is 
10000000. Also note that we always affinitize thread 0 and thread 
1 on the small core while mapping other two threads to the big 
core. The variation of the execution time is shown in Figure 9. We 
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Fig. 7. Execution behaviors when a TypeIII program (HP_T-III) or a TypeII program (HP_T-II) has high priority 
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Fig. 8. Execution fairness for HP_T-III and HP_T-II scenarios 
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Table 2. Workload distributions for blackscholes 

Conf. 
T0 work 
(Atom) 

T1 work 
(Atom) 

T2 work 
(Xeon) 

T3 work 
(Xeon) 

Balanced 
(default) 

2500000 2500000 2500000 2500000 

Conf1 2000000 2000000 3000000 3000000 
Conf2 1500000 1500000 3500000 3500000 
Conf3 1000000 1000000 4000000 4000000 
Conf4 500000 500000 4500000 4500000 

 
Fig. 9. Performance variation of blackscholes with different work 

load distributions 
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plot both the time spent in executing the parallel phase (ROI) as 
well as the total time. As can be observed, the execution time is 
decreasing as we gradually increase the work share given to big 
cores; the best performance is achieved when options are 
distributed as suggested by configuration 3, where the work share 
given to big cores is four times of that assigned to small cores.  

Data-parallel model is a widely used programming paradigm 
in contemporary parallel programs. 8 out of 11 applications in the 
PARSEC program collection adopt this parallelization pattern. 
Therefore, the described uneven task distribution technique is 
fairly meaningful for the performance optimization in several 
execution scenarios. Note that the optimal  workload distribution 
depends on the amount and types of cores given to this program, 
thus another policy (e.g., BSS) needs a different task assignment 
from configuration 3 to achieve the optimal performance. 

2) Optimizing pipelined application: The second 
parallelization model is pipeline. With this paradigm, each stage 
takes as input the outcome of its previous stage, making the entire 
application proceed as a pipeline. Pipeline model is another 
important parallelization pattern in contemporary multi-threaded 
applications since complete data parallelism might be hard to 
achieve in some applications. In this case, it will be much easier 
to decouple the entire computation into multiple modules and 
parallelize each individual module.  Dedup and x264 from the 
PARSEC benchmark suite adopt this model. We choose dedup as 
an example to illustrate the optimization for pipelined parallel 

applications. Dedup implements a two-level data stream 
compression algorithm consisting of global compression and local 
compression. The main computation work is decomposed into 
five modules, corresponding to five pipeline stages. In particular, 
the first and the last stage are respectively responsible for breaking 
up the data and assembling the output stream, while the 
intermediate three stages perform the actual compression of data 
chunks. Only the intermediate three stages are parallelized and 
each stage has its dedicated thread pool. In addition, the number 
of threads spawned in each stage is identical. 

Since each stage performs distinctive job and inclines to cost 
different time, we employ a stage-to-core mapping approach, 
which is similar to the scheme used in [28], to understand the 
execution behaviors. We assume a 1B1S core reservation and test 
a number of configurations as listed in Table 3, in order to evaluate 
how the affinity will impact the performance. We list the time 
spent on each pipeline stage in order to derive the bottleneck of the 
parallel phase (ROI) for all tested configurations. As can be 
observed, the third parallel stage remains the ROI bottleneck 
irrespective of the mapping scheme. In other word, although the 
execution time of all parallel modules varies across configurations, 
the third parallel stage always takes the longest time and 
determines the performance of the entire parallel phase. Due to this 
reason, the third parallel stage needs to be executed on big cores to 
achieve the optimal performance if hybrid cores are granted by the 
QoS policy (e.g., BS or BSS). 

Table 3. Execution information of dedup with different stage pinning 

Configuration 
Para. Stage 1 Para. Stage 2 Para. Stage 3 

ROI 
bottleneck Core 

mapping 
Time (s) 

Core 
mapping 

Time (s) 
Core 

mapping 
Time (s) 

conf.1 big 20 big 32 big 69 Stage 3 
conf.2 small 30 big 30 big 65 Stage 3 
conf.3 big 19 small 40 big 68 Stage 3 
conf.4 big 19 big 28 small 112 Stage 3 
conf.5 small 30 small 41 big 62 Stage 3 
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       (c) 

Fig. 10. Comparison between default policies and smart policies: (a) speedup of HP program (b) system 
performance (c) execution fairness
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3) Putting all together: Putting all of these together, we revisit 
the heterogeneous-mapping policies and propose BS_smart and 
BSS_smart policies in which those optimization techniques are 
applied to the high-priority program. The comparison between the 
default and smart policies are demonstrated in Figure 10. As can 
be observed, the smart schemes constantly outperform the default 
ones by delivering higher speedup for the HP program and better 
system performance. We also note that introducing the finer-
granularity optimization does not influence our selection on QoS 
policies from the fairness perspective. In specific, the smart 
heterogeneous-mapping schemes lead to more reasonable fairness 
value than the default schemes, but still trailing the SS strategy in 
the HP_T-I scenario. For the HP_T-II and HP_T-III 
combinations, the BS_smart policy further reduces the unfairness 
among programs, thus appearing as the most promising scheme. 
We do not show the figure due to space limitation. 

V. RELATED WORK 

The quality of service problem has been widely studied on 
various domains. In recent years, researchers have introduced the 
QoS problem into the computer architecture area with an 
concentration on the management of shared resources. Iyer [7] 
describes a framework to enable QoS in shared caches on CMP 
platforms. The proposed framework implements QoS enforcement 
on shared cache via selective cache allocation and dynamic cache 
partitioning to meet the performance requirement for applications 
with varying locality properties and memory sensitivities. In [8], 
the authors further extend the work by proposing a group of 
specific policies and architectural support to appropriately allocate 
the shared cache and memory bandwidth, in order to meet QoS 
goals. Kannan et al. [10] propose a similar mechanism for QoS 
management in chip multi-processors. Qureshi and Patt [19] 
develop a utility-based cache partitioning technique to improve the 
system performance when multiple programs are simultaneously 
executed. The fairness via resource throttling is elaborated in [6]. 
The authors highlight the importance of fairness and introduce a 
native approach to provide fairness in shared memory systems. 

There are also a large body of studies discussing thread 
affinities [16][17][18][23][26]. Klug et al. introduce a technique to 
determine the optimal thread pinning for an application at runtime 
based on performance monitoring events information [12]. 
Radojkovic presents a study on the thread to context binding for 
parallel network applications in multithreaded systems [20]. The 
authors demonstrate the impact of thread affinity on the application 
performance and propose a contention-aware scheduler to 
facilitate the thread binding problem. 

VI. CONCLUSION 

As heterogeneous chip multi-processor gradually becomes an 
important trend in the next decade and beyond, providing quality 
of service for programs running on a heterogeneous platform 
should be carefully considered. While prior QoS studies on 
traditional homogeneous system mainly concentrate on the 
management of shared resources including cache and memory 
bandwidth, task-to-core mapping plays a role while incorporating 
QoS with heterogeneous CMPs. This is especially important when 
multiple parallel programs are concurrently running on a system. 
To address this problem, our paper starts from profiling a wide 
spectrum of parallel applications on a real heterogeneous 
prototype, then proposes a series of policies for QoS control via 
appropriate thread mapping in different scenarios. The evaluation 
results show that the described policies effectively accelerate high-

priority the program while delivering acceptable global throughput 
and fairness. 
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