Array Replication to Increase Parallelism
in Applications Mapped to Configurable

Architectures

Heidi Ziegler, Priyadarshini Malusare, and Pedro Diniz

University of Southern California / Information Sciences Institute
4676 Admiralty Way, Suite 1001
Marina del Rey, CA 90292, USA
{ziegler,priya,pedro}@isi.edu

*This work was partly funded by the National Science Foundation (NSF) under award
number CCR-0209228 and NGS-0204040. Heidi Ziegler is also supported by Intel and

the Boeing Company.

INFORMATION
SQIENCES

~LNSTITUTE

el

Motivation

 Emerging architectures have configurable memories
— Number, size, interconnect
e Opportunities
— Large on-chip storage area for data
— Large on-chip read and write bandwidth
— Relatively low cost to replicate and copy data

e How we make use of these features?

Configurable memory

Configurable logic

Basic Ideas

* Expose concurrency between v
loop nests @,\
— Replicate arrays to eliminate anti- < : : > p
and output-dependences ¥ /-
— Add synchronization @
— Add update logic

e Eliminate memory contention

— Replicate arrays
— Add synchronization
— Add update logic

Dependence Definitions

Execution Order Write Read
........... >
........... >
A
........... >
........... >
A
A _
S, 8
Time ;;’%7‘{}(
o’ @
v -
...................... : e 4,? OC@
A
data access arder | 2D
depengence ::fg_/yfj\z’ws&; array
r'e

4

Example Kernel

e Start with all data mapped to the same memory

and sequential execution

* Memory

Loop 1 &

'//" L 0 OP 2 write
Anti i/’/ v

\
\

~_._- Loop3
v

Exploiting Basic Data Independence

e L1 and L2 can be parallelized
e {LL1,L2} and L3 can not

+ fork Memory

* * read
Loop 1 Loop 2 <d_-

vV */'
v

Loop 3
v

Using Array Renaming

e Create a local copy of array A in order to

remove anti-dependence

fork *

v
Loop 1
v

v

join *

Loop2 < Loop 3

v

=

Memory
Contention

copy

Using Array Renaming & Replication

fork * Memory Memory Memory

v v v
Loop 1 Loop2 < Loop3 ==
v in ¥ v

i

e No memory contention but more memory space

read

e Care 1n updating copies across iterations of control loop
8

Mapping to a Configurable Architecture

* Many on-chip Memories so that Each Array May
be accessed 1n Parallel

e Replication Operation done by Writing to
Memories in Tandem using the same Bus

Array Data Access Descriptor

Ib1 < d1 < ubi
{ERWR: = ...
[bx < dx < ubx

Set describes

n; program point / loop nest
A array name

ER, WR exposed read or write array access

b, ub lower and upper bound of each dimension d/ ... dx

accessed array section, integer linear inequalities

10

Compiler Analysis: Data Dependence

Write Read

WRE Ibr = d1 = ubi
L\ by = d2 < ubs

R b1 < d]l < ubi
L2 = \Ipr =d2 = u2:

data dependence= f (WR,f : ERj)

11

Compiler Analysis: Outline

Outline:
— Identify Control Loop

* CFG with Coarse-grain task information
— Extract Data Dependence Information

e Exposed Read and Write Information

e Array Section for Affine Array Accesses
— Extract Parallel Regions

e Using Array Renaming to Eliminate Anti-dependences
— Identify Array Copies for Reduced Contention

e Currently Replicate Write Arrays (partial replication)

e Replicate All Write and Read Arrays (full replication)

Status:
— Compiler Analysis Implemented in SUIF
— Code Generation and Translation to VHDL Still Manual

12

Analysis Example

{ ER™ ={i < d0 <i, 0<dl <N-1]
)
d(apny= <o @ WRA _

anti 1
|

{ ER® ={(il< d0 =il 0<dl <N-1]
n3
@ WR* =1
n

2

di,},"b“z): <1>

| %ﬂr"z‘“b

{ ER* -,
n3
@ WR™ = (i 2w <i, 02dl <N

0y

n, post dominates {n, n,}

15

Experimental Methodology

e Goal

— Evaluate Cost/Benefit of Array Renaming and Replication
— Configurable logic device - field programmable gate array (FPGA)
— Use of Many Memory Blocks for Array Storage

* Synthetic Kernels
— HIST: 3 loop nests; 3 arrays
— BIC: 4 loop nests; 4 arrays (most array data)
— LCD: 3 loop nests; 2 arrays

* Methodology
— Analyze using SUIF and Transform Benchmarks Manually
— Loop level execution times and Memory Schedules from Monet™
— Simulate total execution times using loop level inputs

— Manual Replication Transformation ”

Execution Time Results

Original Code Partial Replication Full Replication

\ 4

(replication of written arrays) (replication of all arrays)

erne

Y

Kernel '

T \ Table 1. Execyon time results (cvcles in thousands).

Fully replicated code

Execution Cycles (simulation) . .
computation versions achieve speedups
- update of replicas between 1 4 and 2 1

- total execution
- stall due to memory contention
- overall reduction (percentage) 15

Storage Requirement Results

Kernel Original Code Partial Replication Full Replication
Array Total Size|Iner. Array Total Size[Incr. Array Total Size|Incr.
Info (KBytes) | (%) Info (KBytes) | (%) Info (KBytes) | (%)
hist |1 x (64 by 64)| 17.15 | — |2 x (64 by 64)| 33.56 [95.5|2 x (64 by 64) | 33.56 |[095.5

3 x (64) 3 x (64) 3 x (64)
bic |6 x (64 by 64) 98,30 | — |7 x (64 by 64)| 114.7 |16.7[10 x (64 by 64)| 163.8 |66.7
led |2 x (64 by 64)] 32.77 | — |3 x (64 by 64)| 49.15 [50.0(4 x (64 by 64) | 65.54 [100.0
Table 2. Space requirements results.
A\ J
Kernel '

Space Requirements

- size in KBytes
- increment

Fully replicated code
versions require storage
increase by a factor of 2

16

Discussion

e Overhead of Updating Copies can be Negligible
— Provided Enough Bandwidth for Updates
— Small Number of Replicas

e Memory Contention
— Even with a Small Number of Arrays can be Substantial

— Scheduling could Mitigate this Issue somewhat...

e Preliminary Results Reveal:

— Removal of anti-dependences can enable substantial increases in
execution speed the cost of modest increase in storage

— Increase in Space can be non-negligible if Initial Footprint 1s Small

17

Related Work

Array Privatization
— Eigenmann et al. LCPC 1991; Li ICS 1992; Tu et al. LCPC 1993

Fine-grain Memory Parallelism
— So et. al. CGO 2004

Pipelining and Communication for FPGAs
— Tseng PPoPP 1995; Ziegler et. al. DAC 2003

This work:

— Relaxes constraints on previous analyses
* Loop Nests rather than Statements
e Coarser-grain & Loop Carried Dependences

— Combines the transformations to take advantage of configurable
architecture characteristics

e such as many on-chip memories
* low cost array replication 18

Conclusion

e This paper:
— Describes a Simple Loop Nests Analysis for Task-Level Parallelism
e Uses Renaming and Replication to Eliminate Dependences
» Across loop nests with selected replication strategies
e Array Section Analysis to identify replication regions for each Array
— Results target configurable architectures with
e Many on-chip memories
e Programmable Chip Routing
— Results
e Need to be Expanded to Larger Kernels
* Respectable Speedups with Modest Space Increase.

19

Thank You

