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Motivation

• Emerging architectures have configurable memories
– Number, size, interconnect

• Opportunities
– Large on-chip storage area for data
– Large on-chip read and write bandwidth
– Relatively low cost to replicate and copy data

• How we make use of these features?

Configurable logic

Configurable memory 
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Basic Ideas

• Expose concurrency between
loop nests
– Replicate arrays to eliminate anti-

and output-dependences
– Add synchronization
– Add update logic

• Eliminate memory contention
– Replicate arrays
– Add synchronization
– Add update logic
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Dependence Definitions
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Example Kernel

Memory
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•   Start with all data mapped to the same memory 
and sequential execution
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Loop 1 Loop 2

Loop 3

join

fork

Exploiting Basic Data Independence

Memory
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•   L1 and L2 can be parallelized
•   {L1, L2} and L3 can not
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Loop 2

Using Array Renaming

Memory
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Memory
Contention

•   Create a local copy of array A in order to 
remove anti-dependence
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Memory

Loop 2

Using Array Renaming & Replication

read

write
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Copy
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•  No memory contention but more memory space

•  Care in updating copies across iterations of control loop
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Mapping to a Configurable Architecture

• Many on-chip Memories so that Each Array May
be accessed in Parallel

• Replication Operation done by Writing to
Memories in Tandem using the same Bus
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Array Data Access Descriptor

      Set describes basic data access information

ni            program point / loop nest
A            array name
ER, WR  exposed read or write array access
lb, ub      lower and upper bound of each dimension d1 … dx
               accessed array section, integer linear inequalities
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Compiler Analysis: Data Dependence
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Compiler Analysis: Outline

• Outline:
– Identify Control Loop

• CFG with Coarse-grain task information
– Extract Data Dependence Information

• Exposed Read and Write Information
• Array Section for Affine Array Accesses

– Extract Parallel Regions
• Using Array Renaming to Eliminate Anti-dependences

– Identify Array Copies for Reduced Contention
• Currently Replicate Write Arrays (partial replication)
• Replicate All Write and Read Arrays (full replication)

• Status:
– Compiler Analysis Implemented in SUIF
– Code Generation and Translation to VHDL Still Manual
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Analysis Example
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Experimental Methodology

• Goal
– Evaluate Cost/Benefit of Array Renaming and Replication
– Configurable logic device - field programmable gate array (FPGA)
– Use of Many Memory Blocks for Array Storage

• Synthetic Kernels
– HIST: 3 loop nests; 3 arrays
– BIC: 4 loop nests; 4 arrays (most array data)
– LCD: 3 loop nests; 2 arrays

• Methodology
– Analyze using SUIF and Transform Benchmarks Manually
– Loop level execution times and Memory Schedules from MonetTM

– Simulate total execution times using loop level inputs
– Manual Replication Transformation
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Execution Time Results

Kernel
Execution Cycles (simulation)
- computation
- update of replicas
- total execution
- stall due to memory contention
- overall reduction (percentage)

Original Code Partial Replication
(replication of written arrays)

Full Replication
(replication of all arrays)

Fully replicated code
versions achieve speedups
between 1.4 and 2.1
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Storage Requirement Results

Kernel
Space Requirements
- size in KBytes
- increment

Fully replicated code
versions require storage
increase by a factor of 2
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Discussion

• Overhead of Updating Copies can be Negligible
–  Provided Enough Bandwidth for Updates
–  Small Number of Replicas

• Memory Contention
–  Even with a Small Number of Arrays can be Substantial
–  Scheduling could Mitigate this Issue somewhat…

• Preliminary Results Reveal:
– Removal of anti-dependences can enable substantial increases in

execution speed the cost of modest increase in storage
–  Increase in Space can be non-negligible if Initial Footprint is Small
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Related Work

• Array Privatization
– Eigenmann et al. LCPC 1991; Li ICS 1992; Tu et al. LCPC 1993

• Fine-grain Memory Parallelism
– So et. al. CGO 2004

• Pipelining and Communication for FPGAs
– Tseng PPoPP 1995; Ziegler et. al. DAC 2003

• This work:
– Relaxes constraints on previous analyses

• Loop Nests rather than Statements
• Coarser-grain & Loop Carried Dependences

– Combines the transformations to take advantage of configurable
architecture characteristics
• such as many on-chip memories
• low cost array replication
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Conclusion

• This paper:
– Describes a Simple Loop Nests Analysis for Task-Level Parallelism

• Uses Renaming and Replication to Eliminate Dependences
• Across loop nests with selected replication strategies
• Array Section Analysis to identify replication regions for each Array

– Results target configurable architectures with
• Many on-chip memories
• Programmable Chip Routing

– Results
• Need to be Expanded to Larger Kernels
• Respectable Speedups with Modest Space Increase.
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Thank You


