
1

Heidi Ziegler, Priyadarshini Malusare, and Pedro Diniz

University of Southern California / Information Sciences Institute
4676 Admiralty Way, Suite 1001
Marina del Rey, CA 90292, USA

{ziegler,priya,pedro}@isi.edu

*This work was partly funded by the National Science Foundation (NSF) under award
number CCR-0209228 and NGS-0204040. Heidi Ziegler is also supported by Intel and

the Boeing Company.
SCIENCESSCIENCES

USCUSC
INFORMATIONINFORMATION

INSTITUTEINSTITUTE

Array Replication to Increase Parallelism
in Applications Mapped to Configurable

Architectures

2

Motivation

• Emerging architectures have configurable memories
– Number, size, interconnect

• Opportunities
– Large on-chip storage area for data
– Large on-chip read and write bandwidth
– Relatively low cost to replicate and copy data

• How we make use of these features?

Configurable logic

Configurable memory

S-RAM
D-RAM CPU

CPU S-RAM
D-RAM

CPU

CPU

S-RAM
D-RAM

S-RAM
D-RAM

3

Basic Ideas

• Expose concurrency between
loop nests
– Replicate arrays to eliminate anti-

and output-dependences
– Add synchronization
– Add update logic

• Eliminate memory contention
– Replicate arrays
– Add synchronization
– Add update logic

L1

L2

L3

L1 L2 L3

Mem

Mem

4

Dependence Definitions

ReadWriteExecution Order

Time

2-D
array

access order
row-wise

data
dependence

A
L1

L2

L3

A

A

anti-
dependence
WAR

5

Example Kernel

Memory

A[i-1][*]
A[i][*]

read

read

write

Loop 1

Loop 2

Loop 3

Anti

• Start with all data mapped to the same memory
and sequential execution

6

Loop 1 Loop 2

Loop 3

join

fork

Exploiting Basic Data Independence

Memory

A[i-1][*]
A[i][*]

read

read

write

• L1 and L2 can be parallelized
• {L1, L2} and L3 can not

7

Loop 2

Using Array Renaming

Memory

A[i-1][*]
A[i][*]read

read

write
Loop 1 Loop 3

join

fork

A_1[i-1][*]
A_1[i][*]

copy

Copy

Memory
Contention

• Create a local copy of array A in order to
remove anti-dependence

8

Memory

Loop 2

Using Array Renaming & Replication

read

write
Loop 1 Loop 3

join

fork

Copy

Memory

A_1[i-1][*]
A_1[i][*]

Memory

A_2[i-1][*]
A_2[i][*]

A_3[i-1][*]
A_3[i][*]

read

• No memory contention but more memory space

• Care in updating copies across iterations of control loop

9

Mapping to a Configurable Architecture

• Many on-chip Memories so that Each Array May
be accessed in Parallel

• Replication Operation done by Writing to
Memories in Tandem using the same Bus

S-RAM
D-RAM CPU

CPU
S-RAM
D-RAM

CPU

CPU

S-RAM
D-RAM

S-RAM
D-RAM
A_1

A_2 A_3

L1

L2 L3

10

Array Data Access Descriptor

 Set describes basic data access information

ni program point / loop nest
A array name
ER, WR exposed read or write array access
lb, ub lower and upper bound of each dimension d1 … dx
 accessed array section, integer linear inequalities

xx

A

n

ubdxlb

ubdlb

WRER
i

<<

<<

=

11 1

},{

11

Compiler Analysis: Data Dependence

ReadWrite

()BnB

n ji
ERWRfdependencedata ,_ !

L2

L1

12

11

2

22

1

udlb

ubdlb
ER

B

L

!!

!!
=

B

B

Data Dependence

Dep.

Solve for data dependences

22

11

1

2

1

ubdlb

ubdlb
WR

B

L
!!

!!
=

12

Compiler Analysis: Outline

• Outline:
– Identify Control Loop

• CFG with Coarse-grain task information
– Extract Data Dependence Information

• Exposed Read and Write Information
• Array Section for Affine Array Accesses

– Extract Parallel Regions
• Using Array Renaming to Eliminate Anti-dependences

– Identify Array Copies for Reduced Contention
• Currently Replicate Write Arrays (partial replication)
• Replicate All Write and Read Arrays (full replication)

• Status:
– Compiler Analysis Implemented in SUIF
– Code Generation and Translation to VHDL Still Manual

13

Analysis Example

14

Experimental Methodology

• Goal
– Evaluate Cost/Benefit of Array Renaming and Replication
– Configurable logic device - field programmable gate array (FPGA)
– Use of Many Memory Blocks for Array Storage

• Synthetic Kernels
– HIST: 3 loop nests; 3 arrays
– BIC: 4 loop nests; 4 arrays (most array data)
– LCD: 3 loop nests; 2 arrays

• Methodology
– Analyze using SUIF and Transform Benchmarks Manually
– Loop level execution times and Memory Schedules from MonetTM

– Simulate total execution times using loop level inputs
– Manual Replication Transformation

15

Execution Time Results

Kernel
Execution Cycles (simulation)
- computation
- update of replicas
- total execution
- stall due to memory contention
- overall reduction (percentage)

Original Code Partial Replication
(replication of written arrays)

Full Replication
(replication of all arrays)

Fully replicated code
versions achieve speedups
between 1.4 and 2.1

16

Storage Requirement Results

Kernel
Space Requirements
- size in KBytes
- increment

Fully replicated code
versions require storage
increase by a factor of 2

17

Discussion

• Overhead of Updating Copies can be Negligible
– Provided Enough Bandwidth for Updates
– Small Number of Replicas

• Memory Contention
– Even with a Small Number of Arrays can be Substantial
– Scheduling could Mitigate this Issue somewhat…

• Preliminary Results Reveal:
– Removal of anti-dependences can enable substantial increases in

execution speed the cost of modest increase in storage
– Increase in Space can be non-negligible if Initial Footprint is Small

18

Related Work

• Array Privatization
– Eigenmann et al. LCPC 1991; Li ICS 1992; Tu et al. LCPC 1993

• Fine-grain Memory Parallelism
– So et. al. CGO 2004

• Pipelining and Communication for FPGAs
– Tseng PPoPP 1995; Ziegler et. al. DAC 2003

• This work:
– Relaxes constraints on previous analyses

• Loop Nests rather than Statements
• Coarser-grain & Loop Carried Dependences

– Combines the transformations to take advantage of configurable
architecture characteristics
• such as many on-chip memories
• low cost array replication

19

Conclusion

• This paper:
– Describes a Simple Loop Nests Analysis for Task-Level Parallelism

• Uses Renaming and Replication to Eliminate Dependences
• Across loop nests with selected replication strategies
• Array Section Analysis to identify replication regions for each Array

– Results target configurable architectures with
• Many on-chip memories
• Programmable Chip Routing

– Results
• Need to be Expanded to Larger Kernels
• Respectable Speedups with Modest Space Increase.

20

Thank You

