
An Efficient Approach for
Self-Scheduling Parallel Loops on

Multiprogrammed Parallel Computers

Arun Kejariwal1 Alexandru Nicolau1 Constantine D. Polychronopoulos2

1 Center for Embedded Computer Systems
University of California at Irvine

Irvine, CA 92697, USA
arun kejariwal@computer.org, nicolau@cecs.uci.edu

http://www.cecs.uci.edu/
2 Center for Supercomputing Research and Development

University of Illinois at Urbana-Champaign
Urbana, IL 61801, USA
cdp@csrd.uiuc.edu

http://www.csrd.uiuc.edu/

Abstract. Clusters and grids have increasingly become standard plat-
forms for high performance computing as they provide extremely high
execution rates with great cost effectiveness. Such systems are designed
to support concurrent execution of multiple jobs. It calls for multipro-
grammed scheduling of the different jobs for effective system utiliza-
tion and for keeping average response times low. Although a significant
amount of work has been done in scheduling parallel jobs on multipro-
cessor systems, the problem of scheduling parallel tasks of an individual
job on a multiprogrammed parallel system has not been given enough
attention so far. In this paper, we present a dynamic scheduling tech-
nique for scheduling iterations of a DOALL loop (of a single application)
to achieve load balance between a given set of processors. Experimental
results show the effectiveness of our approach.

1 Introduction
Although multiprogramming allows to better service multiple users, it also
greatly complicates the scheduling process. This can be attributed to the space-
time sharing of processors by the different jobs and the trade-off between the
different performance metrics. Several techniques have been proposed for job
scheduling with different objectives such as minimizing average mean response
time, minimizing makespan, minimizing the tardiness [1,2]. Similarly, the im-
pact of other parameters such as knowledge of job service demands, variability
of job parallelism, preemption of jobs on performance of scheduling policies has
also been investigated [3]. However, from the standpoint of performance of an
individual job, the impact of the dynamics of a multiprogrammed system on the
scheduling of parallel tasks of a single job has not been given enough attention.
One of the critical problems to be addressed in this context is how to efficiently
allocate the parallel tasks amongst a given set of processors so as to distribute

mailto:arun_kejariwal@computer.org
mailto:nicolau@cecs.uci.edu
http://www.cecs.uci.edu/
mailto:cdp@csrd.uiuc.edu
http://www.csrd.uiuc.edu/

2

the computational load as evenly as possible, in order to minimize the maximum
completion time.

In this paper, we address the problem of minimizing the maximum comple-
tion time of DOALL [4] loops. We model the problem as a task allocation problem
wherein at any scheduling step, given a set of idle processors, one or more itera-
tions are allocated to each processor. The key consideration in task allocation is
the selection of the task size, i.e., the number of iterations constituting a task.
While a small task size incurs significant scheduling overhead, a large task size
results in load imbalance. Thus, the task allocation problem naturally reduces to
determining the optimal task size in order to minimize the total execution time.
Several static scheduling schemes have been proposed for the above, however,
these do not perform well in a multiprogramming environment. Similarly, sev-
eral dynamic scheduling schemes have been proposed to perform task allocation
on the “on-the-fly” wherein one or more iterations are assigned to a processor
whenever it becomes available. However, run-time scheduling overhead becomes
a critical factor in the context of dynamic scheduling and can potentially account
for a significant portion of the total execution time [5]. Thus, the idea is to avoid
the use of the operating system in order to minimize the scheduling overhead, by
instrumenting the code corresponding to the parallel loop such that the proces-
sors perform scheduling by themselves at run-time. Self-scheduling [6] exemplifies
this philosophy where task size is determined by the processors themselves rather
then by the operating system or a global control unit.

Several self-scheduling techniques have been proposed for scheduling parallel
loops [7]. The computation of the task size (or chunk size) at any scheduling step
(from hereon, we shall use the term chunk size, instead of task size, for literary
consistency) in each is based on the number of remaining iterations. It assumes
the availability of a “fixed” number of processors. However, the latter is not valid
in context of multiprogramming. This can potentially give rise to “gaps” in pro-
cessor availability, i.e., a processor may not be continuously available to the same
job. For example, in Figure 1 processor P2 is not available for t ∈ (750, 850). The
effect of varying number of processors and the presence of gaps on self-scheduling
is not well understood. In this paper, we propose a novel scheduling technique,
referred to as Gap-Aware Self-Scheduling (GAS), to capture the effect of pres-
ence of gaps in processors availability on self-scheduling. At each scheduling step,
GAS computes the chunk size based on the number of remaining iterations and
gaps in processor availability. We show that gap-aware computation of chunk
size helps achieve load balance between the different processors.

The rest of the paper is organized as follows. In the next section, we present
the motivation behind this work. In Section 3, we present our approach for dy-
namic scheduling of parallel loops on multiprogrammed parallel processor sys-
tems. Experimental setup and results are presented in Section 4.

2 Motivation

Though it is fairly intuitive that gaps reduce the degree of parallel execution,
the impact of gaps on load balance between the processors is not obvious. In

3

P1

P2

Gap

P1

P2

Gap

11000 250 750 850 0 250 750 850

b)a)

1000

Others

time

Optimal

time

Fig. 1. a) Schedule obtained from the existing techniques; b) Optimal Schedule

this work, we study the latter. From hereon, we shall consider only those gaps
which can potentially result in load imbalance. Conditions for the existence of
such gaps are discussed in detail in [8]. We argue that it is important to account
for such gaps during the scheduling of parallel tasks — iterations of a (nested)
parallel loop in our case.

For example, consider the schedules shown in Figure 1, where the length of a
block represents the size of a chunk allocated to a processor at a given scheduling
step. For simplicity, we assume that each iteration takes a unit amount of time.
In Figure 1(a), we note that 250 iterations are allocated to processor P2 at
t = 850 regardless of the gap for t ∈ (750, 850). Clearly, this results in uneven
finishing times. On the other hand, the optimal schedule is shown in Figure 1(b)
where the 250 iterations are distributed amongst the two processors to yield even
finishing times. From above, we learn that it is critical to modulate the chunk
size in presence of gaps in order to achieve better load balance.

3 The Approach

In this section we present the algorithm for our approach — Gap-Aware Self-
Scheduling (GAS). Although several models have been proposed for work queues,
viz., global, local and hybrid, in context of self-scheduling, we adopt the model
proposed by Polychronopoulos and Kuck in [9] owing to its simplicity. Note that
model selection per se is orthogonal to the concerns we address in this paper.
The algorithm is designed for non-preemptive scheduling, whereby a chunk, once
assigned to a processor may not be removed until it has finished execution. The
design of our approach is guided by the following: a) how to capture the effects of
gaps in processor availability; b) how to select Wmin, i.e., the minimum workload
per chunk; and c) how to minimize the synchronization overhead between the
processors. The rest of the section describes the different phases of our scheduling
algorithm.

3.1 Determining the Gap Factor

As illustrated in Section 2, gaps in processor availability play a critical role in load
balancing and directly relate to the efficiency of a dynamic scheduling scheme.
In order to capture the effects of gaps on the performance of a self-schedule, we
define a displacement factor, denoted by α, for online modulation of the chunk
size. Let tlast denote the finishing time of the most recently completed chunk
(on any processor) and let tfirst denote the earliest finishing time of any chunk

4

under execution (on any processor). At a given time instant t, the displacement
factor is computed as follows:

α(t) =

{
t−tlast

tfirst−tlast
∃ a gap at time t

0 otherwise
(1)

Intuitively, the displacement factor is a measure of the length of a gap w.r.t.
the earliest finishing time of all the currently active processors. Arguably, one
could potentially use α as the modulation factor. However, from Equation 1 we
observe that when t = tlast, α = 0. Thus, in this case the chunk size is reduced
to zero. Consequently, α in itself cannot be used for chunk size modulation. In
order to alleviate the problem, we define a gap factor as a function of α, denoted
by β(α), and is computed as follows:

β(α) = aα2 + bα + c (2)

Let us now revisit Equation 1 to study the behavior of α as t → tfirst (by
definition, t 6= tfirst) as it is required to derive the boundary conditions for β.

lim
t→tfirst

t− tlast
tfirst − tlast

= 1 ⇒ α(t→ tfirst) = 1 (3)

From Equation 2, we deduce that when α = 0, β = 1 and when α → 1 (refer
to Equation 3), β → 1. Note that the above conditions are compliant with the
existence conditions of a gap [8] which form the very basis of online chunk size
modulation. To summarize,

β = 1, when α = 0 and α = 1

Further, we assume that β = 0.5 when α = 0.5. Solving for a, b and c using the
above conditions yields the following:

β = 2α(α− 1) + 1 (4)

3.2 Determining the Chunk Size
Markatos and LeBlanc showed that load imbalance is the prime factor govern-
ing the efficiency of a self-schedule [10]. The extent of load imbalance introduced
depends on the amount of workload allocated relative to the amount of remain-
ing workload. At any point in time, the amount of workload assigned to each
processor3 should be chosen such that the remaining workload is “sufficient” to
balance the workload evenly, i.e., the difference in finishing times of the proces-
sors (at the end of the schedule) is minimal. With the above goal, we now derive
the expression for the chunk size, denoted by Λ. In general, at any given time
instant t in a self-schedule, the chunk size is defined as a multivariate function
f , as given below:

Λ(t) = f(WR(t), P, (tfirst − t), β,Wmin) (5)
3 Recall that multiple processors may be available at the same time.

5

where WR(t) denotes the number of remaining iterations at time t and Wmin

denotes the minimum chunk size. In the rest of this subsection, we follow a
step-by-step approach to derive the expression for chunk size.

A modified form of Λ (w.r.t. the one proposed in guided self-scheduling by
Polychronopoulos and Kuck [9]) is given by:4

Λ(t) =
⌈

WR(t)
1.5P

⌉
(6)

However, the chunk size as defined above can potentially increase the scheduling
overhead as illustrated by the following example.

Example 1 Consider a (coalesced) parallel loop with 3000 iterations with iden-
tical workloads and a system of two processors P1 and P2, where P1 is available
at t = 0 and P2 is available at t = 200 in case a) and at t = 900 in case b).
For simplicity of exposition, we assume that there do not exist gaps in processor
availability.

P1

P2

time
0 1000200 867

(a)

P1

P2

time0 900 1000

(b)

Fig. 2. Example partial schedules

Consider the partial self-schedule shown in Figure 2(a). From the figure, we
observe that at t = 200, P2 is assigned only 667 iterations. This implies that
P2 would finish before P1 finishes and would result in “early” rescheduling of
P2. Clearly, this incurs additional scheduling overhead without any increase in
parallel execution. In order to alleviate the above, we propose to “delay” the
rescheduling of P2 by allocating 800 iterations at time t = 200. In such cases, we
argue to allocate (tfirst − t) number of iterations. This minimizes the number of
allocation points without loss in parallel execution.

However, as t → tfirst the above strategy may result in allocation of small
chunks which adversely affects the performance of a self-schedule [9]. For ex-
ample, consider the partial schedule shown in Figure 2(b), where P2 is avail-
able at time t = 900. In this case, we assign 667 iterations to P2 instead of
100 (= tfirst − t) iterations so as to minimize the number of allocations, thereby
reducing the scheduling overhead.

Based on the discussion of Example 1 we refine the expression for com-
putation of chunk size (given in Equation 6) to balance the trade-off between

4 For derivation of Equation 6, the reader is referred to [8].

6

maximizing parallel execution and minimizing scheduling overhead. For this, we
introduce a new parammeter called lag, as defined below:

lag(t) =

{
tfirst − t ∃ a gap at time t

0 otherwise
(7)

The modified expression for chunk size is given as follows:

Λ(t) = max
(

lag(t),
⌈

WR(t)
1.5P

⌉)
(8)

Equation 8 implicitly assumes that for all t in a self-schedule tfirst − t < WR. It
is easy to see that the same is valid for P ≥ 2 as at any scheduling step less than
half of the remaining number of iterations are allocated. Next, we incorporate
the effect of existence of gaps in processor availability in the expression for chunk
size.

Λ(t) = max
(

lag(t),
⌈

β WR(t)
1.5P

⌉)
(9)

The exponential decrease of chunk size during self-scheduling results in
scheduling of individual iterations towards the end of the schedule. The lat-
ter incurs high scheduling overhead. In order to alleviate this the chunk size is
restricted to a pre-defined quantum, denoted by Wmin (for further details the
reader is referred to [9]). We further refine the expression of chunk size to capture
Wmin and is given as follows:

Λ(t) = max
(

Wmin,max
(

lag(t),
⌈

β WR(t)
1.5P

⌉))
(10)

The parameter Wmin is application and input data dependent. The selection of
an appropriate value for Wmin is critical for the existing self-scheduling schemes.
While a small value of Wmin may result in scheduling of individual iterations
(irrespective of their workload) at the end which may incur significant synchro-
nization overhead, whereas a large value of Wmin may lead to load imbalance. A
formal description of the algorithm for GAS is presented as Algorithm 1.

The discussion in this subsection so far has been based on the assumption
that iterations have equal workloads (or execution times). However, the workload
of individual iterations may differ from each other when there are conditional
statements in the loop; even otherwise, their workloads may differ due to sys-
tem variations such as data access latency, network interference and operating
system. Even in such cases, our gap-driven chunk size modulation approach is
still applicable. A detailed discussion of this beyond the scope of this paper.

7

Algorithm 1 Gap-Aware Self-Scheduling

Input : A N-dimensional iteration space Γ and P processors. Note that at any given
time instant, all the processors may be available.

Output : A near-optimal dynamic schedule of Γ w.r.t. load balance amongst the
different processors and schedule length.

repeat
/* Self-schedule the remaining iterations at time t */

pf ← 0

Compute lag(t) using Equation 7

Compute the gap factor β(t) using Equation 4

Compute the chunk size Λ(t) using Equation 10

for each available processor do

Compute index range for each processor

Assign the corresponding iterations to the processor

pf ← pf + 1

end for

/* Update the remaining workload */

W←W − Λ(t)× pf

until W > 0

4 Experiments

We implemented a simulator to compare the performance of GAS with the “up-
per algorithm” of the adaptive self-tuning scheduling scheme [11] (referred to
as HLS in the rest of the paper). For our experiments, we extracted kernels
(parallel nested loops) from LAMMPS [12] (a classical molecular dynamics code
designed to simulate systems at the atomic and molecular level) and DAKOTA
[13] (a design analysis kit for optimization and terascale applications). The exe-
cution time of the loops was determined via profiling. A random generator was
used for dynamic processor allocation; random numbers are generated using a
uniform distribution. The simulator supports uneven start times of the proces-
sors. Further, it also accounts for the synchronization overhead. Processors are
assumed to access the shared variables, in our case loop indexes, using appro-
priate synchronization primitives. A maximum of 2000 processors was assumed
as commonly found in clusters and grids. Recall that at any given scheduling
step, the number of processors available is not fixed. The loops were dynamically
scheduled using Algorithm 1.

Figure 3(a) presents a performance comparison between HLS and GAS. The
execution times were computed as an average of execution times of 10 simulation
runs with different processor availability configurations. From the figure, we note
that our approach achieves a speedup of 10–15%. As explained earlier, the speed

8

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

L10L9L8L7L6L5L4L3L2L1

No
rm

al
ize

d
Ex

ec
ut

io
n

Ti
m

e

Loops

HLS
GASS

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

L10L9L8L7L6L5L4L3L2L1

No
rm

al
ize

d
Sy

nc
hr

on
iza

tio
n

O
ve

rh
ea

d

Loops

HLS
GASS

(b)

Fig. 3. a) Performance comparison; b) Synchronization overhead

up can be attributed to the better load balance between the different processors
which facilitates higher degree of parallel execution. In addition, it enables better
processor utilization.

From Figure 3(b) we observe that the GAS incurs 3% (on an average) syn-
chronization overhead. It can be attributed to the overhead incurred in online
update of the expected workload of the remaining iterations. However, the per-
formance gain obtained by online chunk size modulation outweighs the synchro-
nization overhead.

References

1. R. W. Conway, W. L. Maxwell, and L. W. Miller. Theory of scheduling. Addison-Wesley,
Reading, MA, 1967.

2. D. G. Feitelson. A survey of scheduling in multiprogrammed parallel systems. Technical Report
RC 19790(87657), IBM T. J. Watson Research Center, February 1995.

3. S. Majumdar, D. L. Eager, and R. B. Bunt. Scheduling in multiprogrammed parallel systems.
In Proceedings of the 1988 ACM SIGMETRICS conference on Measurement and modeling of
computer systems, pages 104–113, Santa Fe, NM, 1988.

4. S. Lundstrom and G. Barnes. A controllable MIMD architectures. In Proceedings of the 1980
International Conference on Parallel Processing, St. Charles, IL, August 1980.

5. C. P. Kruskal and A. Weiss. Allocating independent subtasks on parallel processors. IEEE
Transactions on Software Engineering, 11(10):1001–1016, 1985.

6. B. J. Smith. Architecture and applications of the HEP multiprocessor computer system. In
Proceedings of SPIE - Real-Time Signal Processing IV, pages 241–248, 1981.

7. A. Kejariwal and A. Nicolau. Reading list of self-scheduling of parallel loops. http://www.ics.
uci.edu/~akejariw/SelfScheduleReadingList.pdf.

8. A. Kejariwal, A. Nicolau, and C. D. Polychronopoulos. Accounting for “Gaps” in processor avail-
ability during self-scheduling of parallel loops on multiprogrammed parallel computers. Techni-
cal Report TR-05-14, School of Information and Computer Science, University of California at
Irvine, October 2005.

9. C. D. Polychronopoulos and D. J. Kuck. Guided self-scheduling: A practical scheduling scheme
for parallel supercomputers. IEEE Transactions on Computers, 36(12):1425–1439, 1987.

10. E. Markatos and T. LeBlanc. Using processor affinity in loop scheduling on shared-memory
multiprocessors. IEEE Transactions on Parallel and Distributed Systems, 5(4):379–400, April
1994.

11. Y. Zhang, M. Burcea, V. Cheng, R. Ho, and M. Voss. An adaptive OpenMP loop scheduler for
hyperthreaded SMPs. In Proceedings of the 17th International Conference for Parallel and
Distributed Computing Systems, San Francisco, CA, 2004.

12. LAMMPS. http://www.cs.sandia.gov/~sjplimp/lammps.html.
13. DAKOTA. http://endo.sandia.gov/DAKOTA/software.html.

http://www.ics.uci.edu/~akejariw/SelfScheduleReadingList.pdf
http://www.ics.uci.edu/~akejariw/SelfScheduleReadingList.pdf
http://www.cs.sandia.gov/~sjplimp/lammps.html
http://endo.sandia.gov/DAKOTA/software.html

	An Efficient Approach for Self-Scheduling Parallel Loops on Multiprogrammed Parallel Computers [-3mm]
	Arun Kejariwal, Alexandru Nicolau (University of California, Irvine), Constantine D. Polychronopoulos (University of Illinois at Urbana-Champaign)
	1 Introduction
	2 Motivation
	3 The Approach
	3.1 Determining the Gap Factor
	3.2 Determining the Chunk Size

	4 Experiments

