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Abstract

Efficient use of multiple pipelined functional units and registers are very important for achieving high
performance on modern processors. Instruction Level Parallelism (ILP) and register reuse (through register
tiling) are two mechanisms for efficient use of pipelined functional units and registers respectively. Program
transformations that expose and exploit ILP and register reuse interact with each other in subtle ways.
In this paper we study the combined problem of optimal ILP and register reuse. We consider the class
of uniform dependence, fully permutable, rectangular loop nests. We develop an analytical model of the
combined problem and formulate a mathematical optimization problem that chooses the parameters of the
ILP-exposing transformation and register tiling so as to minimize the total execution time. We distinguish
two cases: when loop permutation can and cannot expose a parallel loop. We show that the combined
problem can be reduced to a single integer convex optimization problem for the former case, and to a set of

integer convex optimization problems for the latter case, both of which can be solved to global optimality.

1 Introduction

It takes more than a good algorithm to achieve high performance: efficient use of the multiple pipelined func-
tional units and registers are also important. Instruction level parallelism (ILP) allows a sequence of instructions
derived from a sequential program to be parallelized for execution on multiple pipelined functional units in mod-
ern processors. Exploiting ILP and register reuse is critical for efficient use of execution resources. Irrespective
of whether the target architecture can extract/exploit ILP (like superscalar processors) or not (VLIW proces-
sors), compilers can transform the program to enhance and expose the parallelism, and schedule the program to
exploit the parallelism. No matter what the architecture is, performance is greatly influenced by the quality of
the compiler generated code. State-of-the-art compilers perform a variety of program optimizations to expose,
enhance and exploit ILP and register reuse.

Loop nests are often the main sources for ILP and register reuse. The traditional approach, shown on the
top row of Figure 1, uses unroll and jam [2] to expose ILP and scalar replacement to expose register reuse.
However, this approach has the disadvantage of increased code size and register pressure. Further, it is hard
to quantify the interactions [7] between unroll and jam, scalar replacement and software pipelining, the widely
used loop scheduling technique [13, 17, 1].

Loop parallelizing techniques offer many transformations that can expose parallelism. Examples include,
loop permutation, loop skewing [2], multi-dimensional scheduling [9], etc. In addition, loop tiling [25] can be

used enable register reuse. We propose to use loop permutation and skewing to expose ILP, followed by tiling to



enable register reuse. Our approach, shown in the bottom row of Figure 1, does not suffer from increased code
size. However, enabling register reuse with tiling requires a register allocator for array variables as compared to
the use of scalar register allocator in the scalar replacement approach.
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Figure 1: Outline of our approach to ILP and Register Tiling. Top row shows the traditional approach and
bottom row shows ours. The choice of code transformation technique influences the parameters to be determined
and hence the performance model.

Program transformations that expose ILP and those that enable register reuse interact with each other in
subtle ways. For example, loop unrolling and loop skewing will expose ILP but might also increase the number
of live values and hence the register pressure. On the other hand, register tiling will enable register reuse but
might also limit the amount of ILP with the new order of execution of the tiled program. Quantifying and
modeling these interactions between various program transformations is crucial for finding optimal (w.r.¢. total
program execution time) transformations. In this paper we seek to solve the combined problem of choosing the
optimal parameters for the ILP exposing (loop skewing) transformation and register tiling. Our contributions
are as follows.

e We give an analytical model that quantifies the interaction between the ILP exposing transformation (loop

skewing) and register tiling.

e We formulate the optimal ILP and register tiling problem as a mathematical optimization problem. We
present a globally optimal solution to this problem by reducing it to a convex optimization problem.

e We distinguish two cases: when loop permutation can and cannot expose a parallel loop. In the former
case, we reduce the combined optimization problem to a single integer convex optimization problem. In
the later case, when skewing is required to expose ILP, we show that the combined problem can be reduced

to a set of integer convex optimization problems.

The solution to our combined problem will produce a loop nest in which the ILP and register reuse are exposed.
The scheduling and register allocation phase (cf. Figure 1) is an important step in achieving good performance.
This phase is beyond the scope of this paper. Our main observation is, this phase can be constructed by adapting

well studied techniques like modulo scheduling [17] and register allocation for array variables.



In the next section we present the outline of our solution to the ILP and register tiling problem. In section 3,
we present the program, tiling, and execution models and describe the basic building blocks of our analytical
model. In section 4, we formulate the mathematical optimization problem that chooses the optimal skew and
tile parameters. In section 5, we characterize the condition under which a permutation can expose a parallel
loop and present an efficient algorithm to check this condition. In section 6, we characterize the space of valid
skewing transformations. In section 7, we show how the optimal tiling problem can be reduced to a convex
program and solved efficiently and in section 8, we present the strategy for finding the globally optimal solution
to the combined ILP and register tiling problem. In section 9, we present a complete example that illustrates
our solution method. In section 10, we present the related work and in section 11, we present a discussion and
future work.

2  Our approach to ILP and register tiling

Our approach is to use loop skewing as the ILP exposing transformation, and register tiling as the register reuse
enabling transformation and software pipelining as the ILP exploiting mechanism. Since we are using register
tiling together with loop skewing, we require that after skewing the resulting loop nest admit rectangular tiling.

Software pipeliners look at the innermost loop' to find ILP among operations from different iterations of
the loop. Hence, if we could transform the loop nest into one in which the inner most loop does not carry any
dependences, i.e., all of its iterations can be executed in parallel, then the software pipeliner can find a schedule
in which the performance is constrained only by the execution resources as opposed to dependencies. When
sufficient ILP exists and can be exploited, the performance is limited only by the available execution resources —
or the execution bandwidth of the machine. Such a schedule will exploit the maximum possible ILP and have
maximum utilization of functional units.

Motivated by the above discussion, we seek a transformation that would transform the given fully permutable
loop nest into one

e (C1): for which rectangular tiling is valid for any given tile sizes £ = (t1,...,t,). This validity condition
reduces to non-negativity of all the components of all the dependences, under the reasonable assumption
of the tile size being larger than the dependence lengths and the iteration space size being larger than the
tile size [24].

e (C2): in which there is at least one loop which does not carry any dependences (i.e., whose iterations are
all parallel). We can always permute this loop to the inner most position, as full permutability (of the

transformed loop nest) is required by the previous condition (C1).

There are many classes of transformations that can produce a loop nest that would satisfy the above two
conditions. Loop skewing is one such class and we have chosen it for following reasons: For uniform dependence
loops, we can always find a skewing transformation that will produce a loop that satisfies (C1) and (C2). Second,
loop skewing is conceptually simpler and easy to construct, and this allows us to develop an efficient algorithm
for finding the optimal skew transformation parameters.

Figure 2 shows the outline of the steps involved in our solution methodology. Using the performance model,
we formulate an optimization problem whose solution would yield the skew factor and tile sizes that are optimal
with the overall execution time. We check whether permutation can expose any parallel loop. If so, we permute,
expose the parallelism, and then tile for registers. In this case, the combined problem reduces to the problem of

1The two exceptions are the works of Rong et al. [19] and Ramanujam [16]. See the related work section for details.
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Figure 2: Outline of our solution strategy.

finding the optimal tile sizes, which can be reduced to a single integer convex optimization problem. When loop
permutation cannot expose a parallel loop, loop skewing is required to expose the ILP. In this case, we need to
find the optimal skewing and tile sizes. We find these by solving a set of integer convex optimization problems.

3 An analytical model

In this section we develop an analytical model that quantifies the interaction between loop skewing and register
tiling transformations. A model, similar in spirit, is used in the context of tiling for memory hierarchy [18].

3.1 Program and tiling model

The program class we consider is the class of fully permutable rectangular loop nests with uniform dependence
bodies. Note that this class of programs admit rectangular tiling and are also the class for which software
pipelining is often applied. We consider an n-dimensional loop nest with constant upper and lower bounds.
The loop body contains statements with uniform dependences. Let £ = [L4, ..., L] be the given n-dimensional
loop nest, where each L; denotes a loop at depth i. Any n-D vector formed by the loop counters of L is called
an iteration vector. Let D = [dy,...,dy] be a matrix whose columns are the (n-D) dependence vectors.

To expose ILP we use skewing and permutation. A skewing (transformation) matrix has the form of an
upper triangular matrix with all the diagonal entries equal to 1. The non-diagonal entries are determined by the
skewing factors. We denote the skewing matrix that we seek by S. Skewing a loop L; with respect to a loop L,
by an appropriate factor f, makes the loop L; carry all the dependences that were originally carried by loop Lj;.
A permutation transformation that permutes the i*” loop with the j** loop can be represented by an identity
matrix (of appropriate size) in which the i*” and j** rows are interchanged.

We consider rectangular (or orthogonal) loop tiling: tiling the loop nest with hyper-rectangles whose bound-
aries are orthogonal to the canonic axes. We assume that rectangular loop tiling is valid for the given loop
nest [25]. Note that the tiled loops are fully permutable. The tile graph is the graph where each node repre-
sents a tile and each arc represents a dependency between tiles. In our case, each node of the tile graph is a

hyper-rectangle of size t; x t3 x - -+ x t,,. Note that though our iteration space is rectangular, after skewing, we



will have hyper-parallelepiped shaped iteration space, and when we tile this with rectangular tiles, we will have
some full rectangular tiles and some partial non-rectangular tiles.

It is well known that [3] if the ¢;’s are large as compared to the elements of the dependency vectors, then
the dependencies between the tiles are unit vectors (or binary combinations thereof, which can be neglected for
analysis purposes without loss of generality). In general, the feasible value of each ¢; is bounded from below by

some constant. For the sake of notational simplicity, in this paper we assume that this is 1.

3.2 Architecture and Execution model

We use an atomic tile execution model: tiles are executed sequentially one after the other. However, the
parallelism available inside the tile is exploited with software pipelining. We first present the architectural
parameters used in the execution model and then introduce the functions that model various aspects of the
execution time of the transformed loop nest.

Although we do not provide experimental validation of our execution time model in this paper, similar
models of execution time have been used by Sarkar [22] (in the IBM XL Fortran compiler) and also by Wolf et
al. [23], and they have been thoroughly validated.

Architectural parameters

We seek an abstraction of the architecture (processor and memory features) that is suitable for use in a cost

model for tiling loop programs of our program model. Our model uses the following parameters:

e « — cost of an iteration: this is the cost of executing an instance of the loop body (in cycles per iteration).
In our case, since the innermost loop is completely parallel, a modulo scheduler can always achieve the
resource minimum initiation interval (ResMIl) [17], and hence « is equal to ResMII.

e 3 — the cost (in cycles) for transferring a word from lowest level cache to the registers.
e 1) — loop increment and test cost: this is the cost for incrementing a loop variable and checking its bounds.

e NR — number of registers available: depending on the loop body, NR could be either the number of integer

or floating point registers.

3.3 Fundamental measures

Computation volume. The computation volume, TV(f}, of a tile is the amount of computation done in a
tile. The computation volume of a tile ¢ = (t1,...,tn), is the number of integer points in the n-dimensional
hyper-rectangle: TV(Z) = [T, t;. The tile volume, TV(t), represents the volume of full tiles. We approximate
the volume of partial tiles with that of the full tiles, and hence use TV(£) as the volume for all the tiles.
Load store volume. The load store volume, LS(f, D), of a tile is the total amount of data that is loaded
and stored when the tile is executed. This quantity is also known as the tile foot-print. The dependences
and data reuse patterns determine the load store volume. Our program model restricts dependences to be
uniform (constant distance). A tile is compute bound if the amount of data accessed (input/output) during the
computation of the tile is at least one dimension less than the computation; otherwise the tile is I/O-bound. It
is easy to see that with uniform dependences, the load store volume of I/0O-bound tiles is proportional to the
tile volume TV(E). The interesting case, where tiling is really useful, is when the tile is compute bound.

For an n-dimensional compute bound tile, the input and output are O(z"~!), where, z = max?_; t;, where

t; is the tile size along dimension i. We consider the case in which the input and output are of O(z"~1), other



cases when the input or output is smaller than O(z"~!) can be handled in a similar way using lower dimensional
facets. Since our tile graph has dependence vectors that correspond to unit vectors, the O(xz"~!) input/output
of a tile directly corresponds to the (n — 1) dimensional facets of the tile, and a constant multiple of every
facet contributes to the load store volume of a tile. The constant is determined by the dependence distances.
There are n pairs of facets, and in rectangular tiling, each of these is potentially involved in a communication.
The volume of the i*" facet, A;, is given by [Tj—, jitj- Now, the load store volume is LS(f, D) = 31" | ailAi,
where a; is a constant that denotes distance along the " facet that is involved in the communication and is
determined by the longest i*" dimension component of any dependence vector in the dependence matrix D.
Based on the schedule, some facets need not be stored and loaded again. There is at most one such facet, say
f, and sharing of f can be captured by excluding it from the load store, i.e., LS(f, D)= Z;L:L#f a; A;. We can
take care of multiple dependences to the same variable by considering the bounding box of the dependences to
each variable and using the diagonal of this bounding box as the columns of D.
Number of tiles. The number of tiles, NT(F, N) = %, counts the total number of tiles after a rect-
angular tiling with tiles of sizes t = (t1,...,tn), of the rectangular iteration space of size N = (Ni,...,N,).
After skewing, the iteration space may no longer be rectangular and counting the number of tiles in this case is
complicated. We use the quantity (iteration space volume)/(tile volume), which is a lower bound on the actual
number of tiles, as an approximation. Since we start with a rectangular iteration space and since skewing is a
volume preserving unimodular transformation, the quantity (iteration space volume)/(tile volume) is the same
as? NT(, N).
Loop overhead. The loop overhead of a loop is used to account for the cost of loop termination test and loop
variable increment. Tt is proportional to the number of times the loop body is executed. An n-dimensional
rectangular loop nest after one level of tiling will have 2n loops. We call the outer n loops inter-tile loops
and the inner n loops intra-tile loops. The i*" inter-tile loop is executed precisely JX—; times for each instance
of the surrounding loop indices. The total overhead of the n inter-tile loops , LolnterTile(£, N), is Yo @i,
where z; = ]\t/iiiiiv The i*" intra-tile loop is executed t; times. The overhead of the set of n intra-tile
loops, LolntraTile(i, N), is ngnﬂ yi, where y; = (t; X ... x t;) x NT(£;N), where NT(, N) is the total number
of tiles and also equal to the number of times the n inter-tile loops surrounding the intra-tile loops will be
executed. The total (intra plus inter tile) loop overhead, LO(Z, N) = LolntraTile(£, N) + LolnterTile(Z, N). Since
after skewing the iteration space may not be rectangular, the rectangular tiling might leave some partial and
full tiles. Treating partial tiles as full tiles and using the approximation for number tiles, developed above, we
can approximate by LO(%, N ), the loop overhead of a skewed rectangular loop nest tiled with rectangular tiles.

Given that the (intra and inter-tile) loops are fully permutable and the fact that a loop with larger trip count
induces lesser overhead at an outer position, one can choose a permutation that would have the minimum loop
overhead. However, a chosen ordering should leave a parallel loop in the inner most position. In this paper, we
do not exploit this flexibility.

When we use skewing to expose ILP, the shape of the iteration space, as well as the dependences change.
The iteration space becomes a parallelepiped and the transformed dependences are given by SD, where S and

D are the skewing and dependence matrices, respectively.

2Given that we are tiling for registers, the tile sizes are going to be very small and with small tile sizes, this approximation is
better.



4 Optimization problem formulation

We now formulate an optimization problem (1) that clearly captures and quantifies the interaction between
the skewing and the register tiling transformations. The objective function is the sum of two terms, the loop
overhead and number of tiles times the execution time for a tile, which itself is the maximum of the tile execution
time and load store time. The unknowns are the tile sizes (#) and the skewing matrix ().

minimize  nLO(f, N)+ NT(f,N) x max (o x TV (£), 3 x LS(, bbox(SD)))
s.t. LS(, bbox(SD)) < NR (1)
N>i>1
SD >0
te zn, S ez

where, t and S are the variables representing tile sizes and skew matrix, respectively, NT(, N ) is the number of
tiles, TV(#) is the tile volume, D is the dependence matrix, LS(¢, bbox(SD)) is the load store volume, LO(#, N)
is the loop overhead, NR is the number of registers available, «, 8 and 7 are respectively the cost of an iteration,
load store cost, and loop bounds check cost. All vector inequalities in the constraints are component-wise. The
first constraint makes sure that the register foot print LS(¢ , bbox(SD)) fits in the number of available registers,
NR, and the second constraint t > 1 makes sure that the tile sizes are positive and the third constraint SD > 0
ensures that the skewed loop nest is fully permutable and hence admits a rectangular tiling.

Once we choose a skew transformation S, substituting it in the combined problem gives an optimization
problem with ¢ as the only variable. Let D= bbox(SD). Then the resulting optimization problem is shown
below (2). We call (2) the optimal tiling problem (for a fixed skew).

- =

minimize 5 LO(Z, N)+ NT(£, N) x max (aTV(Z), 8 LS(f, D))
s.t. LS(i', D) <NR (2)
N>i>1
tezr

Note that, though D is shown as a parameter to the LS(t, ﬁ) function, it is here a given constant vector, and

not a variable of the optimization problem.

5 Checking whether permutation can expose a parallel loop

We will first introduce some notations (used only in this section) which will make the exposition clear and concise.
For any vector x, z(j) represents its j-th component. The level of a vector level(z) is jif Vi < j: z(i) =0
and z(j) # 0, i.e., x(j) is the first non-zero component of x. A zero-lead column is a column vector of the form
(0,0,...,0,¢)T for some ¢ # 0. The j-th unit vector e; is a vector with e;(j) = 1 and e;(i) = 0,Vi # j. A
scaled unit vector, suv(c, j) is a vector x of the form Vi # j : x(i) = 0 and x(j) = ¢ for some non-zero constant
c. In other words, scv(c, 7) is an unit vector along j scaled by a non-zero factor ¢. The dimension of a scaled
unit vector is often obvious from the context. An example (of dimension 4) is suv(2,3) = (0,0, 2,0). Note that
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Figure 3: Example dependence matrices.
level( suv(c, j) ) = j. diag(c1, ca, .. ., ¢pn) constructs a diagonal matrix with ¢q,...,c, as the diagonal entries. A

loop is called parallel if it does not carry any dependences.

5.1 Existence of a loop with no carried dependences

We seek to characterize a condition under which there exists no permutation of £ with at least one parallel loop.
In other words, in every permutation of £, all the loops carry dependences. We seek a characterization based
on the dependences. Let us form a dependence (distance vector) matrix D = [d; d2 ... dy,] whose columns
are the m dependences, d;,ds, .. .,d,, present in L’s body. The effect of loop permutation on the dependences
is completely captured by permuting the rows of D. In any permutation of £, if there is a dependence d with
level(d) = j then loop I}, of the permuted loop nest, carries d.

Consider the two dependence matrices D; and Dy given in Figure 3. In the matrix D;, the dependence
vectors dy and ds3 are scaled unit vectors: do = suv(1l,3) and d3 = suv(2,2). Now, in this permutation, the
dependences d;, do and ds have levels 1,3 and 2 respectively and are carried by the loops L1, L3 and Lo
respectively. However, we can see that by exchanging rows 1 and 3 of D; we can get an innermost loop (row 3
of permuted D) with no carried dependences. Now consider matrix Dy : there exists no permutation of rows
of Dy which can create a parallel loop. What is the structure of the matrix Dy that induces this property? We
seek to characterize this structure in the following discussion leading to Theorem 1.

In any given permutation of the loops, all the n loops will carry dependences if and only if there are (at
least) n dependence vectors with levels 1,2,...,n. If we have dependence vectors of all levels (1,2,...,n) in

every permutation of the loops in £, then we can say that there is no permutation that will expose a parallel

loop.

Theorem 1: Every permutation of the rows of D will contain n columns with levels 1,2,...,n if and only if D
contains a 1 X n sub matrix whose columns can be permuted to form a diagonal matrix, say diag(c1,ca, ..., cn),
where cq, ..., ¢, are the scale factors of the n scaled unit vectors.

Proof: ( = ) Assume that every permutation of the rows of D will contain n columns with levels 1,2,... n.
Let x1,...,z, be these n columns with levels 1,2,... n respectively. Given that we have exactly n vectors

each having a different level, they all have to be linearly independent. If we show that these n columns are
scaled unit vectors, then we can always permute these columns to form a n x n diagonal sub matrix of D. To
show that x,...z, are scaled unit vectors we will use proof by contradiction. Let us assume that they are
(all) not scaled unit vectors. Note that the vector z, with level n has to be a scaled unit vector. Let the
n — 1 columns each have one more non-zero entry below their first non-zero entry. Without loss of general-
ity we can assume that this entry is the next immediate entry. Then the matrix looks the matrix M given below.

T1,1 0 0 0 T1,1 0 0 0
T2,1  X2,2 v 0 0 To1  Tao - 0 0
2,2 ’ 2,2
M = - M =
Tp—1,n—1 0 Tn,n—1 Tn,n
Tn,mn—1 Tn,n Tn,n—1 0



Algorithm 1 Algorithm to check whether the input loop nest has any parallel loop.

1. Input: Dependence matrix D. Output: boolean value indicating whether the input loop nest has any
parallel loop or not.

2. Pick all the columns of D which are scaled unit vectors. This can be done in O(nm), where, n is the
number of rows of D and m, the number of columns. There can be at most m such columns.

3. As we pick the columns in the previous step we can note their levels. Check whether there are n columns
each of which is a scaled unit vector for a distinct j, i.e., suv(c;, j) for j = 1...n. This can also be done
in time O(nm). If there are such n columns return a true; return a false otherwise.

Now we can interchange the last two rows of M to get M’ in which there is no dependence of level n and hence
loop [, does not carry any dependence. But this is a contradiction to our assumption that every permutation
of the rows of D contains n columns with all the levels. Hence the proof. @
Proof: (<) Now we assume that D contains a n x n sub matrix whose columns can be permuted to form a
diagonal matrix say diag(cy,ca,...,cn). Let C be this n x n sub matrix of D whose columns can be permuted
to form diag(cy,...,c,). We need to show that every permutation of D will contain n column with levels
1,2,...,n. It is obvious that after any set of row permutations of a diagonal matrix there exists a set of column
permutations that will bring it back to diagonal matrix form. Hence, after any set of permutations of C' we
can column permute C' to make it a diagonal matrix. This diagonal matrix form makes it obvious that the n
columns have levels 1,...,n respectively. Hence the proof. =

Let us look at the two dependence matrices D1 and D (c.f. Figure 3), again, but in the light of Theorem 1.
We can see that by exchanging rows 1 and 3 of D; we can get an inner most loop (row 3 of permuted D;) with
no carried dependences. There exists no permutations of rows of Dy which can create a loop with no carried
dependences. One can observe that the columns dy, ds, and ds are scaled unit vectors: suv(3,1), suv(2,2) and
suv(1, 3) respectively. Further, note that the 3 x 3 sub matrix formed by the columns dy4, d3, and d; is a diagonal
matrix: diag(3,2,1). One can verify Theorem 1 on these examples.

Theorem 1 gives us an efficient way to check whether there exists at least one loop no carried dependences
— we only need to check whether the dependence matrix D contains n x n sub matrix whose columns can be
permuted to form a diagonal matrix diag(ci, . . ., ¢, ). This can be done in time linear in the size of the dependence

matrix D. The outline of the algorithm is given in Algorithm 1.

6 Space of valid skewing transformations

When loop permutations alone cannot expose a parallel loop, we need to skew the loop nest. We make two
observations regarding the skew matrix S that we seek in the combined optimization problem (1). These
observations narrow down the search space of S.

e Only positive skews produce loops that admit rectangular tiling. We have two constraints:
D > 0 (since our input loop nest admits rectangular tiling) and SD > 0 (since we require the skewed loop
nest to admit rectangular tiling). From Theorem 1, we know that, if the input loop nest does not have
any parallel loop, then the dependence matrix D has a n X n sub matrix whose columns are scaled unit
vectors and which can be permuted to form a diagonal matrix, say M = diag(ci1,- -+, ¢,). Without loss of
generality we can assume that that these n columns ¢, ca,. .., ¢, have levels 1,2,...,n respectively. At
least two of these columns should be made to have the same levels, only then we will have a loop with no

carried dependences. Let us view the matrix D as a partitioned as [M N]|, where M = diag(c1,...,¢n)



is the n x n diagonal sub matrix and N is the sub matrix that contains rest of the columns of D. We
claim that negative skew factors will lead to an invalid transformation by creating negative entries in the
sub-matrix M. To see why, let us see what happens when we skew loop L; with respect to a loop L; with
a negative skew factor —f (cf. Section 3.1 for notation). Such a skew would add to the i-th row of M, the
j-th row multiplied by (—f). The new i-th row would have —f x ¢; in its j-th entry. This negative entry
is not permitted since we require that all the entries of the transformed matrix (SD) be non-negative.
Hence, only positive skew factors are valid, since a zero skew factor is just an identity transformation.

e Skewing any one loop with respect to just one other loop is sufficient and optimal. We seek to
transform the loop nest so that in the transformed loop nest there is one loop that carries no dependences,
i.e., parallel. Given that the input loop nest is fully permutable, after skewing, we can permute this parallel
loop to the inner most position to get our desired loop nest. To make any one loop, say L;, parallel, it is
sufficient to skew some other loop, say L;, with respect to L;. Also, given that (positive) skewing increases
the length of the (positive) dependences, skewing with respect to more than one loop will always produce
longer (when compared to skewing w.r.t. to just one loop) dependences. And, the longer the dependences,
the larger the bounding box and hence, the greater the load store volume, LS(, bbox(SD)). So, skewing
with respect to just one other loop is also optimal. By a similar argument, skewing by a factor larger than

1 to parallelize the loop only increases the load store cost and is sub-optimal.

Based on the two observations made above, we seek to find positive skews of one loop with respect to just one
other loop. The number of choices for such skews is d x (d—1) where, d is the depth of the loop nest we consider.
This gives a list of d(d — 1) potentially optimal skews. For example, for a loop nest with depth 2 or 3 we will
have 2 or 6 choices of skews, respectively.

7 Solving the optimal tiling problem

The optimal tiling problem can be cast as a Geometric Program (GP) [10]. We first introduce the GP frame-
work and then show how the problem (2) of finding optimal tile sizes can be cast as an Integer Geometric
Program(1GP). 1GPs have also been used elsewhere [18], to solve a similar problem, viz., finding optimal tile

sizes for deep memory hierarchies.

7.1 Geometric Programming

Let = denote the vector (z1,za, ..., z,) of n real, positive variables. A function f is called a posynomial function
of z if it has the form

¢

_ A1 2k Ank

flar, @, ... xy) = g CRrytr Ty o ponk
k=1

where ¢; > 0 and «;; € R. Note that the coeflicients ¢, must be nonnegative, but the exponents o;; can be
arbitrary real numbers, including negative or fractional. When there is exactly one nonzero term in the sum,
ie.,t =1and c¢; >0, we call fa monomial function. For example, 0.7+ 2x1 /2% + 233 is a posynomial (but not
monomial); 2.3(z1/z2)!% is a monomial (and, hence a posynomial); while 2z /23 — 233 is neither. Note that
posynomials are closed under addition, multiplication, and nonnegative scaling. Monomials are closed under

multiplication and division.
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A geometric program (GP) is an optimization problem of the form

mimimize fo(x)
subjectto fi(x) <1, i=1,...,m
gi(x)=1, i=1,...,p (3)
x; >0, i1=1,...,n
where fo,..., fm are posynomial functions and g1, ..., g, are monomial functions. If Vi =1...n : z; € Z, we

call the GP an Integer Geometric Program (I1GP).

7.2 Optimal tiling problem is an IGP

The optimal tiling problem (2) seeks to choose tile sizes that minimize some criteria and satisfy some constraints.
The key insight is that the variables of this optimization problem, tile sizes, are always positive. So, polynomial
kind of functions of tile sizes naturally become posynomials, when the coefficients are non-negative.
Theorem 3. The optimal tiling problem (2) (for finding the optimal tile sizes given the optimal skewing matrix)
is an IGP.

Proof. From the definition of the fundamental measures NT(Z, N), LO(Z, N), TV(#), and LS(Z, bbox(SD)) (c.f.
Section 3.3) one can directly observe that they are all posynomials, since all the coefficients are non-negative,
the variables (tile sizes) are always positive, and posynomials are closed under addition. The objective function
itself is a sum of posynomials except for the max() function. However, by introducing additional variables
the max() function can be completely eliminated. A proof of this can be found in [18]. Now coming to the
constraints, LS(Z, ﬁ) < NR can be transformed into a constraint of the required form by dividing the LHS by
NR and expressing the resulting inequality as LS(f, D)/NR < 1. The rest of the constraints are already in the
required form. Hence, the optimal tiling problem (2) can be cast as an 1GP. =)

7.3 Solving integer geometric programs

Geometric programs can be transformed into convex optimization problems using a variable substitution [4] and
solved efficiently using polynomial time interior point methods [12]. Integers solutions can be found by using
a branch-and-bound algorithm. We use YALMIP [14] — a tool that provides an high level symbolic interface
in MATLAB to define and solve 1GPs. The number of (tile) variables of our IGPs are related to number of
dimensions tiled and hence are often small. In our experience with solving IGPs related to tiling, the integer
solutions were found in few (less than ten) iterations of the branch-and-bound algorithm. The (wall clock)
running time of this algorithm was just a few seconds, even with the overhead of using the symbolic MATLAB

interface.

8 Solving the combined ILP and register tiling problem

Recall that, according to our strategy (c.f. Figure 2), we need skewing only when the input loop nest does
not contain any parallel loop that can be exposed by permutation. Hence, first we check (using Algorithm 1
discussed in Section 5) whether the input loop nest has any parallel loop that can be exposed by permutation. If
it does, then just permuting the loop to the inner most position will achieve our goal. This permutation is always
valid, since our input loop nest is fully permutable (since rectangular tiling is valid for it). In this case, we just

permute the loop and do not skew (i.e., the skew matrix S becomes the identity matrix). Then the combined
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1 for (il =1; i1l < N1 ; i1++)
1; i2 < N2; i24+4)
Al[i2 —1] + A[i2];

Figure 4: Original loop nest. No permutation can expose the parallelism.

1 for(xl = 0; x1 < (N2+N1-1) / T1; x14+4) {

2 for (x2 = max((—N24T1xx1)/T2,0); x2 < min((T1*x14T2)/T2, (N1-1)/T2); x2++) {

3 for (il = max(Tlsx1+1,T24x2+2); il < min(T2#x2+N24+T2, T1sx1+T1,NI+N2); il++) {
4 // On the tile boundary use the saved value

5 i2 = max(T2xx2+41,i1-N2);

6 Ali2] = B[il] + A[i2];

7 for(i2 = max(T2xx2+41,i1-N2) + 1; i2 < min(T2xx24T2,N1,il1 —1) — 1; i24+4) {
8 A[i2] = A[i2 —1] + A[i2];

9

10 // On the tile boundary save the value in B

11 i2 = min3(T2+x2+T2,N1,i1 —1);

12 B[il] = A[i2 —1] + A[i2];

13 Alil] = B[il];

Figure 5: Skewed, permuted, and tiled loop nest. All the iterations of the innermost loop (i2) can be executed
in parallel.

problem (1) reduces to the optimization problem for finding the optimal tile sizes (for the permuted loop nest),
i.e., the optimal tiling problem (c.f. problem (2)) with $ = I(the identity matrix) and hence D = bbox(D). This
problem can now be directly solved as shown in Section 7. Note that when a permutation alone is sufficient, it
is globally optimal too, because skewing will always only increase the load store cost and hence the execution
time.

When permutation cannot expose a parallel loop, we need skewing to expose ILP. In this case, as shown in
Section 6, we have d(d — 1) choices for the skewing matrix (where d is the depth of the loop nest). We construct
d(d — 1) optimal tiling problems (with fixed skewing matrices), one for each choice of the skewing matrix. The
optimal skew and tile sizes are obtained by solving these d(d — 1) optimal tiling problems (2) and picking the

one that has the smallest objective function value (i.e., the minimum execution time).

9 A complete example

Consider the loop nest shown in Figure 4. There exists no permutation of the loops that can expose the

10
parallelism to a software pipeliner and one can verify Theorem 1 on the dependence matrix D = 0 1 of

this loop nest. However, the loop has lots of parallelism that can be exposed to a software pipeliner by skewing.
We have d(d — 1) = 2 choices for skewing the loops, viz., skewing i1 w.r.t to i2 or vice-versa. But, due the
symmetric nature of the dependences in D, both the skewing will have the same effect on the bounding box.
Let us consider the case, when we skew loop 12 with respect to the other i1 and then permute them to make
the i1 loop the inner most. Now all the dependences are carried by the outer loop (i2) and the inner loop
(i1) is completely parallel. A software pipeliner can exploit all this parallelism to construct a schedule which is

constrained only the available execution resources (and not by the dependence constraints). We can further tile

12



this skewed-permuted loop nest to enable register reuse. Figure 5 shows the skewed, permuted and tiled loop
nest, with tiles sizes T1 and T2.
To determine the optimal tile sizes, we instantiate the combined optimization problem (1) with the optimal

11
skew (and permute) matrix S = < 0 1 ) , resulting in an optimal tiling problem, which can solved as discussed

~ 1
in Section 7. Now, D = bbox(SD) = < ) ) Instantiating the optimal tiling problem we get the following

problem (4) :

minimize ]\t]iii\f x max (a X t; X ta, BX (t1 +t2)) +7 (N1 x Ny + Nl%\& + %ng + 1;7—11)

S.t. t1 +t2 <NR (4)
i>1
te?

Where, « is the cost per iteration and is equal to the I (initiation interval), 5 is the cost of moving a data
item from the lowest level cache to the register and 7 is the cost of a loop bound check. NR is the number of

(floating point) registers in the architecture.

10 Related work

Unroll and jam approach. Sarkar [22] addresses the same problem as ours and uses unroll and jam followed by
scalar replacement [5] for exposing ILP and register reuse. He formulates the problem as a discrete optimization
problem with unroll factors as the variables and proposes an exhaustive search with heuristics to solve it. Our
formulation seeks both skew matrix and tile sizes and is solved to global optimality via convex programming.
The class of programs considered by Sarkar, loops with affine dependences, is larger than what is considered by
ours, loop nests with uniform dependences. However for uniform dependence loop nests, by setting the skew
matrix to identity, viewing the tile sizes as unroll factors, and adding the code size constraint, our method can
be directly used to solve the problem addressed by Sarkar. In this sense, for this class of loop nests, the problem
of solving for optimal unroll factors is a special case of our problem.

Carr and Kennedy [6] proposes an algorithm to determine the unroll factors that balance the floating-point
and memory access operations. This objective function is different from ours, as well as Sarkar’s, viz., minimizing
the execution time.

Hierarchical tiling. The work of Carter et al. [8], and followed up by Mitchell et al. [15], uses tiling to
expose the register reuse as well as ILP. They propose hierarchical tiling as a hand tuning technique to better
exploit pipelined functional units and registers. Our work is similar to Carter et al.’s work in spirit, however,
we have proposed a completely automatic method to determine the tile sizes and skew factors.

Code generation for register tiling. Jiminez et al. [11] propose a code generation strategy for non-
rectangular loop nests tiled for registers. Their strategy uses index set splitting to strip off the partial boundary
tiles and the full tiles are completely unrolled. Hence, they assume that unroll and jam followed by scalar
promotion is used for exposing ILP and register reuse. Sarkar [22] also proposes a code generation algorithm
which takes the unroll factors as input and produces an unrolled loop nest.

Software pipelining of loop nests. Traditionally software pipeliners have only looked at inner most
loop nests. Ramanujam [16] proposed a technique where an integer linear programming formulation is used to
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find a (software) pipelined schedule that exploits the parallelism available in the whole loop nests. However,
he did not consider resource constraints. Rong et al. [21] have recently proposed a technique called single
dimension software pipelining for multi-dimensional loops. Their technique computes the initiation interval and
(cache) locality of every loop in the given loop nest and picks the best. They do not consider any ILP exposing
transformations, like permutation or skewing, and hence, are limited in how ILP can be exploited. Whereas our
approach, by the virtue of looking at skewing and permutation, will always be able to expose the available ILP.
Rong et al. also propose a method for code generation [20] and recently have addressed the register allocation
issue [19]. A similar problem in the context of ILP and caches has been addressed by Wolf et al. [23].

11 Discussion and future work

We have formulated the combined problem of choosing an ILP-exposing (skewing) transformation and register
tiling. We have proposed an efficient way to check whether permutation can expose any parallel loops. We have
distinguished two cases: when loop permutation can expose a parallel loop and when it cannot. For the former
case, we have reduced the combined problem to a single convex optimization problem and for the latter case we
have reduced to the combined problem to a set of convex optimization problems. All these convex optimization
problems can be solved efficiently using currently available tools (eg. YALMIP [14]).

The formulation of the combined problem exposes the fact that the skewing transformation affects the depen-
dences and which in turn affects the overall execution time of transformed loop nest. We see this formulation,
and analysis of it, as a first step in understanding the structure of this important complex problem. To the best
of our knowledge, this is the first formulation and globally optimal solution of this combined problem.

11.1 Future work

We are currently working on adapting modulo scheduling techniques [17, 1] to schedule the transformed loop
nest. Note that, the modulo scheduler is guaranteed to find the inner most loop nest parallel. Hence, we do
not need any dependence analysis to determine the achievable initiation interval. We are also investigating at
array register allocation techniques to map all the array values accessed in a tile to registers. Note that from
the constraints of the optimal tiling problem, we are guaranteed to have enough registers.

As a future work, we plan to extend the program class. One direction is to extend the work to include
iteration spaces with parallelepiped shapes. Another direction is to permit non-uniform, say affine, dependences
in the loop body.
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