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Abstract. Recently the Single-dimension Software Pipelining (SSP) technique
was proposed to software pipeline loop nests at an arbitrary loop level [18–20].
However, SSP schedules require a high number of rotating registers, and may
become infeasible if register needs exceed the number of available registers. It is
therefore desirable to design a method to compute the register pressure quickly
(without actually performing the register allocation) as an early measure of the
feasibility of an SSP schedule. Such a method can also be instrumental to provide
a valuable feedback to processor architects in their register files design decision,
as far as the needs of loop nests are concerned.
This paper presents a method that computes quickly the minimum number of
rotating registers required by an SSP schedule. The results have demonstrated
that the method is always accurate and is 3 to 4 orders of magnitude fasteron
average than the register allocator. Also, experiments suggest that 64 floating-
point rotating registers are in general enough to accommodate the needsof the
loop nests used in scientific computations.

1 Introduction

Software pipelining [1, 4, 9, 10, 13] is an efficient and important method to schedule
loops by overlapping the execution of successive iterations. The most popular tech-
nique, modulo-scheduling (MS) [3, 8, 10, 12, 16, 21], only addresses single loops or the
innermost loop of a loop nest. Traditional approaches to schedule loop nests mainly
focus on scheduling the innermost loop and extending the schedule toward the outer
levels by hierarchical reduction [10, 14]. An alternative way is to perform MS after loop
transformations [2]. A new resource-constrained scheduling technique named Single-
dimensional Software-Pipelining (SSP) [18–20] does not restrain itself to the innermost
loop and can software pipeline any given loop in a loop nest. If the innermost level is
chosen, SSP is proven to be equivalent to MS. Experimental results have shown that
SSP often outperforms MS, and is fully compatible with the wide array of loop opti-
mizations and transformations used for MS. The technique can currently be applied to
any source imperfect loop nests with no conditional statements or function calls and
with run-time constant trip counts.

In the SSP compilation process, shown in Figure 1, registersare allocated af-
ter the one-dimensional (1-D) schedule is computed. However, both phases are time-
consuming (the register allocation problem is NP-complete[18], even for single loops
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[16]). Therefore, it is preferable to detect early if the register allocator is bound to fail
because of a too high register pressure. The scheduler can then compute a different, but
more favorable schedule. We propose in this paper a fast evaluation method to measure
the rotating register pressure, namedMaxLive, of any kernel computed by the SSP
scheduler. It is defined as the maximum number of lifetimes atany time during the exe-
cution of the loop nest scheduled with SSP. It is a theoretical lower bound that may not
be achievable. Only loop variants, allocated to rotating registers, are considered. Loop
invariants are assumed to be allocated to static registers.When unspecified, ’register’
will always refer to ’rotating register’. Any register spilling technique is assumed to
have been applied earlier to the 1-D schedule and is not the subject of the paper.

Such an evaluation method is important and has many uses. (1)First, it allows the
compiler to avoid running the expensive register allocatorwhen it is bound to fail. A
new 1-D schedule with lower requirements can then be computed by increasing the
initiation interval or choosing another loop level, for instance. (2) Second, because the
register pressure is a direct function of the 1-D schedule , the method can be used to
compare the register pressure of 1-D schedules computed by different SSP scheduling
methods. (3) Third, the computed register pressure can alsobe used to measure the
effectiveness of any register allocator. (4) Last, the method provides a valuable feedback
to processor architects in their register files design decision, as far as the needs of loop
nests are concerned. Other questions can then be answered. Is the register pressure the
same for both floating-point (FP) and integer (INT) registers? Are the register files of
the target architectures balanced enough to efficiently handle the register pressure? Can
we anticipate the final register pressure or the number of registers allocated by a specific
register allocator?

Several issues specific to SSP must be handled. First, the final schedule is composed
of more than one repeating pattern. Second, some lifetimes are stretched to honor re-
source constraints. Last, the initiation rate of the lifetimes is irregular. In this paper, we
propose a method to compute the rotating register pressure of any given 1-D schedule.
The method is fast: it approximatesMaxLive by skipping the initialization and con-
clusion phases of the final schedule and considers a unique outermost loop iteration, or
outermost iteration for short. A second method, comprehensive, accurate, but very slow,
is used as reference. For clarity and space reasons, the second method is not presented
in the paper, but is accessible in [5] instead. We will refer to them as the fast method
and the comprehensive method, respectively.
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It is the first time a method to compute the register pressure of an SSP schedule is
proposed. With single loops, where MS is used, the traditional technique is to count
the number of lifetimes in the kernel, also namedMaxLive [17]. Our method can be
seen as its natural extension to handle the more complex issues specific to the multidi-
mensional case, presented in section 3.2.MaxLive was the chosen method to evaluate
the efficiency of register allocators in [6, 11]. Other work [15] considered the theoret-
ical register pressure during the scheduling phase by counting the number of buffers
required for each functional units. However the number of buffers did not take into ac-
count that some buffers could be reused. The register pressure was also studied for non
software-pipelined schedules, such as the concept ofFatCover in [7]. Llosa et al. [11]
usedMaxLive to measure the register pressure of floating-point benchmarks. Their
results also show that a FP register file of 64 registers wouldaccommodate most of the
register pressure and limit accesses to memory in the case ofMS scheduled loops. The
results were later confirmed in [22].

The methods presented in this paper were implemented in the Open64/ORC 2.1
compiler on an Itanium workstation. The experiments were conducted on a set of 125
loop nests of various depths. The experiments lead to several conclusions. (1) The fast
method is at least 3 orders of magnitude faster than the register allocator and could
therefore be used in a compiler framework to quickly determine the feasibility of an
SSP schedule. (2) Most of the loop nests of depth 3 or less require less than 96 INT
registers and about half of the loop nests of depth 4 or highercannot be scheduled
because of a too high INT register pressure. (3) The FP register pressure never exceeds
47 registers and therefore more than half of the FP register file is never used, showing
an imbalance in the usage of the register files between INT andFP. (4) If half of the FP
register file is used for INT values instead, then 76% of the loop nests of depth 5 could
be software-pipelined with SSP.

The paper is organized as follows. Section 2 briefly introduces the SSP method.
Section 3 defines some notations and conventions used in the paper, formulates the
problem and explains in details the issues to tackle. Our solution is then described in
Section 4. Experiments and results are presented in Section5 before concluding in
Section 6.

2 Single-dimension Software Pipelining

2.1 Overview

Single-dimension Software Pipelining (SSP) [18–20] is a resource-constrained schedul-
ing method to software pipeline perfect and imperfect loop nests with constant trip
counts at run-time. Unlike traditional innermost-loop-centric approaches [10, 14, 16],
SSP does not necessarily software pipeline the innermost loop of a loop nest, but di-
rectly software pipelines the loop level estimated to be themost profitable. The en-
closing loops of the selected loop, if any, are untouched. Ifthe innermost loop level is
chosen, SSP is equivalent to MS applied to single loops. SSP retains the simplicity of
MS, and yet may achieve significantly higher performance [19].

Figure 2(a) shows an example of a double loop nest. In Figure 2(b), the inner-
most loop is modulo scheduled, whereas, in Figure 2(c), the outermost loop is software
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Fig. 2.Simple SSP software pipelining example

pipelined using SSP. Note that, although the two outermost iterations are running in
parallel, the innermost loop is running sequentially within each outermost iteration. In
our example the SSP schedule is shorter by 2 cycles.

SSP proceeds in several steps to produce the final schedule [18–20]. First, the
most profitable loop level is chosen for scheduling based on instruction-level paral-
lelism or other criterion. Second, multi-dimensional dependences are simplified into
a 1-dimensional problem from which a 1-D schedule is computed, represented by a
kernel. Registers are then allocated to the loop variants inthe kernel. Last, the 1-D
schedule is mapped back to the multi-dimensional iterationspace and the final schedule
is generated as an assembly code.

Because the enclosing loops to the selected loop are untouched, they are ignored
from our point of view and we will always see the chosen loop asthe outermost loop of
the loop nest. The loops are then referred asL1, L2, . . ., Ln from the outermost level to
the innermost level wheren is the depth of the loop nest.

2.2 From the Kernel to the Final Schedule

The final schedule is exclusively made of multiple copies of the kernel, with sometimes
variations or truncations. As such, one only needs to consider the kernel when counting
the lifetimes in the final schedule. A kernel is composed ofS stages. Each stage takesT

cycles to execute. Zero or more operations are scheduled in each modulo-cycle of each
stage with the restriction that operations from different levels must be scheduled into
different stages.

Figure 3(b) shows the kernel of the triple loop nest from Figure 3(a). There are 5
stages a, b, c, d , and e. The outermost loop is made of all theS = S1 = 5 stages, the
middle loop ofS2 = 3 stages (b, c, d), and the innermost loop ofSn = 2 stages (c,
d). Each stage is made ofT = 2 modulo-cycles and some stages have empty schedule
slots.

A more generic kernel is shown in Figure 3(c). The indexes of the first and last stage
of loop leveli are notedfi andli respectively. The number of stages at leveli is noted
Si = li−fi +1. The total number of stages is notedS and is equal toS1. All the stages
have the same initiation intervalT . In Figure 3(b),f1 = 0, f2 = 1, f3 = 2, l3 = 3,
l2 = 3, l1 = 4, andT = 2.
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FOR I=1,N1
op1

END FOR
op6

FOR J=1,N2
op2

END FOR

FOR K=1,N3
op3
op4
op5

END FOR

(a) Triple loop nest
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(d) Final Schedule (N1=8,N2=2,N3=3)

Fig. 3.A More Complex Example

Figure 3(d) shows the final schedule of our example. The stages are symbolized
by their letters for clarity purposes. We assume that the trip counts for each loop are
N1 = 8, N2 = 2, andN3 = 3 (stage b appears only twice in each column, and stages
c and d appear three times after each instance of stage b). A column represents the
execution of a single outermost iteration (8 total). Both inner loops are represented only
for the first two outermost iterations. Afterwards, they aresymbolized by a dashed box.
Because of resource constraints, only a group ofSn = 2 outermost iterations can fully
be executed in parallel [20, 19]. The other outermost iterations are delayed and pushed
later in the schedule, as illustrated by the thick vertical arrow.

Because of the delays and the repetitive nature of the schedule, the final schedule
can be decomposed into five different patterns: the prolog, the outermost loop pattern
(OLP), the innermost loop pattern (ILP), the draining and filling pattern1 (DFP), and

1 also calledtransition codein [20]
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the epilog. The ILP and DFP form the Inner Loop Execution Segment (ILES).Each
pattern can be fully derived from the kernel. The ILP and DFP are obtained by cyclicly
consideringSn consecutive stages among theSi stages of the kernel for loop level
i [19]. Predication is used in the OLP to truncate unnecessarystages.

3 Problem Formulation & Lifetimes Classification

3.1 Lifetimes Notations & Conventions

The distance in terms of outermost iterations between the definition and the use of a
loop variant is called theomega value of the use. The maximumomega value of all the
uses of a loop variant represents the number of live-in values required for the variant.
Similarly, if live-out values are required from a loop variant, we notealpha the number
of values. Those notations are consistent with Rau’s conventions [17]. A loop variant is
statically defined only once per loop level.

The time period when an instance of a loop variantv is live is called thescalar
lifetime, or lifetime for simplicity, of that instance. In our examples, as shown in Fig-
ure 4(a), a circle represents the start of a lifetime, a crossthe end, and a dash a non-
killing use of the variable. At any given cyclec of the final schedule, the number
of lifetimes is called theFatCover at cyclec. MaxLive is the maximum of all the
FatCovers.

In order for the operations to be interruptible and restartable in a VLIW machine
and to avoid dependencies between operations scheduled in the same cycle, a lifetime
is started at the beginning of the cycle of the defining operation and is killed at the
end of the cycle of the killing operation. This convention matches Rau’s convention
about scalar lifetimes in [17]. A register cannot be used anddefined in the same cycle,
except if it is by the same operation, as shown in Figure 4(b) and 4(c). We assume
that the intermediate representation follows the same conventions. A loop variant can
be redefined by the same operation like in Figure 4(c). In the latter case, the operation
will be considered only as a use of the variant for the purposeof our algorithms.

3.2 Problem Formulation & Issues

The problem can be formulated as follows:given a loop nest and a SSP schedule for it,
evaluate the rotating register pressureMaxLive of the final schedule.

The problem presents several issues. First, the lifetimes do not exhibit regular pat-
terns like with modulo scheduling. Successive instances ofthe same lifetime do not
reappear everyT cycles: because of the push operations, some delays are encountered.
For the same reason, some lifetimes appear to bestretcheduntil the stalled outermost
iterations they belong to resume their execution. Examplescan be seen in Figure 5.

Second, the number of lifetimes in the same stage and modulo-cycle may vary,
depending on the position of the stage in the final schedule. For instance, Figure 4(d)
shows a part of the final schedule presented in Figure 3(d). The loop variant is defined
in the first instance of staged and used in stagec. The same loop variant is defined
again in the second instance ofd but never used. However, the register required for the
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Fig. 4.Lifetimes Notations, Situations, and Classification

definition must be accounted for during the only cycle where the second instance of
the loop variant is live. Symmetrically, a value may be defined each iteration and never
used until the last iteration, where the value is used in the enclosing loop (Figure 4(e)).

Similarly, whether the stage belongs to the last instance ofthe enclosing loop also
influences the number of local lifetimes. In Figure 4(f), thelast instance of the loop
variant is used at the beginning of the enclosing loop. If it is the last iteration of the
enclosing loop, then the value is never used and the local lifetime is reduced to a single
cycle. We refer to those two situations asfirst andlast.

Finally, the method must be fast in order to be used as a tool bythe register allocator
and the scheduler to help detect infeasible solutions early.

3.3 Lifetimes Classification

For the purpose of the algorithms described in this paper, lifetimes are classified into
5 categories, illustrated in Figure 4(g). Global lifetimescovers the whole execution of
the loop nest. This is typical of loop invariants and those lifetimes are not considered
by our algorithm. Output lifetimes hold values computed within the loop nest that will
be used outside. The number of parallel live-out values of the same loop variant is
equal to thealpha value of the variant. Input lifetimes start before the beginning of
the loop and terminates before the end. The number of parallel live-in values of the
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same loop variant is the maximum of all theomega values of the variant among all its
uses. Cross-iteration lifetimes cross outermost iterations. By construction, a sequence
of cross-iteration lifetimes start with input lifetimes. Every other lifetime is said to be
local to the current outermost iteration.

4 Register Pressure Computation

This section presents the details of our solution. We make the assumption that the max-
imum register pressure will appear in the steady phase (OLP and ILES) of the final
schedule. Therefore, input and output lifetimes are ignored and only local and cross-
iteration lifetimes are considered. Experiments in Section 5.1 will show that this as-
sumption is always correct.

A snapshot of our final schedule during the steady phase is shown in Figure 5. The
lifetimes can be partitioned into 7 groups, shown in the legend. To compute the maxi-
mum register pressure of the final schedule, we count the number of lifetimes in each of
the seven groups. Cross-iteration lifetimes are counted byanalyzing the definition and
uses of each cross-iteration loop variant. Local lifetimesare counted for each single
stage of the kernel for both situations: first or last in the current outermost iteration. The
exact algorithms are available in [5]. An overview is given in the next subsections.

4.1 Cross-Iteration Lifetimes

Because the outermost loop level is the only level actually software pipelined, only vari-
ants defined in the outermost level can have a cross-iteration lifetime. The first step con-
sists of identifying the cross-iteration variants. They are defined in the stages appearing
in the outermost loop only and show at least one use with an omega value greater than
0. Then, for each variant, the stage and modulo-cycle of the definition and of the last use
are computed and notedSdef , cdef , Skill, andckill, respectively. The definition of each
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COMPUTE CROSS ITERATION LT():
civs← ∅ // cross-iteration variants set
ovs← set of the variants defined in the outermost loop

// Identify the cross-iteration variants
for each operationop in the schedule

for eachsource operandsrc of op

if omega(op, src) > 0 and src ∈ ovs then
civs← civs ∪ {src}
initialize Sdef , cdef , Skill, ckill for src to−1

// Collect the parameters for each cross-iteration variant
for each stages from l1 to f1, backwards

for eachcyclec from T − 1 to 0, backwards
for each operationop in s at cyclec

for each source operandsrc of op in civs

if Skill(src) = s + omega(op, src) then
Skill(src) unchanged
ckill(src)← max(ckill(src), c)

else ifSkill(src) < s + omega(op, src) then
Skill(src)← s + omega(op, src)
ckill(src)← c

for each result operandres of op in civs

cdef(res)← c

Sdef(res)← s

COMPUTE LOCAL LT():
// Start recursive analysis from the outermost level
∀(s, c, p) ∈ [f1, l1]X[0, T ]X{first, last}

LTlocal(s, c, p)← −1, Visit Level(1, ∅)

// Initialize first with lastvalue iffirst uninitialized
for each stages from f1 to l1

for eachcyclec from 0 to T

if LTlocal(s, c, first) = −1 then
LTlocal(s, c, first)← LTlocal(s, c, last)

V ISIT LEVEL(level level, live setlive):
// Count the local lifetimes for loop level ’level’
for each stages from llevel to flevel, backwards

for eachcyclec from T to 0, backwards
live← live ∪DEF (s, c) ∪ USE(s, c)
if LTlocal(s, c, last) = −1 then

LTlocal(s, c, last)← |live|
else

old← LTlocal(s, c, first)
LTlocal(s, c, first)← max(old, |live|)

live← (live−DEF (s, c)) ∪ USE(s, c)
// Recursive call for the inner levels
if level < n and s = flevel+1 then

Visit Level(level + 1, live)

Fig. 6.Fast Method Algorithms

variant is unique and therefore easily found. Because cross-iteration lifetimes span sev-
eral outermost iterations, the last use of a such lifetimes must be searched among each
of the spanned iterations. The stage index of the last use is computed by adding the
omega value of the use to its stage index.

Afterward, the number of cross-iteration variants lifetimes at modulo-cyclec in the
OLP is then given byLTcross(c), shown in Figure 8.Skill(v)−Sdef (v) + 1 represents
the length in stages of the lifetime ofv. The two otherδ terms are adjustment factors
to take into account the exact modulo-cycle the variant is defined or killed in the stage.
Figure 7(a) shows an example of a cross-iteration lifetime.The lifetime starts atSdef =
1, corresponding to stageb, andcdef = 2, and stopsomega = 3 iterations later in
stageSkill = 0+ omega at modulo-cycleckill = 0. Then the number of cross-iteration
lifetimes for that variant is equal to 2, 1, and 2 at modulo-cycle 0, 1, and 2 respectively.

4.2 Local Lifetimes

The computation of the local lifetimes is done by using traditional backwards data-flow
liveness analysis on the control-flow graph (CFG) of the loopnest where each loop
level is executed only once. A generic example for a loop nestof depth 3 is shown in
Figure 7(b). The final schedule is partitioned into2 ∗ n − 1 blocks of stages. For each
level but the innermost, there are two blocks. The first is made of the stages exclusively
belonging to the loop level and executed before the ILP, and the second of the stages
exclusively belonging to the same level but executed after.The innermost level has
only one block made of theSn innermost stages. The separations correspond to the
separations between stages of different levels in the kernel and the order in which the
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Fig. 7.Lifetimes Computation

stages are visited is the order of the stages in the kernel. The figure shows the stage
indexes for each block. Stages visited asfirst are represented in light gray whereas
stages visited aslast are in dark gray.

4.3 Register Pressure

The OLP is composed ofSn kernels, each made of all theS stages. The register pres-
sure is the sum of the cross-iteration and local lifetimes for each stage. The distinction
between first and last instance of the local lifetimes must bemade, leading toS − n

different cases. We then obtain the formula forLTolp shown in Figure 8. The first term
counts all the cross-iteration lifetimes. The second is themaximum number of local
lifetimes among theSn possible instances of kernel in the OLP.

The formula for the ILP and DFP isLRiles. The first three terms correspond to the
three types of stretched lifetimes shown in Figure 5: 7, 4, and 6 in that order. Their num-
ber is fixed for the entire execution of the ILES and equal to the number of lifetimes
live at the exit of the OLP. The fourth term of the formula corresponds to the local life-
times of the ILES (5).MaxLive is then the maximum between between the maximum
register pressure of the OLP and the maximum register pressure of the ILES patterns.

Although it is possible to modify the algorithms and formulas to make the
MaxLive computation incremental, it is not believed that our methodis fast enough to
help guide the instruction scheduler.

5 Experiments

The algorithms were implemented in the ORC 2.1 compiler and tested on an 1.4GHz
Itanium2 machine with 1GB RAM running Linux. The benchmarksare SSP-amenable
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LTcross(c) =
∑

v∈civs

((Skill(v)− Sdef(v) + 1) + δdef (c, v) + δkill(c, v))

where

{

δdef (c, v) = −1 if c < cdef (v), 0 otherwise
δkill(c, v) = −1 if c > ckill(v), 0 otherwise

LTiles(c) = LTcross(T ) +

l1
∑

s=ln

LTlocal(s, T, last) +

fn−2
∑

s=f1

LRlocal(s, T, first)

+ max
l∈[2,n]

(

max
i0∈[0,Sl−1]

(

Sn−1
∑

i=0

LTlocal(fl + (i0 + i)%Sl, c, f irst)

) )

LTolp(c) = LTcross(c) + max
i∈[1,Sn]

(

l1
∑

s=ln−i

LTlocal(s, c, last) +
ln−1−i
∑

s=f1

LTlocal(s, c, first)

)

FatCoverolp = max
∀c∈[0,T−1]

(LTolp(c))

FatCoveriles = max
∀c∈[0,T−1]

(LTiles(c))

MaxLive = max(FatCoveriles, FatCoverolp)

Fig. 8.Register Pressure Computation Formulas

loop nests extracted from the Livermore Loops, the NPB 2.2 benchmarks and the
SPEC2000 FP benchmark suite. A total of 127 loop nests were considered. When all
the different depths are tested, 328 different test cases were available. There were 127,
102, 60, 30, and 9 loop nests of depth 1, 2, 3, 4, and 5, respectively.

The main results are summarized here and explained in details in the next subsec-
tions. (1) The fast method is 1 to 2 orders of magnitude fasterthan the comprehensive
method, and 3 to 4 orders of magnitude faster than the register allocator. (2) Despite
the approximations made by the fast method, its computedMaxLive is identical to
MaxLive computed by the comprehensive method. No rule of thumb couldbe de-
duced to predictMaxLive by only considering the 1-D schedule parameters such as
kernel length, number of loop variants, and others. Rotating Register pressure increases
quickly for integer values as the loop nest gets deeper and about half of the loop nests
of depth 4 or 5 show aMaxLive higher than the size of the INT register file. (3) The
floating-point rotating register pressure remains about constant as the depth of the loop
nests increases, and never exceeds 47 registers. Consequently, the floating-point rotat-
ing register file could be reduced from 96 to 64 registers. Theextra 32 registers could
be added to the integer register file instead.

5.1 Compilation Time

The time measurements are presented in Figure 9(a) where theloop nests have been
sorted first by increasing depth, delimited by tics on the horizontal axis, then by increas-
ing kernel length. Note the logarithmic scale for the vertical axis. The comprehensive
and fast methods take up to 3.18 and 0.04 seconds respectively, with an average of 0.16
and 0.005 seconds. The running time of each method is directly related to the kernel
length. The shape of the graph confirms the quadratic runningtime of the fast method
and the influence of the depth of the loop nest. The fast methodis 22.9 times faster than
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Fig. 9.Experimental Results

the comprehensive method, with a maximum of217.8. As the loop nest gets deeper, the
speedup becomes exponentially more significant.

The running time of the fast method and the register allocator from [18] are com-
pared in Figure 9(d). On average, the fast method is 3 orders of magnitude faster than
the register allocator with a maximum of 20000. As the loop nest gets deeper, i.e. as the
MaxLive increases and the need for a quick method to evaluate the register pressure a
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priori becomes stronger, the speedup increases, making thefast method a valid tool to
detect infeasible schedules before the register allocator.

Although the fast method does not take into account live-in and live-out lifetimes,
the computedMaxLive was identical for the two other methods in all the benchmarks
tested.MaxLive is indeed less likely to appear in the prolog and epilog.

5.2 MaxLive

The computedMaxLive is a optimistic lower bound on the actual register pressure.
It does not take into account that a value held in one registerat cyclec must remain
in the same register at cyclec + 1 or that the use of rotating registers reserves a group
of consecutive registers at each cycle, even if some of them are not currently used.
The actual register allocation solution computed by an optimal register allocator may
allocate more registers thanMaxLive. However, with the addition of register copy
instructions,MaxLive registers can always be reached

The computedMaxLive is shown in Figure 9(b) for INT and FP loop variants. The
benchmarks have been sorted by increasing depth, indicatedby small tics on the hori-
zontal axis, and by increasingMaxLive. The averageMaxLive for INT and FP are
47.2 and 15.0 respectively with a maximum of 213 and 47. If we only consider rotating
registers, the 96 hard limit on the number of available FP registers in the Itanium archi-
tecture is never reached. However the 96 limit for INT registers is reached more often
as the depth of the loop nests increases, up to 56% for the loopnests software pipelined
at level 4 as shown in Figure 9(e).

INT MaxLive increases faster than FPMaxLive. INT MaxLive indeed increases
as the nest gets deeper because more inner iterations are running in parallel. It is par-
ticularly true for INT values that are used as array indexes.If an array index is defined
in the outermost loop, then there is one instance of the indexfor each concurrent out-
ermost iteration in the final schedule. For FP values however, this is not the case. They
are typically defined in the innermost loop only and have veryshort lifetimes.

We also tried to approximateMaxLive by looking at the 1-D schedule parameters.
However no rule of thumb could be derived by looking at one parameter such asS,
Sn, the length of the kernel or the number of loop variants. TheMaxLive was also
compared to the actual number of registers allocated by the register allocator. Unlike
in MS where the number of registers allocated rarely exceedsMaxLive+1 [17], the
difference with SSP varies between 0% and 77%. Such results are explained by the
higher complexity of SSP schedules compared to MS and because MaxLive is not a
tight lower bound.

5.3 Floating-Point Register File Size

Figure 9(c) shows the total register pressure, defined as thesum ofMaxLive for INT
and FP registers, and the ratio betweenMaxLive for FP and INT registers. The bench-
marks are sorted by increasing ratio. The total register pressure rarely exceeds 192
registers, the size of the rotating register file in the Itanium architecture. Although FP
MaxLive can be twice higher than INTMaxLive, the FP/INT ratio remains lower
than 0.5 when the total register pressure is greater than 96.
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Figure 9(f) shows FPMaxLive as the same loop nest is scheduled at deeper levels.
FPMaxLive does not or barely increases as a same loop nest is scheduled at a deeper
level. The maximum FPMaxLive never exceeds 47 registers.

Several conclusions, that may be useful for future designs of architectures with the
same number of functional units and superscalar degree thanthe Itanium architecture,
can be drawn from these remarks. First, the INT register file may benefit from a smaller
FP register file with a ratio of 2 for 1. The FP register size caneither be decreased to save
important chip real estate, or the INT register file increased to allow more SSP loops
to be register allocated. Second, for the set of benchmarks used in our experiments, the
optimal size for the FP register file would be 64. It would not prevent any other loop
nests from being register allocated while giving extra registers to the INT register file.
If a size of 64 and a INT/FP ratio of 2 are chosen, the feasibility ratio for loop nests
of depth 4 and 5 would jump from 43% and 56% to 77% and 67%, respectively. The
FP/INT ratio chosen for the Itanium architecture is not incorrect, but was chosen with
MS loops in mind, which exhibits a lower INTMaxLive.

6 Conclusion

Single-dimension Software Pipelining (SSP) software pipelines a loop nest at an arbi-
trary level. However the register pressure is too high for half of the loop nests of depth 4
or more. It is therefore necessary to know the register pressure early in the compilation
process to avoid calling the register allocator when it is bound to fail. The results of the
evaluation could also be used to evaluate the efficiency of any SSP register allocator.
We proposed in this paper a methodology that quickly computes the rotating register
pressure of an SSP schedule

Results showed that our method is accurate and at least 3 orders of magnitude faster
than the register allocator on average, making it a valid tool to detect infeasible sched-
ules early. From a hardware co-design point of view, experimental results suggest that
SSP schedules would benefit from a smaller floating-point rotating register file of 64
registers and a twice as large integer rotating register file.
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