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Abstract. Recently the Single-dimension Software Pipelining (SSP) technique
was proposed to software pipeline loop nests at an arbitrary loop le&<P(l.
However, SSP schedules require a high number of rotating registetsnay
become infeasible if register needs exceed the number of availableersgisis
therefore desirable to design a method to compute the register presstkly q
(without actually performing the register allocation) as an early meaduteo
feasibility of an SSP schedule. Such a method can also be instrumentavidepr

a valuable feedback to processor architects in their register files desitgiath,

as far as the needs of loop nests are concerned.

This paper presents a method that computes quickly the minimum number of
rotating registers required by an SSP schedule. The results have stesbeah
that the method is always accurate and is 3 to 4 orders of magnitude daster
average than the register allocator. Also, experiments suggest thaiaisdt
point rotating registers are in general enough to accommodate the ofetws
loop nests used in scientific computations.

1 Introduction

Software pipelining [1, 4,9, 10, 13] is an efficient and impot method to schedule
loops by overlapping the execution of successive iteratidine most popular tech-
nique, modulo-scheduling (MS) [3, 8,10, 12, 16, 21], onld@sses single loops or the
innermost loop of a loop nest. Traditional approaches tedale loop nests mainly
focus on scheduling the innermost loop and extending thedsdh toward the outer
levels by hierarchical reduction [10, 14]. An alternativayws to perform MS after loop
transformations [2]. A new resource-constrained schadukchnique named Single-
dimensional Software-Pipelining (SSP) [18—20] does nsiraén itself to the innermost
loop and can software pipeline any given loop in a loop néshd innermost level is
chosen, SSP is proven to be equivalent to MS. Experimergaltscshave shown that
SSP often outperforms MS, and is fully compatible with thelevarray of loop opti-
mizations and transformations used for MS. The techniquecaarently be applied to
any source imperfect loop nests with no conditional statémer function calls and
with run-time constant trip counts.

In the SSP compilation process, shown in Figure 1, regisiegsallocated af-
ter the one-dimensional (1-D) schedule is computed. Howdath phases are time-
consuming (the register allocation problem is NP-com(le8&, even for single loops
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Fig. 1. SSP Compilation Flow

[16]). Therefore, it is preferable to detect early if theistgr allocator is bound to fail
because of a too high register pressure. The scheduler eadmpute a different, but
more favorable schedule. We propose in this paper a fasiaiah method to measure
the rotating register pressure, namekhxz Live, of any kernel computed by the SSP
scheduler. It is defined as the maximum number of lifetimeswgttime during the exe-
cution of the loop nest scheduled with SSP. It is a theordtieager bound that may not
be achievable. Only loop variants, allocated to rotatirgisters, are considered. Loop
invariants are assumed to be allocated to static regidfnen unspecified, 'register’
will always refer to ’rotating register’. Any register slilg technique is assumed to
have been applied earlier to the 1-D schedule and is not thjectwof the paper.

Such an evaluation method is important and has many useBir§t)it allows the
compiler to avoid running the expensive register allocatben it is bound to fail. A
new 1-D schedule with lower requirements can then be cordpoyeincreasing the
initiation interval or choosing another loop level, fortasce. (2) Second, because the
register pressure is a direct function of the 1-D schedube nethod can be used to
compare the register pressure of 1-D schedules computeifféredt SSP scheduling
methods. (3) Third, the computed register pressure cankedsgsed to measure the
effectiveness of any register allocator. (4) Last, the mefrovides a valuable feedback
to processor architects in their register files design dagiss far as the needs of loop
nests are concerned. Other questions can then be answsetied régister pressure the
same for both floating-point (FP) and integer (INT) registeAre the register files of
the target architectures balanced enough to efficientlgleahe register pressure? Can
we anticipate the final register pressure or the number ifterg allocated by a specific
register allocator?

Several issues specific to SSP must be handled. First, thedimadule is composed
of more than one repeating pattern. Second, some lifetimeesteetched to honor re-
source constraints. Last, the initiation rate of the lifeds is irregular. In this paper, we
propose a method to compute the rotating register pres$amyaiven 1-D schedule.
The method is fast: it approximatég ax Live by skipping the initialization and con-
clusion phases of the final schedule and considers a unigaamst loop iteration, or
outermost iteration for short. A second method, compreienaccurate, but very slow,
is used as reference. For clarity and space reasons, thedsexhod is not presented
in the paper, but is accessible in [5] instead. We will refethtem as the fast method
and the comprehensive method, respectively.



It is the first time a method to compute the register presstiee &SP schedule is
proposed. With single loops, where MS is used, the traditidechnique is to count
the number of lifetimes in the kernel, also nam@edx Live [17]. Our method can be
seen as its natural extension to handle the more complegsspecific to the multidi-
mensional case, presented in section 812z Live was the chosen method to evaluate
the efficiency of register allocators in [6, 11]. Other woi] considered the theoret-
ical register pressure during the scheduling phase by owutite number of buffers
required for each functional units. However the number dfdos did not take into ac-
count that some buffers could be reused. The register peesgss also studied for non
software-pipelined schedules, such as the conceptuof over in [7]. Llosa et al. [11]
usedM ax Live to measure the register pressure of floating-point bendtsndheir
results also show that a FP register file of 64 registers wactdmmodate most of the
register pressure and limit accesses to memory in the cad8 aicheduled loops. The
results were later confirmed in [22].

The methods presented in this paper were implemented in fen®3/ORC 2.1
compiler on an Itanium workstation. The experiments wergdcated on a set of 125
loop nests of various depths. The experiments lead to dex@malusions. (1) The fast
method is at least 3 orders of magnitude faster than theteegiiocator and could
therefore be used in a compiler framework to quickly detaarthe feasibility of an
SSP schedule. (2) Most of the loop nests of depth 3 or lessreskpss than 96 INT
registers and about half of the loop nests of depth 4 or highanot be scheduled
because of a too high INT register pressure. (3) The FP szgistssure never exceeds
47 registers and therefore more than half of the FP regiseisfnever used, showing
an imbalance in the usage of the register files between INTFén@) If half of the FP
register file is used for INT values instead, then 76% of tlop loests of depth 5 could
be software-pipelined with SSP.

The paper is organized as follows. Section 2 briefly intreduthe SSP method.
Section 3 defines some notations and conventions used inagher,formulates the
problem and explains in details the issues to tackle. Owtisal is then described in
Section 4. Experiments and results are presented in Sestlmefore concluding in
Section 6.

2 Single-dimension Software Pipelining

2.1 Overview

Single-dimension Software Pipelining (SSP) [18—-20] issmtece-constrained schedul-
ing method to software pipeline perfect and imperfect loegts with constant trip
counts at run-time. Unlike traditional innermost-loopitréec approaches [10, 14, 16],
SSP does not necessarily software pipeline the innermoptdb a loop nest, but di-
rectly software pipelines the loop level estimated to bertigst profitable. The en-
closing loops of the selected loop, if any, are untouchethdfinnermost loop level is
chosen, SSP is equivalent to MS applied to single loops. 8&dhs the simplicity of
MS, and yet may achieve significantly higher performancé.[19

Figure 2(a) shows an example of a double loop nest. In Fig(sg fhe inner-
most loop is modulo scheduled, whereas, in Figure 2(c), tihermost loop is software
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Fig. 2. Simple SSP software pipelining example

pipelined using SSP. Note that, although the two outermesations are running in
parallel, the innermost loop is running sequentially witeach outermost iteration. In
our example the SSP schedule is shorter by 2 cycles.

SSP proceeds in several steps to produce the final sched42(JL First, the
most profitable loop level is chosen for scheduling basednstriction-level paral-
lelism or other criterion. Second, multi-dimensional degences are simplified into
a 1l-dimensional problem from which a 1-D schedule is conghutepresented by a
kernel. Registers are then allocated to the loop varianthénkernel. Last, the 1-D
schedule is mapped back to the multi-dimensional iteratpate and the final schedule
is generated as an assembly code.

Because the enclosing loops to the selected loop are urgduitey are ignored
from our point of view and we will always see the chosen loofhasoutermost loop of
the loop nest. The loops are then referred.asLo, . . ., L,, from the outermost level to
the innermost level where is the depth of the loop nest.

2.2 From the Kernel to the Final Schedule

The final schedule is exclusively made of multiple copieshefkernel, with sometimes
variations or truncations. As such, one only needs to censiigt kernel when counting
the lifetimes in the final schedule. A kernel is composef efages. Each stage takés
cycles to execute. Zero or more operations are scheduleatmrmaodulo-cycle of each
stage with the restriction that operations from differeavels must be scheduled into
different stages.

Figure 3(b) shows the kernel of the triple loop nest from Fég8(a). There are 5
stages a, b, ¢, d, and e. The outermost loop is made of af theS; = 5 stages, the
middle loop ofSy; = 3 stages (b, c, d), and the innermost loopSpf = 2 stages (c,
d). Each stage is made @f = 2 modulo-cycles and some stages have empty schedule
slots.

A more generic kernel is shown in Figure 3(c). The indexesefirst and last stage
of loop leveli are notedf; andl; respectively. The number of stages at levisl noted
S; = l; — f; + 1. The total number of stages is not&@nd is equal te, . All the stages
have the same initiation intervdl. In Figure 3(b),f1 = 0, fo = 1, f3 = 2,13 = 3,

ZQ =3, ll = 4, andT = 2.
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Fig. 3. A More Complex Example

Figure 3(d) shows the final schedule of our example. The stage symbolized
by their letters for clarity purposes. We assume that theedounts for each loop are
N1 = 8, Ny = 2, and N3 = 3 (stage b appears only twice in each column, and stages
¢ and d appear three times after each instance of stage b)lufeaepresents the
execution of a single outermost iteration (8 total). Botanloops are represented only
for the first two outermost iterations. Afterwards, they symbolized by a dashed box.
Because of resource constraints, only a groug,pf= 2 outermost iterations can fully
be executed in parallel [20, 19]. The other outermost il@natare delayed and pushed
later in the schedule, as illustrated by the thick verticeda.

Because of the delays and the repetitive nature of the st#hatie final schedule
can be decomposed into five different patterns: the prolagptitermost loop pattern
(OLP), the innermost loop pattern (ILP), the draining anlinjl patterrt (DFP), and

1 also calledransition coden [20]



the epilog. The ILP and DFP form the Inner Loop Execution SegnfILES).Each
pattern can be fully derived from the kernel. The ILP and DFPabtained by cyclicly
consideringS,, consecutive stages among tHe stages of the kernel for loop level
1 [19]. Predication is used in the OLP to truncate unnecessanges.

3 Problem Formulation & Lifetimes Classification

3.1 Lifetimes Notations & Conventions

The distance in terms of outermost iterations between tfieitlen and the use of a
loop variant is called themega value of the use. The maximuomega value of all the
uses of a loop variant represents the number of live-in wataquired for the variant.
Similarly, if live-out values are required from a loop variawe notezipha the number
of values. Those notations are consistent with Rau’s cdioen[17]. A loop variant is
statically defined only once per loop level.

The time period when an instance of a loop varians live is called thescalar
lifetime, or lifetime for simplicity, of that instance. In our examples, as showrig-
ure 4(a), a circle represents the start of a lifetime, a cties®nd, and a dash a non-
killing use of the variable. At any given cycle of the final schedule, the number
of lifetimes is called theFatCover at cyclec. Maz Live is the maximum of all the
FatCovers.

In order for the operations to be interruptible and reskdetén a VLIW machine
and to avoid dependencies between operations schedulbd game cycle, a lifetime
is started at the beginning of the cycle of the defining opamaand is killed at the
end of the cycle of the killing operation. This conventiontainees Rau’s convention
about scalar lifetimes in [17]. A register cannot be useddagfthed in the same cycle,
except if it is by the same operation, as shown in Figure 4(a) &(c). We assume
that the intermediate representation follows the sameeartions. A loop variant can
be redefined by the same operation like in Figure 4(c). Indkter case, the operation
will be considered only as a use of the variant for the purpdseir algorithms.

3.2 Problem Formulation & Issues

The problem can be formulated as followgszen a loop nest and a SSP schedule for it,
evaluate the rotating register pressutéax Live of the final schedule

The problem presents several issues. First, the lifetimasod exhibit regular pat-
terns like with modulo scheduling. Successive instanceth@fsame lifetime do not
reappear every' cycles: because of the push operations, some delays arergecsd.
For the same reason, some lifetimes appear tstteecheduntil the stalled outermost
iterations they belong to resume their execution. Examgaeshe seen in Figure 5.

Second, the number of lifetimes in the same stage and mayele-may vary,
depending on the position of the stage in the final schedaleirstance, Figure 4(d)
shows a part of the final schedule presented in Figure 3(dIddp variant is defined
in the first instance of stagé and used in stage The same loop variant is defined
again in the second instancedbut never used. However, the register required for the



TN3

FatCover N2 ——live-in
2@ ( start
X X
i B use Fat(iover FatCover
1
1) TNL - -
fy=x+1,z=x+2} 3| () () x=x+1} 1
2 C(\) end 2 ‘ ‘ { } N ‘
1
’e—live—out J[ z‘ ‘
X
(a) Lifetimes Examples (b) Reuse by Different  (c) Reuse by the Same
Operations Operation
d
d g @)
T = 5 g
C C Fat(s:over = input () global
3 }c*— local
d d d 3 X
2 @) ] : ¢
€ € e 3 —=& X
cross-iteration F output
(used after the
end of the loop)

(d) Variant (e) Variant 2 (f) Variant 3 (g) Lifetimes Classification
1

Fig. 4. Lifetimes Notations, Situations, and Classification

definition must be accounted for during the only cycle whée gecond instance of
the loop variant is live. Symmetrically, a value may be deafirach iteration and never
used until the last iteration, where the value is used in titodosing loop (Figure 4(e)).

Similarly, whether the stage belongs to the last instandbe®nclosing loop also
influences the number of local lifetimes. In Figure 4(f), thst instance of the loop
variant is used at the beginning of the enclosing loop. I§ithe last iteration of the
enclosing loop, then the value is never used and the loesihi€ is reduced to a single
cycle. We refer to those two situations g st andlast.

Finally, the method must be fast in order to be used as a tothldosegister allocator
and the scheduler to help detect infeasible solutions.early

3.3 Lifetimes Classification

For the purpose of the algorithms described in this paffetjries are classified into
5 categories, illustrated in Figure 4(g). Global lifetimeers the whole execution of
the loop nest. This is typical of loop invariants and tho$etilnes are not considered
by our algorithm. Output lifetimes hold values computedhmitthe loop nest that will
be used outside. The number of parallel live-out values efsame loop variant is
equal to thealpha value of the variant. Input lifetimes start before the begig of
the loop and terminates before the end. The number of phliakein values of the
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same loop variant is the maximum of all therega values of the variant among all its
uses. Cross-iteration lifetimes cross outermost itemati®y construction, a sequence
of cross-iteration lifetimes start with input lifetimesvéty other lifetime is said to be

local to the current outermost iteration.

4 Register Pressure Computation

This section presents the details of our solution. We ma&adisumption that the max-
imum register pressure will appear in the steady phase (QIdPILES) of the final
schedule. Therefore, input and output lifetimes are igth@ed only local and cross-
iteration lifetimes are considered. Experiments in Sectdl will show that this as-
sumption is always correct.

A snapshot of our final schedule during the steady phase wrshoFigure 5. The
lifetimes can be partitioned into 7 groups, shown in the megdo compute the maxi-
mum register pressure of the final schedule, we count the auailifetimes in each of
the seven groups. Cross-iteration lifetimes are counteahiayyzing the definition and
uses of each cross-iteration loop variant. Local lifetimes counted for each single
stage of the kernel for both situations: first or last in therent outermost iteration. The
exact algorithms are available in [5]. An overview is givarthie next subsections.

4.1 Cross-lteration Lifetimes

Because the outermost loop level is the only level actuaffyare pipelined, only vari-
ants defined in the outermost level can have a cross-itarifgtime. The first step con-
sists of identifying the cross-iteration variants. Theg defined in the stages appearing
in the outermost loop only and show at least one use with argama&ue greater than
0. Then, for each variant, the stage and modulo-cycle of thinitien and of the last use
are computed and not&tl. ¢, cqe ¢, Skin, andcyqy, respectively. The definition of each
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ovs « set of the variants defined in the outermost loop  V(s, ¢,p) € [f1, 1] X0, T) X { first, last}
LTipear(s,c,p) — —1,  Visit_Level(l, 0)

/' ldentify the cross-iteration variants
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for each operatiorop in s at cyclec for each cyclec from T to 0, backwards
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if Skiu(src) = s+ omega(op, src) then if LTocat(s, ¢, last) = —1 then
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crin(sre) — max(cg(sre), c) else
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for eachresult operandes of op in civs /I Recursive call for the inner levels
Caef(res) —c if level <nands = fiepe1 then
Saef(res) «— s Visit_Level(level + 1, live)

Fig. 6. Fast Method Algorithms

variant is unique and therefore easily found. Because gteision lifetimes span sev-
eral outermost iterations, the last use of a such lifetimastibe searched among each
of the spanned iterations. The stage index of the last usenmputed by adding the
omega value of the use to its stage index.

Afterward, the number of cross-iteration variants lifeggrat modulo-cycle in the
OLP is then given by.T ., ,ss(c), shown in Figure 8Sy;(v) — Sacs(v) + 1 represents
the length in stages of the lifetime of The two other terms are adjustment factors
to take into account the exact modulo-cycle the variant fdd or killed in the stage.
Figure 7(a) shows an example of a cross-iteration lifetifine lifetime starts ag. f =
1, corresponding to stage andcq.; = 2, and stopmega = 3 iterations later in
stageSkii = 0+ omega at modulo-cycle;; = 0. Then the number of cross-iteration
lifetimes for that variant is equal to 2, 1, and 2 at modulatey), 1, and 2 respectively.

4.2 Local Lifetimes

The computation of the local lifetimes is done by using tiiadal backwards data-flow
liveness analysis on the control-flow graph (CFG) of the loest where each loop
level is executed only once. A generic example for a loop akdepth 3 is shown in
Figure 7(b). The final schedule is partitioned idte n — 1 blocks of stages. For each
level but the innermost, there are two blocks. The first isenafdhe stages exclusively
belonging to the loop level and executed before the ILP, Aedsecond of the stages
exclusively belonging to the same level but executed aftee innermost level has
only one block made of thé,, innermost stages. The separations correspond to the
separations between stages of different levels in the kamtkthe order in which the
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stages are visited is the order of the stages in the kernelfighre shows the stage
indexes for each block. Stages visited fasst are represented in light gray whereas
stages visited akist are in dark gray.

4.3 Register Pressure

The OLP is composed &f,, kernels, each made of all thifestages. The register pres-
sure is the sum of the cross-iteration and local lifetimesfxrh stage. The distinction
between first and last instance of the local lifetimes musiiaee, leading te& — n
different cases. We then obtain the formula idf;,;, shown in Figure 8. The first term
counts all the cross-iteration lifetimes. The second isrttaximum number of local
lifetimes among thé&,, possible instances of kernel in the OLP.

The formula for the ILP and DFP iBR;;.,. The first three terms correspond to the
three types of stretched lifetimes shown in Figure 5: 7, 4,&im that order. Their num-
ber is fixed for the entire execution of the ILES and equal ®rthmber of lifetimes
live at the exit of the OLP. The fourth term of the formula @sponds to the local life-
times of the ILES (5) M ax Live is then the maximum between between the maximum
register pressure of the OLP and the maximum register pres$the ILES patterns.

Although it is possible to modify the algorithms and fornailep make the
Max Live computation incremental, it is not believed that our metisdest enough to
help guide the instruction scheduler.

5 Experiments

The algorithms were implemented in the ORC 2.1 compiler astetl on an 1.4GHz
Itanium2 machine with 1GB RAM running Linux. The benchmaaks SSP-amenable
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loop nests extracted from the Livermore Loops, the NPB 2.2chmarks and the
SPEC2000 FP benchmark suite. A total of 127 loop nests warsidered. When all
the different depths are tested, 328 different test cases awailable. There were 127,
102, 60, 30, and 9 loop nests of depth 1, 2, 3, 4, and 5, resphcti

The main results are summarized here and explained in si@aihe next subsec-
tions. (1) The fast method is 1 to 2 orders of magnitude fabtan the comprehensive
method, and 3 to 4 orders of magnitude faster than the regiiteator. (2) Despite
the approximations made by the fast method, its compied: Live is identical to
MaxLive computed by the comprehensive method. No rule of thumb cbelde-
duced to predictV ax Live by only considering the 1-D schedule parameters such as
kernel length, number of loop variants, and others. Rajd®iagister pressure increases
quickly for integer values as the loop nest gets deeper aadtdialf of the loop nests
of depth 4 or 5 show &/ ax Live higher than the size of the INT register file. (3) The
floating-point rotating register pressure remains aboostant as the depth of the loop
nests increases, and never exceeds 47 registers. Condggherfloating-point rotat-
ing register file could be reduced from 96 to 64 registers. &tea 32 registers could
be added to the integer register file instead.

5.1 Compilation Time

The time measurements are presented in Figure 9(a) whetedpenests have been
sorted first by increasing depth, delimited by tics on thedwomtal axis, then by increas-
ing kernel length. Note the logarithmic scale for the veitiaxis. The comprehensive
and fast methods take up to 3.18 and 0.04 seconds respgatiithl an average of 0.16
and 0.005 seconds. The running time of each method is diresltited to the kernel
length. The shape of the graph confirms the quadratic rurtivimg of the fast method
and the influence of the depth of the loop nest. The fast mafziti9 times faster than

11
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Fig. 9. Experimental Results

the comprehensive method, with a maximun2d?.8. As the loop nest gets deeper, the
speedup becomes exponentially more significant.

The running time of the fast method and the register allodaton [18] are com-
pared in Figure 9(d). On average, the fast method is 3 ordermgnitude faster than
the register allocator with a maximum of 20000. As the loogtigets deeper, i.e. as the
Max Live increases and the need for a quick method to evaluate trsteegressure a
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priori becomes stronger, the speedup increases, makirfgghmethod a valid tool to
detect infeasible schedules before the register allacator

Although the fast method does not take into account livenridh lave-out lifetimes,
the computed\/ax Live was identical for the two other methods in all the benchmarks
tested. M azx Live is indeed less likely to appear in the prolog and epilog.

5.2 MaxLive

The computedV/ax Live is a optimistic lower bound on the actual register pressure.
It does not take into account that a value held in one regateyclec must remain

in the same register at cyctet+ 1 or that the use of rotating registers reserves a group
of consecutive registers at each cycle, even if some of themat currently used.
The actual register allocation solution computed by annogttiregister allocator may
allocate more registers thaw ax Live. However, with the addition of register copy
instructions, M ax Live registers can always be reached

The computed/ax Live is shown in Figure 9(b) for INT and FP loop variants. The
benchmarks have been sorted by increasing depth, indibgtedhall tics on the hori-
zontal axis, and by increasiny ax Live. The averagé/ ax Live for INT and FP are
47.2 and 15.0 respectively with a maximum of 213 and 47. If wlg oonsider rotating
registers, the 96 hard limit on the number of available Fisters in the Itanium archi-
tecture is never reached. However the 96 limit for INT resgists reached more often
as the depth of the loop nests increases, up to 56% for thenlests software pipelined
at level 4 as shown in Figure 9(e).

INT MazLive increases faster than BRax Live. INT Maz Live indeed increases
as the nest gets deeper because more inner iterations aiagun parallel. It is par-
ticularly true for INT values that are used as array indeKeam array index is defined
in the outermost loop, then there is one instance of the ifimlegach concurrent out-
ermost iteration in the final schedule. For FP values howehisris not the case. They
are typically defined in the innermost loop only and have wgrt lifetimes.

We also tried to approximat®/ ax Live by looking at the 1-D schedule parameters.
However no rule of thumb could be derived by looking at oneapeater such as$,
Sn, the length of the kernel or the number of loop variants. Thexr Live was also
compared to the actual number of registers allocated byetister allocator. Unlike
in MS where the number of registers allocated rarely excédds Live+1 [17], the
difference with SSP varies between 0% and 77%. Such resdtexplained by the
higher complexity of SSP schedules compared to MS and becdus: Live is not a
tight lower bound.

5.3 Floating-Point Register File Size

Figure 9(c) shows the total register pressure, defined asuttmeof M ax Live for INT
and FP registers, and the ratio betwéénx Live for FP and INT registers. The bench-
marks are sorted by increasing ratio. The total registesqune rarely exceeds 192
registers, the size of the rotating register file in the ltamiarchitecture. Although FP
Max Live can be twice higher than INMax Live, the FP/INT ratio remains lower
than 0.5 when the total register pressure is greater than 96.
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Figure 9(f) shows FR/ax Live as the same loop nest is scheduled at deeper levels.
FP Maz Live does not or barely increases as a same loop nest is schetialdéeper
level. The maximum FR/ax Live never exceeds 47 registers.

Several conclusions, that may be useful for future desigasahitectures with the
same number of functional units and superscalar degreetieatanium architecture,
can be drawn from these remarks. First, the INT register fdg brenefit from a smaller
FP register file with a ratio of 2 for 1. The FP register sizeeittmer be decreased to save
important chip real estate, or the INT register file increlageallow more SSP loops
to be register allocated. Second, for the set of benchmad im our experiments, the
optimal size for the FP register file would be 64. It would noévgent any other loop
nests from being register allocated while giving extrasegs to the INT register file.
If a size of 64 and a INT/FP ratio of 2 are chosen, the feagjhilitio for loop nests
of depth 4 and 5 would jump from 43% and 56% to 77% and 67%, otispd. The
FP/INT ratio chosen for the Itanium architecture is not imeot, but was chosen with
MS loops in mind, which exhibits a lower IN¥ ax Live.

6 Conclusion

Single-dimension Software Pipelining (SSP) software |pips a loop nest at an arbi-
trary level. However the register pressure is too high ffrdfahe loop nests of depth 4
or more. ltis therefore necessary to know the register pressarly in the compilation
process to avoid calling the register allocator when it igrbto fail. The results of the
evaluation could also be used to evaluate the efficiency wfS8P register allocator.
We proposed in this paper a methodology that quickly consptite rotating register
pressure of an SSP schedule

Results showed that our method is accurate and at least &aidmagnitude faster
than the register allocator on average, making it a valitlittndetect infeasible sched-
ules early. From a hardware co-design point of view, expeniial results suggest that
SSP schedules would benefit from a smaller floating-poiratiray register file of 64
registers and a twice as large integer rotating register file
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