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Abstract. Hardware performance counters provide information about
events in the hardware platform (e.g., cache misses, pipeline stalls), in
contrast to profiles that capture program properties (e.g., execution fre-
quencies for basic blocks, methods, function calls). As platform archi-
tectures become more complex and also more diverse, it is important
for a compiler to exploit platform-specific information. A dynamic (JIT)
compiler is in the unique position to run on the same platform as the
target application, but in practice, exploiting the wealth of information
available through performance counters is far from easy. If a JIT com-
piler is to use performance counter information, this information must
be fine-grained (e.g., attributing cache misses to a single load instruc-
tion) and must be obtainable without undue overhead. We present a
runtime+compiler framework to tie hardware performance counter in-
formation to a dynamic compiler and argue that the overhead is low and
fine-grained. As parallel architectures or multi-core architectures prolifer-
ate, performance issues will play a crucial role in all compilation engines,
and our paper reports on a modular approach to make such counter
information available to the compiler.

1 Introduction

The combination of VM and JIT compiler is now the most common execution
platform for programs written in object-oriented languages. Unlike the classic
ahead-of-time compilation model, the JIT compiler is able to take immediate ad-
vantage of dynamic information. There are two kinds of information that such a
compiler may use: profiles, i.e. measurements of program properties (e.g., num-
ber of method invocations) and measurements of platform-specific properties,
such as number of cache misses, TLB misses, branch prediction failures). The
latter must be obtained from the performance measurement unit of the execu-
tion platform, and this paper details how this information can be provided to
and used by a compiler for a high-level language like Java.

Many compilers for high-performance linear algebra computing already use
information from the execution platform for cache optimization: For example,
blocking is a common technique to reduce cache misses in matrix computations,



but using it effectively requires that the characteristics of the memory hierarchy
be considered [14]. Another example is inter-variable padding [18], which can
be used to reduce conflict misses, but requires a precise knowledge about the
application’s memory access patterns. For programs in the domain of scientific
computing these access patterns can often be obtained exactly or can be approx-
imated by an analytical model. Still, the design of performance monitoring units
is still the subject of current research [15].

On the other hand, object-oriented programs have many properties that
are difficult to determine at compile-time (e.g., memory access patterns, syn-
chronization patterns). As multi-core and parallel architectures proliferate, at-
tention to performance for object-oriented programs increases the need to use
platform-specific information to generate efficient code. Most modern CPUs (like
the Pentium 4 (P4), Itanium, PowerPC) offer the ability to deliver information
about performance-related events to the OS or the application, yet most pre-
vious JIT compilers focussed only on using program properties to guide opti-
mizations [6]. Preliminary studies (without full compiler support) have however
demonstrated that platform-specific metrics can also improve the performance
of object-oriented programs|2].

To be useful for an optimizing JIT compiler the collected information must
be accurate enough and cheap to obtain at run-time. Since modelling mem-
ory access patterns analytically for pointer-intensive code (typically found in
OO programs) is not feasible at the moment, the use of hardware performance
monitors presents a viable way of getting detailed information about memory
hierarchy performance aspects. This paper presents a general infrastructure to
feed hardware performance monitor information into a JIT compiler at run-time.

2 Requirements

Our basic assumption is that the object-oriented program executes on some VM
and that this VM provides a JIT compiler (possibly offering different optimiza-
tion levels). A module that makes information from the hardware performance
monitors available in a JIT compiler must meet a couple of requirements:

— The runtime+compiler infrastructure should be flexible enough to allow ob-
taining different execution metrics. The exact group of events that can be
monitored depends on the specific hardware performance counters that are
available, but the interface between compiler and performance monitoring
unit should attempt to hide machine-specific details where possible.

— The overhead to obtain the monitor’s information should be low, and the
executed applications should not be perturbed by the measurements.

— Processing the information should be done in a separate module, to keep the
need for changes to VM and/or the compiler to a minimum.

— The information must be accurate enough to be useful for online optimiza-
tions in a JIT compiler. Often the granularity of a method or even a basic
block is too coarse to allow the compiler to infer what instruction/operation
is responsible for some event (e.g., cache misses).



— The platform should work for “general” VMs. We don’t want to change the
core VM code too much. Otherwise the effort to port it to another VM would
be prohibitively large.

Of course, any compiler that uses platform-specific information may also use
profile information, e.g., to decide where and when to exploit the results obtained
from the performance measurement unit. We will not dwell on this aspect in this

paper.

3 Related work

There are two areas of prior work that we concentrate on in this paper: techniques
to provide platform-specific information in a form that the compiler can exploit
and specific optimizations in a compiler that are influenced by this information.
While there exists a fair bit of prior work regarding profiling (e.g., discussion of
types of profiles, algorithms to select the best place to insert code to maintain
counters, choice of sampling intervals), it is not central to the topic of this paper,
and so is not covered here.

3.1 Data gathering techniques

Profiling to obtain execution frequencies and profile-guided optimizations have
been applied in ahead-of-time compilers (see, e.g., [17,8]) and JIT compilers [6,
20]. Here we focus on related work that uses hardware-specific information for
optimizations.

Ammons et al. [5] use hardware performance counters together with path
profiling. They use code instrumentation to associate hardware metrics (like
cache misses) to basic blocks and execution paths in the program. The reported
overhead of flow and context sensitive profiling is between 60 and 80%. This
overhead is acceptable when doing off-line performance analysis.

Trace-driven simulation of the memory hierarchy can be used for analyzing
data locality and identifying bottlenecks [11,10]. The results depend on how
precise the simulation reflects the real platform. One disadvantage of precise
simulation is that the slowdown can be several orders of magnitude [23].

Vera et al. [24] use an analytical model to approximate the behavior of the
CPU and memory hierarchy. They use cache miss equations to describe the
behavior of loop-oriented code. Their approach is mainly targetted at scientific
compuations which exhibit regular access patterns.

In recent years OO applications have been analyzed using profiles and hard-
ware support. Hauswirth et al. [12] analyze Java programs and their interaction
with the VM, the OS and the hardware using wvertical profiling. They distin-
guish different execution layers in a system: application, libraries, VM, OS and
hardware. To analyze the performance of these layers they introduce “software
performance monitors”. These monitors capture performance characteristics of
the different subsystems. The results are correlated with data from the hardware
performance counters to find out how different metrics influence each other.



Georges et al. [9] present an off-line technique for analyzing the performance
behavior of individual methods. Since instrumenting every method would be too
expensive, they identify method-level phases by measuring the execution time
spent in each method. In a second step, only those methods that consitute an
execution phase are instrumented. The hardware performance counters are read
at the method prologue and at the epilogue. Finally, the profiling results are
mapped back to the Java source code. The approach has a low overhead because
only those methods selected by the phase analysis are instrumented. It uses the
hardware performance counters in normal counting mode, not in event-based
sampling mode like we do.

3.2 Optimizations

Cache optimizations reduce the gap between memory and processor speeds.
Loop-tiling, loop-skewing, and blocking [25] can increase data locality in sci-
entific, array-oriented programs. To obtain maximal performance, cache param-
eters must be considered when choosing the block size [14].

Software-controlled prefetching [16] hides the memory latency by overlapping
memory access with other operations. It is mainly used for scientific applications
which are array-oriented and have regular iteration patterns that can be deter-
mined statically.

OO programs require a different approach because they usually use point-
ers heavily and do not exhibit the regular structure of scientific applications.
Adl-Tabatabai et al. [2] use hardware performance monitors of the Itanium 2
processor to inject prefetch instructions into Java programs. Their approach re-
lies on the fact that objects that are accessed consecutively often have a constant
delta between their addresses. A “meta-data graph” captures references between
classes that exhibit a large number of long-latency misses and the corresponding
deltas. The prefetching uses this graph to ensure the right data is available in the
cache. They achieve a speedup of 14% for the SPEC JBB2000 benchmark [21].
Software prefetching is very effective on Itanium because it has only in-order
execution and lacks the hardware-based prefetching of the P4.

Huang et al. [13] implemented a technique called online object reordering
that reorders objects at garbage collection time. They identify “hot” fields by
gathering access statistics using code instrumentation. The garbage collector
then copies the object referenced by hot fields together with their parent object
to increase spatial locality.

4 TImplementation platform

This section presents background of the hardware and software platform that
we used for our implementation.



4.1 Hardware performance monitors

The P4 offers a large variety of performance events for counting [1]. Two modes
of operation are supported:

— Normal counting: The performance counters are configured to count events
detected by the CPU’s event detectors. A tool can read those counter values
after program execution and report the total number of events. This mode
can be used to obtain numbers like the cache miss rate, total execution
cycles, and so on. One application would be to evaluate the effect of program
transformations.

— Sampling-based counting: Whenever a certain number of events has oc-
curred, the CPU samples its register contents. This way it is possible to
locate the sources of an event. The P4 supports precise event-based sampling,
so it reports both the exact instruction where the sampled event happened
and the register contents at that point.

To keep the overhead of sampling low, the CPU stores a certain number of
samples in a buffer provided by the OS. The CPU generates a performance
monitor interrupt when this buffer is filled up to a “high-water” mark. The
interrupt service routine of the OS copies the samples to a more permanent
location.

This mechanism makes it possible to obtain data address profiles with the P4.
The instruction pointer (IP) together with the other registers’ contents can
be used to calculate the data address of an event (e.g., cache miss). A data
memory address of an event can be computed by decoding the instruction
that caused the event and using the values of the registers to calculate its
address operand.

Previous CPUs could only measure an approximate location for sampled
events because of a super-scalar design and out-of-order execution. The P4 and
other newer architectures (e.g. Itanium) have the capability to localize the event
precisely (precise event-based sampling). Sprunt [19] wrote a detailed overview
of the P4’s hardware performance monitoring capabilities.

4.2 Jikes RVM

Our implementation is done with the IBM Jikes RVM (version 2.3.3) [4,3], a
high performance Java virtual machine written mostly in Java. It includes an
adaptive optimization system [6]. First, every method is compiled with a simple
and quick baseline compiler. Only methods that are executed frequently enough
are recompiled and optimized further.

5 Runtime-+compiler platform issues

Our extension allows the VM to monitor the performance of a running applica-
tion using the CPU’s hardware performance monitors. In a dynamic compilation



environment like the Jikes VM the compiler can then react and use this informa-
tion to dynamically recompile and optimize parts of the program. We extended
the abyss&brink tools [7] to configure and access the P4 performance counters.
The tools consist of a kernel module and a user-level program to gather statistics
about the program that is being measured.

The kernel module initializes the hardware performance monitors and pro-
vides the sampling interrupt handler that copies the samples from the kernel
buffer into a more permanent buffer supplied by the application (in our case the
Java VM). The P4 hardware supports precise event-based sampling for only a
subset of events. The most important of those are:

— L1 and L2 load misses,
— DTLB misses, and
— branch mispredictions.

At the moment the type of event that is monitored is specified as a command-line
parameter.

We modified the Linux kernel and the kernel module to be able to monitor
individual processes. Otherwise the results would be disturbed by other processes
running at the same time.

The monitoring infrastructure consists of three parts:

1. Loadable kernel module: The kernel module offers the functions to access the
performance counter hardware. It is implemented as a device driver, and the
application communicates with it via IOCTL calls. The kernel module hides
the platform-specific details from the JVM. It also provides the interrupt
handler that is called by the sampling hardware when the CPU buffer for
the samples is full. When this happens the samples are copied into a more
permanent location. At the moment we allocate a 4MB shared memory buffer
for this purpose.

2. Native shared library (C): Since we cannot call device drivers directly from
Java or from the Jikes RVM we use a native library to provide an interface
and call it via the Java Native Interface (JNI). The library gives access to
the shared buffer where all the collected samples are stored.

3. Collector thread (Java): We use a separate Java thread that polls the device
driver via the library interface whether there are any new samples. The
polling interval is set to 1-10ms depending on the size of the sample buffer.
Each sample is converted into a Java object by the collector thread and
handed to the VM for further processing.

Figure 1 shows how the samples get from the CPU to the JVM. Buffering
the samples in user space makes the JVM independent of any platform idiosyn-
chracies as those are handled by the kernel device driver.

On the P4 platform one sample has a size of 36 bytes. It contains the in-
struction pointer (IP) where the sampled event occurred and all the values of
the registers at this point in the program. Figure 2 shows the structure of one
sample. The CPU writes those values directly into the buffer provided by the
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Fig. 1. Getting the samples from the CPU to the JVM.

kernel module. To be able to use these raw data for optimization we need to
recover some higher-level information for each sample. The JIT compiler keeps
a sorted table of all methods’ start/end addresses that were compiled so far.
From the IP we can quickly find out the method and the bytecode instruction
where the event happened by performing a binary search. When the adaptive
optimization system recompiles a method this method table must be updated.

The bytecode instruction tells us the operation and the type of the object
that caused the event. With the bytecode instruction we can produce a human
readable output that contains the Java statement and the source line number for
the event. When we encounter an event caused by a heap access we determine the
actual type of the responsible object by scanning backward in memory starting
at the calculated data address until we find the object header [2].

|[EAX|EBX|ECX|EDX|ESI|EDI|EBP|ESP|EIP]

Fig. 2. One sample (total 36 bytes) contains the instruction pointer (EIP) and all
register contents.



6 Evaluation

6.1 Measurements

The measurements are carried out on a 3.0 GHz P4 processor running the Linux
kernel version 2.4.26. This processor has a 1IMB L2-cache and a 64K L1 cache
and 1024 MB of main memory. One cache line has a width of 64 bytes. For each
data point we ran the benchmark three times and reported the average. As a
VM we ran Jikes RVM 2.3.3 with the configuration “FastAdaptiveGenCopy”,
which includes the adaptive optimization system [6] and a generational garbage
collector.

For our experiments we set the system to measure cache misses. The sampling
interval should be large enough to keep the overhead low, but not too large.
Otherwise the collected data won’t be meaningful. A sampling interval between
1000 and 10000 events proved to be most suitable for our benchmark programs.

6.2 Sampling overhead

Table 1 compares the performance of the system with and without sampling
enabled. For this measurement we sampled every 10000 and every 1000 events.
(columns s=10000 resp. s=1000). For the SPEC JVM98 [22] and the SPEC
JBB2000 [21] benchmarks we observed an overhead between 0.1% and 2% (av-
erage 1.6%) for a sampling interval s of 10000. For s = 1000 the overhead is
between 0.1% and 5% (average 2.1%).

program orig|s=10000{s=1000
javac 7.18 1.02 1.02
raytrace 4.04 1.02 1.02
jess 2.93 1.01 1.00
jack 2.73 1.00] 1.03
db 10.49 1.01 1.03
compress 6.5 1.01 1.02
mpegaudio 6.54 1.02 1.00
jbb 6209.67 1.02| 1.05
average | | 1016 1.021

Table 1. Overhead of collecting sample data with two different sampling intervals
s=1000 and s=10000.

To analyze the influence of the sampling interval on the overall performance
we studied the JBB benchmark in more detail. Figure 3 shows the correlation
between the sampling interval and the performance as measured by the specJBB
score. The interrupt rate of the HPM hardware grows linearly with decreasing
sampling interval size. The overall performance drops even more at high interrupt
rates; the resulting context switches for each invocation of the interrupt service



routine consume further CPU time. From the observed execution times we can
estimate the cost of processing one sample with < 1us (=3000 CPU cycles on a
3 GHz P4).

Performance with different sampling intervals

6300
6250 —
6200 —
6150 —
6100 —|
6050 —
6000 —
5950 —
5900 |
5850 —
5800 —
5750 —
5700 \ \ \ \ \ \ \

0 5000 10000 15000 20000 25000 30000 35000

JBB score

sampling interval

Fig. 3. Performance with different sampling intervals

6.3 Distribution of cache misses

The precise event-based sampling of the P4 allows us to measure the distribution
of cache misses over the load instructions in the program. We use a sampling
interval of 1000 events for L2 misses and 10000 events for L1 misses.

For db, javac, and specJBB we measure the frequency of L1- and L2-misses.
Figure 4 shows the histogram of the 100 most contributing load instructions
for L1 cache misses. These loads produce 37% of the L1 misses in javac, 98%
in db, and 55% in specJBB. The picture is different for long latency L2 cache
misses. Figure 5 shows the same information for L2 misses. There, the 100 most
contributing load instructions are responsible for 74%, 99% and 85% of the
events. For db the distribution of L1 and L2 misses is quite similar — there are
very few “hot” loads. In javac and specJBB, on the other hand, the L1 misses are
generally distributed over the whole program, whereas the L2 misses are more
localized. (except for one instruction in specJBB that produces the majority
of the L1 misses). This suggests that if we focus optimizations on these cache
misses, or “hot” spots, we can achieve a large impact.
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7 Concluding remarks

Using platform-specific information about a program’s execution in a dynamic
compiler is attractive; the result of the platform’s performance measurement unit
can be mapped to source-language constructs that are relevant for the compiler.
A necessary condition (to be satisfied by the platform’s architect) is that the
monitoring unit can accurately capture the processor state related to an event.
Fortunately, newer processors provide this capability.

A JIT compiler is in a good position to exploit this information, since we
have shown that the overhead of gathering and processing the information about
hardware-specific events can be kept low.

To demonstrate the practicality of this approach, we implemented a module
to tie the Jikes VM to the execution monitoring unit of the P4. As an example
application we showed that the compiler can use this mechanism to identify
individual load instructions that are responsible for a high percentage of the
cache misses. This information allows feedback-driven optimization that does
not solely rely on high-level information like method execution frequencies, but
is directly guided by information about performance critical hardware events.
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