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Abstract. Modeling of runtime threads in static analysis of concurrent programs plays an
important role in both reducing the complexity and improving the precision of the analy-
sis. Modeling based on type based techniques merges all runtime instances of a particular
type and thereby introduces inaccuracy in the analysis. Other approaches model individ-
ual runtime threads explicitly in the analysis and are of high complexity. In this paper
we introduce a thread model that is both context and flow sensitive. Individual thread
abstractions are identified based on the context and multiplicity of the creation site. The
interaction among these abstract threads are depicted in a tree structure known as Thread
Creation Tree (TCT). The TCT structure is subsequently exploited to efficiently compute
May-Happen-in-Parallel (MHP) information for the analysis of multi-threaded programs.
For concurrent Java programs, our MHP computation algorithm runs 1.77x (on an average)
faster than previously reported MHP computation algorithm.

1 Introduction

As concurrent programming is embraced by more and more users, there are several on-going research
activities for the last few years in the area of static analysis of concurrent programs. To name a few of
these activities: computation of May Happen in Parallel (MHP) information, detection of synchroniza-
tion anomalies like data races and deadlock, hiding the effect of weak memory models at the programming
level, improving the accuracy of data flow analysis, and optimization of concurrent programs.

May Happen in Parallel (MHP) analysis computes pairs of statements that may be executed con-
currently in a multi-threaded program. This information can be used in program optimization [9], de-
bugging, program understanding tools, improving the accuracy of data flow approaches, and detecting
synchronization anomalies like data races.

Several approaches for computing MHP information for programs have been suggested in the past:
B4 analysis by Callahan et al. [3], inter-procedural B4 analysis by Duesterwald et al. [6], non-concurrency
analysis by Masticola et al. [14], and data flow analysis based MHP computation for programs with a
rendezvous model of concurrency by Naumovich et al. [16]. Most recently [15] developed an efficient
algorithm for computing MHP information for concurrent Java programs. Their algorithm uses a data
flow framework to compute a conservative estimate of MHP information and is shown to be more efficient
than reachability analysis based algorithms that determines ’ideal’ static MHP information. However,
the underlying thread model used in the data flow framework explicitly enumerates all runtime threads
during compilation time leading to the complexity of the algorithm bounded by number of runtime
threads, i.e., ©((pN)?) complexity, where p is the number of runtime threads and N is the maximum
number of statements per runtime thread. Such an explicit enumeration of threads makes the algorithm
time consuming, and it is inapplicable to programs with unbounded or large number of runtime threads.

Subsequently, there has been work [13] on aiding a feasible implementation of the MHP algorithm
presented by Naumovich et al. [16]. Their main focus is to reduce the size of the program execution
graph (PEG) which is the core of MHP algorithm.

1.1 Owur Contribution

The main contribution of this paper are:



— We introduce a static model of threads that is flow sensitive and context sensitive; this model is
more precise than type based thread disambiguation used in previous approaches [20, 18]; yet our
model is capable of handling an indefinite number of runtime threads.

— We introduce a thread structure analysis and the concept of the thread creation tree (TCT), which
captures the start and join interactions among threads.

— We present an efficient algorithm that computes the MHP information at two levels: first at the
thread level, then at the node level. The complexity of our algorithm is ©((kN)?) where k is the
number of thread abstractions and N is the maximum number of inter-procedural control flow graph
nodes per thread abstraction.

Our results show that our MHP algorithm runs 1.77x faster than MHP algorithm presented by
naumovich et al. [16] using our context and flow sensitive thread model.

1.2 Example

Figure 1 shows a sample program that updates a shared object of class Shared concurrently. Main
thread creates two Task1 threads. These Task1 threads in turn create various Task2 threads. Note that
modifications of the shared object in Task2 threads are synchronized. In addition, Task2 threads join
back to Task1 threads without causing any exception.

For this example, the thread model presented by [15] considers 43 runtime threads explicitly during
the static analysis: initial thread starting at main method, 2 Taskl threads, and each Taskl thread
creating 20 Task2 threads. Management of such a huge number of runtime threads in the static analysis
requires a lot of space and is computationally expensive.

However, the type based thread disambiguation model described in [20, 18] considers only 3 thread
abstractions during the analysis: initial thread starting at main method, one for Task1 thread and one
for Task2 thread. This kind of modeling seems very efficient but does not produce precise results. To
elaborate this: Let us consider the MHP information computation problem. The type based thread
modeling concludes that the shared object access in Line 9 of Main thread may execute in parallel with
the access in Line 24 of Task1. This is not always true as the same access in Line 24 for t2 instance of
Task1 never executes in parallel with Line 9 of Main thread (as t2 is started after Line 9 has finished
execution). Additional machinery has to be built into these type based techniques to obtain such precise
results.

2 Flow and Context Sensitive Thread Model

2.1 Abstract thread

An abstract thread is a compile time entity that corresponds to a call of the Thread: :start method in
a certain context. Contexts are determined along a symbolic execution of the whole program [18]. In
this paper, we use the terms thread and abstract thread interchangeably; if we refer to runtime threads,
we note that explicitly.

An abstract thread ¢; might correspond to one or multiple runtime threads. In cases where the static
analysis can determine that an abstract thread ¢; is not started in a loop or recursion (and the creator
thread is itself unique), ¢; has a unique runtime correspondence, and the predicate isUnique[t;] holds.

In the example of Figure 1, our thread model computes 7 different abstract threads: thread corre-
sponding to the main method denoted as g , Taskl thread in Line 8 denoted as 1, Task2 thread started
in Line 28 of t; denoted as t3, Task2 thread started in Line 37 of ¢; denoted as t4, Task1 thread started
in Line 11 denoted as t2, Task2 thread started in Line 28 of ¢ denoted as t5, and Task2 thread started
in Line 37 of t2 denoted as tg. The abstract thread ¢; started in line 8 is unique because the creator
thread (main) is unique, and the start site is not executed in a loop/recursion. The abstract thread 3
created in line 28, in contrast is not unique, because it is started inside a loop.

3 Program Representation

In this section, we describe other data structures that are necessary for performing MHP analysis
on concurrent programs. The thread creation graph (TCG) data structure depicts various start-join
interactions among abstract threads and is used to develop an efficient algorithm for MHP.



1 class Shared { int field=0; } 22 class Taskl extends Thread {
2 class Main { 23  public void run() {
3 static Shared s; 24 Main.s.field++;
4 public static void main(String[] args){ 25 Thread[] ta = new Thread[10];
5 s = new Shared(); 26 for(int i=0;i<10;i++) {
6 s.field++; 27 ta[i] = new Task2();
7 Thread t1 = new Task1(); 28 tal[i] .start(); // t3, t5
8 tl.start(); // t1 29 }
9 s.field++; 30 for(int i=0;i<10;i++) {
10 Thread t2 = new Task1(); 31 talil.join();
11 t2.start(); // t2 32 }
12 s.field++; 33 Main.s.field++;
13 } 34 Thread tb= new Thread[10];
14 } 35 for(int i=0;i<10;i++) {
15 class Task2 extends Thread { 36 tb[i] = new Task2();
16 public void run() { 37 tb[i] .start(); // t4, t6
17  synchronized(Main.s){ 38 }
18 Main.s.field++; 39 for(int i=0;i<10;i++) {
19 1} 40 tb[il. join();
20 } 41 }
21 } 42 }
43 }

Fig. 1. Example program.

3.1 Intra-thread control flow graph

The control-flow structure of an abstract thread ¢; is represented in an intra-thread control flow graph
(ICFG), i.e., ICFG(t;). ICFG(t;) = (V(t:), E(t;)) where E(t;) denotes the intra-procedural and inter-
procedural control flow edges of abstract thread t;, and V (¢;) comprises of the following types of nodes:

USE(t;) refers to the set of shared read access (get/load of shared reference/field/array) nodes in

t;.

— ASS(t;) refers to the set of shared write access (put/store of shared reference/field/array) nodes in
t;.

— NEW (t;) refers to the set of allocation nodes in ¢;.

— BEGIN (t;) refers to the set of method entry nodes in ;.

— END(t;) refers to the set of method exit nodes in ;.

— ENTRY (t;) refers to the unique thread entry node for ¢;.

— EXIT(t;) refers to the unique thread exit node for ;.

— CSTART(t;) refers to the set of abstract thread start nodes in ;.

— CJOIN (t;) refers to the set of abstract thread join nodes in ;.

— CALL(t;) refers to the set of method call nodes in ¢;.

— ACQUIRE(t;) refers to the set of monitor enter nodes in ;.

— RELEASE(t;) refers to the set of monitor exit nodes in #;.

V (t;) contains two special nodes: ENTRY (t;) and EXIT(t;). There is an edge from ENTRY (t;) to
any node at which the thread can be entered, and there is an edge to EXIT (t;) from any node that can
exit the thread.

E(t;) contains intra-procedural and inter-procedural control flow edges in #;. The inter-procedural
control flow edges do not comprise of subsequent thread creation edges from ¢;.

Certain statements need not be represented in the ICFG, e.g., statements that only have a thread-
local effect. This includes access nodes (USE, ASS) that operate on thread local objects (the underlying
object model and analysis for determining thread locality is presented in [5, 18]



Figure 2 shows the inter-procedural control flow graph for the main abstract thread of the exam-
ple program. Each node in the figure is annotated with the object/field it accesses. CSTART[t;] and
CSTART|t2] nodes represent the invocation of abstract threads ¢; and ¢2 respectively. Note that there
is no inter-procedural control flow edge connecting the node CSTART[t1] to ICFG(ty).

Let the creation node of an abstract thread ¢; in ¢; is denoted as CSTART (t;,t;),1.e., CSTART (t;,t;) €
CSTART(t;). There is no inter-procedural control flow edge from t; to ¢; in ICFG(t;). Similarly, the
join node of an abstract thread t; in ¢; is denoted as CJOIN (t;,t;).
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Fig. 2. Inter-procedural control flow graph (ICFG)

3.2 Must-join

A common pattern in parallel programs is that some threads create subsidiary threads and later join
those. We capture this information using the concept of a must-join abstract thread. Let CSTART (t;,t;)
be the node where abstract thread t; is created in ¢;. Let CJOIN (t,t;) € V(tx) be the node where
abstract thread ¢; is joined. ¢; is then termed as a must-join abstract thread if t; = t; and CJOIN (t;,t;)
postdom CSTART (t;,t;).



3.3 Thread Creation Tree (TCT)

Threads can be structured according to their start-relationships. The thread creation tree (TCT) encodes
this information: Abstract threads are represented as nodes, edges encode the start relation. The main
thread constitutes the root, threads started by the main thread are found at the first hierarchy level
etc..

The must-join information for each node in the TCT is encoded using a predicate mjoin, i.e., mjoin[t;]
= true if ¢; is a must-join abstract thread.

3 t4 t5 t6

Fig. 3. Thread Creation Tree.

The TCT for the program in Figure 1 is given in Figure 3. ¢; and ¢y are colored black as they do
not join the main abstract thread to, i.e., mjoin[t1] = mjoin[tz] = false.

The specific case of a mutual thread creation inside a recursion, might lead to an unbounded TCT.
We detect this case and resolve it by combining the involved abstract threads. For example, abstract
thread ¢; creates t;: Both ¢; and t; have the same static thread type. Since there is recursion involved
in the static types of ¢; and t;, the TCT will be unbounded. To handle this, we add only one node to
the TCT with ICFG as the ICFG of ¢;. The number of runtime instances of the added node in the TCT
is not unique. The must-join information of the added node is set based on must-join information of ¢;
or t;. In general, if a set of static types are involved in mutual recursion, we create a single node for
the same in TCT. The ICFG of this node is created by combining ICFG of all the involved static types
(details described in Appendix A).

4 MHP computation

Given all abstract threads of a program, their ICFGs and the TCT, we compute nodes which may
potentially execute in parallel, i.e., MHP information. This computation is performed at two levels: first
at the abstract thread level and then at node level. At the abstract thread level, MHP computes pairs
of abstract threads that may potentially execute in parallel. This is coarse-grained MHP information.
Node level MHP refines this information by considering the individual statements and control-flow
structure of threads that are identified as MHP at the thread-level. Since we are doing a compile time
approximation of MHP (considering every control flow path), the MHP information we compute is a
conservative superset of what actually happens at runtime.

Apart from ordering criteria among threads due to thread start and join, locks are also commonly
used to order the execution among threads. We conservatively compute the locks statically using the
following manner: In Java, locks are used in a scoped manner. Locks held during an access statement
are recorded during the creation of the ICFG and associated with the corresponding node. We define
locks[v]™] as the set of objects that are locked while executing any node v" € V(¢;). Nodes that execute
in the context of a common unique lock cannot execute concurrently.

Our MHP analysis is based on graph algorithms like reachability and dominance. We write z = y
to indicate a directed path from start node x to end node y. A null path is a path whose start node and
end node are the same, i.e., a single node. A non-null path from z to y is written as x 5 y. This path
definition applies to both ICFG and TCT.

A directed path ¢t; = ¢, in the TCT is called a must-join path if all the nodes that lie on the path
from t; to t, are must-join abstract threads, i.e., mjoin[t;] = true, Vi = 1,---,n. For example, the path

to B t; B tgin Figure 3 is not a must-join path as mjoin[t;] = false.



The dominance relation between two nodes in the ICFG is represented by dom. Further, we denote
node dominance as dom,[v}'] that consists of all nodes that lie on all possible directed paths from
v® € V(t;) to vl € V(t;) in ICFG(t;).

4.1 Thread level MHP
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Fig. 4. Thread level MHP.

Thread level MHP computes pairs of abstract threads that may execute in parallel. It exploits the
rooted tree structure of the TCT to determine such information.

Let ||; denote the MHP relation between two abstract threads. The ancestors of an abstract thread ¢;
in the TCT are represented in a set anc(t;). child and parent represent the child and parent relationship
in the TCT. Let yca(t;,t;) denote the youngest common ancestor of ¢; and t; in TCT. Let canc(t;,t;)
be the child of the abstract thread ¢; that is either ¢; itself or an ancestor of ¢;. Mathematically,

ty is the youngest common
yea(ti, t;) = {tk | ancestor of ¢; and ¢; }

tj, if t]' = Child(tl)
canc(t;, t;) = § child(t;), if child(t;) € anc(t;)
nil otherwise

Computation of thread level MHP is conservative. If an abstract thread ¢; is an ancestor of another
abstract thread t;, then we conservatively assume that ¢; and ¢; run in parallel with each other, i.e.,
ti||¢t;. Further refinement to this MHP information is done in node level MHP in which we consider
fine-grained statement level parallelism.

til|st; = true ift; € anc(t;) ort; € anc(t;)
Apart from the above conservative case, all other possible cases to determine if any two TCT nodes

t; and t; may execute in parallel are presented below. For compact representation of the cases we denote
the youngest common ancestor of ¢; and t; as tycq, i.€., tyca = yca(ts, t;).



— Case 1: Let us consider the case where neither the TCT path canc(tycq, ti) % ¢; nor the TCT path
canc(tyca,t;) — t; is a must-join path. The TCT for this case is shown in Figure 4(a). t; and t; may
execute in parallel, if at least one of the following conditions holds: (1) their common parent ¢, is
not unique, or (2) both threads canc(tycq,t;) and canc(tycq,t;) may be started in some control-flow
in ICFG (tye,)- This case is mathematically presented in Table 1.

true, if isUnique[tyc.] = false
tillet; = CSTART (tyca, canc(tyca, t;)) 5 CSTART (tyca, canc(tyca, t;))
V otherwise
CSTART (tyca, canc(tyca,t;)) 5 CSTART (tyca, canc(tycasti))

Table 1. Thread Level MHP:Case 1

— Case 2: Let us consider the case where the TCT path canc(tycq,ti) 5t is a must-join path
and the TCT path canc(tyes,t;j) — t; is not a must-join path. This case is shown in Figure 4(b).
t; may execute in parallel with ¢; if at least one of the following conditions holds: (1) ty., has
multiple runtime instances, (2) there is a control-flow path from CSTART (tyc,, canc(tyca,t;)) to

CSTART (tyca, canc(tyca,t;)) in ICFG(tycq), or (3) there is a control-flow path from CSTART (tycq, canc(tyca, t;))

to CSTART (tyca, canc(tyca,t;)) without CJOIN (tycq, canc(tyca,t;)) in ICFG(tyc,). This case is
mathematically presented in Table 2.

( true, if isUnique[tyc.] = false

CSTART (tyea, canc(tyca, t;)) =5 CSTART (tyea, canc(tyea, t:))

tillst; = < V

CSTART (tyea, canc(tyea, ti)) -5 CSTART (tyea, canc(tyea, t;)) otherwise
A

L CJOIN (tyca, canc(tyca, ti)) ¢ dom cSTART (¢ you,canc(tyon,t:)) [CSTART (tyca, canc(tyea, t;))]

Table 2. Thread Level MHP:Case 2

— Case 3: Let us the consider the case where the TCT paths canc(tycq, ts) 5 t; and canc(tycq, t;) 5 t;
are must-join paths. This case is shown in Figure 4(c). t; may execute in parallel with ¢; if at
least one of the following conditions holds: (1) ¢,¢, has multiple runtime instances, (2) there is a
control-flow path from the CSTART (tyca, canc(tyca,t;)) to CSTART (tyca, canc(tyca, t;)) without the

CJOIN (tyca, canc(tyca,t;)) in ICFG (tyeq), or (3) there is a control-flow path from CSTART (tycq, canc(tyca, ti))

to CSTART (tyca, canc(tyca,t;)) without the CJOIN (tycq, canc(tyca,ti)) in ICFG(tycq). This case is
mathematically presented in Table 3.

Consider our example program and its corresponding TCT in Figure 3. t3 cannot execute in parallel
with ¢4 because abstract thread t3 joins t; before abstract thread t4 is started. Similarly #; can never
run in parallel with tg. However, all other pairs of abstract threads may run in parallel with each other.

4.2 Node level MHP

Thread level MHP ||; is a coarse grained approximation of MHP information, because all statements
of a thread are subsumed and given the same MHP information. MHP information among statements
from threads ¢; and t; can be refined further at the node level in the case where either ¢; is an ancestor
of t; or t; is ancestor of #; in TCT.

Consider our example program and its corresponding TCT in Figure 3. Thread level MHP com-
putation computes that t1||¢t3. This suggests that all statements of threads ¢; occur in parallel with



( true, if isUnique[ty..] = false

CSTART (tyca,canc(tyca, ti)) 5 CSTART (tyca, canc(tyca, t;))
A
ti”ttj = { CJOIN(tyca,CanC(tyca: )) ¢ dOmCSTART(tym‘L canc(tyeca,t; ))[CSTART( yca:canc(tymat]))]
otherwise
CSTART (tyca, canc(tyca, t;)) r CSTART (tyca, canc(tyca, ti))
N
L CJOIN (tyca, canc(tyca, tj)) ¢ oM oSTART (400 canc(tyea,t; )ICSTART (tyca, canc(tycs, ti))]

Table 3. Thread Level MHP:Case 3
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Fig. 5. Node level MHP.

statements in thread t3, i.e., t1 ||; t3- However, the ICFG nodes corresponding to statement 33 in ¢; will
never run in parallel with ICFG nodes corresponding to statement 18 of ¢3. This is because the abstract
thread t3 terminates before thread t; executes statement 33.

We use the symbol ||,, to denote node level MHP information between two ICFG nodes. Let ¢; and
t; be two abstract threads such that ¢; € anc[t;]. All possible cases to determine if any two ICFG nodes
v;" and v} may execute in parallel are presented below:

— Case 1: Let us the consider the case where the TCT path canc(t;,t;) —> t; is not a must-join
path. This case is shown in Figure 5(a). v]" may execute in parallel with v} if at least one of the
following conditions holds: (1) #; has multiple runtime instances, or (2) there is a control-flow path
from CSTART((t;, canc(t;,t;)) to v in ICFG(t;). This case is mathematically presented in Table
4.

™| = true, if isUniquelt;] = false
"7\ CSTART(ti, canc(ti,t;)) — vI™ otherwise
Table 4. Node Level MHP:Case 1

— Case 2: Let us the consider the case where the TCT path canc(t;,t;) 5 t; is a must-join path.
This case is shown in Figure 5(b). v]" may execute in parallel with v} if at least one of the fol-
lowing conditions holds: (1) #; has multiple runtime instances, or (2) there is a control-flow path
from CSTART(t;, canc(t;,t;)) to v]* without the CJOIN (t;, canc(t;,t;) in ICFG(t;). This case is

mathematically presented in Table 5.

To summarize the MHP information based on thread level and node level, let || denote the generic
MHP information between any two nodes vj* € V(¢;) and v} € V(t;). Then the condition under which
v;" may execute in parallel with v7 is given in Table 6. Besides the thread and node level MHP relations,
the condition also accounts for ordering through common lock protection and concurrency among nodes

of abstract threads that are not unique.



true, if isUniquelt;] = false
CSTART (ts, canc(ti,t;)) — vi*

vi"||lnvj = A otherwise
CJOIN (ti, canc(ti,t;)) ¢ domesTART (4, canc(ty,t:) V5 )
Table 5. Node Level MHP:Case 2
(locks[v]*] N locks[v}]) = 0, ift; = t; and isUnique(t;) = false
i (locks[vi*] N locks[v}]) = 0
vi" |lvf = A .
otherwise
(tallets) A (0" [[nv]")

Table 6. Final MHP computation formula.

The skeleton of the MHP algorithm is provided in Algorithm 1. Step 1 computes the abstract threads
and their ICFGs along a symbolic program execution [18]. Step 3 computes postdom relation which is
necessary to determine if the abstract thread is a must-join abstract thread or not. Step 4 finds out
all possible execution paths in the ICFG. Step 5-7 compute node dominance with respect to various
CSTART nodes in the abstract thread. Step 8 adds a TCT node along with its must-join information.
Step 10 computes all possible must-join chains and also computes youngest common ancestor information
for each pair of nodes in TCT. This can be obtained by performing a bottom-up traversal of the TCT.
Steps 11-20 compute MHP information between every pair of nodes across all abstract threads using the
equation given in Table 6. Since MHP information between a pair of nodes is symmetric, we carefully
choose t; in step 12 so as to reduce the number of comparisons.

Algorithm 1 MHP computation.

1: Perform a symbolic execution over the whole program to identify various abstract threads and their ICFGs.
2: for every abstract thread ¢; in the program do

3:  Compute postdom(v]™*) for each v]* € V;.

4:  Compute reachability information (—) for every pair of nodes in V;.

5:  for every child abstract thread ¢; created by ¢; do

6: Compute domchART(ti,tj)[vZ”] for each v" € V;.

7: end for

8:  Add appropriate node to TCT.

9: end for
10: Compute must-join chains and gather youngest common ancestor information for every pair of nodes in

TCT.
11: for all abstract thread t; do
12:  for all abstract thread ¢t; do

13: for all vi* € V; do

14: for all v} € V; do

15: Determine v;"||v; using Table 6.
16: end for

17: end for

18: end for

19: end for

4.3 Complexity analysis

Let k be the total number of abstract threads. Let IV be the total number of ICFG nodes per abstract
thread. Step 3 can be computed in ©(N?) time using the algorithm suggested by Alstrup et al. [2].
Reachability information in Step 4 can be computed in ©(N?) time using standard depth first search



algorithm. Since dominance with respect to a single node is computed in @(N?) time, steps 2-9 can be
executed in a worst case complexity of ©((kN)?). Computation of must-join chain and common parent
information in step 10 can be obtained in @(k?) complexity using a bottom up traversal of TCT. Careful
selection of ¢; will yield a time complexity of O((k + (g))N 2) for steps 11-21. Hence, the overall worst
case time complexity of the algorithm is ©((kN)?). Note that the complexity analysis does not include
the cost of computation of abstract threads and their ICFGs.

5 Implementation details

The abstract threads and their ICFGs are computed by performing a symbolic execution over the whole
program. The focus of the description here is on the MHP analysis and details of the symbolic execution
are discussed in [18].

5.1 Intra-procedural analysis

During intra-procedural analysis, we obtain a flow-sensitive control flow graph for a method. Each node
in this graph corresponds to instructions in the original program/byte-code sequence: BEGIN and END
nodes to indicate begin and end of methods, USE and ASS nodes for accessing and modifying shared
data, CSTART and CJOIN nodes to indicate child abstract thread start and joins, ACQUIRE and
RELEASE nodes to represent monitor regions, NEW nodes to indicate object/array allocations, CALL
nodes to denote method invocations, and ENTRY and EXIT nodes to indicate thread entry and exit
points (these two nodes can be maintained separately or merged with BEGIN and END nodes of the
run method of the thread). While creating CSTART nodes, we create new abstract threads. For the
main thread in Java, we create a special abstract thread.

5.2 Inter-procedural analysis

The CALL nodes of various methods are linked to their polymorphic callee’s BEGIN nodes. The END
nodes of the callee’s are connected back to the successors of the caller’s CALL node. In case a method
is involved in recursion, we reuse the already computed intra-thread control flow graph nodes and hence
do not descend into its call again. This approach can lead to artifact paths in the ICFG that cannot
execute in real program execution. However, this does not affect the conservative results of the analysis.
In case the target of a CALL node is not involved in any shared data access (leads to side effect free
calls), we do not descend into it.

The nodes in ICFG are properly annotated with current set of locks. The lock sets are propagated
as a stack in a flow sensitive manner along with the symbolic execution. Since the symbolic execution
in every method is performed in a depth first order, the lock set of a successor depends both on the
lock set of one of the predecessors and on the current node. Lock sets are modified appropriately for
ACQUIRE and RELEASFE nodes.

Along with the symbolic execution we gradually update the TCT. Initially TCT contains one node
for the abstract thread corresponding to the main thread. Then as and when we encounter new CSTART
nodes at various contexts, we create new abstract threads and add them to TCT.

5.3 Barriers

A barrier synchronization point has the effect of causing all threads to wait at the barrier until every
thread has reached it. Barriers can be implemented in various ways in Java [12]. Since it is hard to detect
barrier synchronization points using program analysis, we annotate programs at barrier synchronization
points. This annotation helps us reduce the MHP pairs as the following way: statements above a barrier
point never execute concurrently with the ones below the barrier.

5.4 Limitation

The 2-level MHP algorithm computes MHP information for programs with no synchronization constructs
like wait, notify and notifyAll. The presence of such constructs may require the MHP algorithm to
enumerate every runtime threads explicitly in the compilation time and thereby making the analysis
expensive and inapplicable to unbounded number of threads.



6 Experience

In this section, we report our experience in a Java-IA32 way-ahead compilation environment on a
Pentium IV CPU at 2.66GHz running Redhat Linux. Our runtime system is based on GNU libgcj version
2.96 [7]. The numbers we present refer to the overall program including library classes, and excluding
native code. The effect of native code for aliasing and object access has been modeled explicitly in the
compiler.

We use several multi-threaded benchmark programs [10,24] to evaluate the precision of our anal-
ysis. JGFCrypt, JGFSeries, JGFSor, JGFLUFact, JGFSparsematmult, JGFMoldyn, JGFRaytracer, and
JGFRaytracer are multi-threaded benchmarks from Java Grande Forum [10]. Other benchmarks philo,
elevator, sor and tsp are described in [18].

We compare the running time of our analysis with that of [16] et al. We modified their MHP
algorithm to use our context and flow sensitive thread model. We also use the interprocedural control
flow graph structure (ICFG) described in Section 3.1 instead of the Program Execution Graph (PEG)
that they proposed. To model PEG interactions at thread start and join in ICFG, we keep additional
information in ICFG nodes regarding threads started and joined at that node; this helps us propagate
the OUT and M information in their MHP algorithm. Abstract threads which do not represent multiple
instances of the runtime threads are handled easily by their MHP algorithm. For a non-unique abstract
thread, we add additional explicit MHP computation among the nodes of the abstract thread (similar
to the way our MHP algorithm computes MHP information for non-unique abstract threads).

Benchmarks Naumovich et al. MHP [16]|Our 2-level MHP|Speedup
in millisecond in milliseconds

JGFSor 51 27 1.89
JGFSparsematmult 34 9 3.78
JGFSeries 33 11 3.00
JGFLUFact 50 29 1.72
JGFCrypt 163 83 1.96
JGFMoldyn 13415 13119 1.02
JGFMontecarlo 3242 3193 1.02
JGFRaytracer 2176 2034 1.07
philo 34 15 2.43
elevator 248 183 1.36
sor 338 210 1.61
tsp 696 696 1.00
mtrt 4217 3823 1.10

Table 7. Running time of our MHP algorithm vs Naumovich et al.

Table 8 reports number of abstract threads and their corresponding number of ICFG nodes. In all
the benchmarks, except the main thread which is unique, other abstract threads have multiple instances.
Table 7 compares the running time of our MHP algorithm as opposed to Naumovich et al. On an average,
we show 1.77x speedup on the running time of MHP algorithm.

For larger benchmarks like JGFMoldyn, JGFMontecarlo, JGFRayTracer, and tsp, the abstract thread(s)
except the main thread have higher number of ICFG nodes (Column 2 in Table 8). Since the computa-
tion of MHP information for abstract threads having multiple instances is same for both our algorithm
and Naumovich et al. algorithm (Note that Naumovich et al. modeled runtime threads and hence did
not have multiple instances of a thread; we added extra code to adapt to our thread model), the im-
provements are not significant. However, for other benchmarks like JGFSeries and JGFSparsematmult,
we obtain large running time benefits.



Benchmarks Num of abstract threads|{Num of ICFG nodes
in abstract threads
JGFSor 2 48469
JGFSparsematmult 2 68+20
JGFSeries 2 53+21
JGFLUFact 2 57+57
JGFCrypt 3 52+61+61
JGFMoldyn 2 2804758
JGFMontecarlo 2 520+316
JGFRaytracer 2 387+221
philo 2 17493
elevator 2 834142
sor 3 83+77+77
tsp 2 1814398
mtrt 3 85+1022+1022

Table 8. Details about benchmarks.

7 Conclusion

In this paper, we present a new thread model where individual thread abstractions are obtained in a flow
and context sensitive manner from the program. The new thread abstraction models runtime threads
precisely and yet efficiently during compile time. This thread model can be used in various concurrent
program analysis and optimizations to improve the precision of results.

The thread model is subsequently used to compute MHP information efficiently. Splitting the MHP
computation based on thread structure level (TCT) and individual thread abstraction’s control flow
structure level reduces the complexity of the algorithm as opposed to data flow based approach proposed
by Naumovich et al. [15]. The TCT structure depicts interaction among threads and can be used to
perform various thread structure analysis.

As concurrent programming is embraced by more users (and finds its way into future processor
architectures), there will be increased demand on the compiler to produce precise static analysis results.
Context and flow sensitive thread abstractions and thread structure analysis described in this paper can
provide a solid back-bone for concurrency -aware compilation systems.
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Appendix — Thread Creation Tree

The thread creation tree described in Section 3.3 precisely depicts the start-join ordering semantics
among abstract threads in a program. Since the tree is computed in a context and flow sensitive manner,



presence of cyclic thread creation might make the TCT unbounded. Consider the code fragment given
Figure 6: Thread A creates Thread B; Thread B creates Thread C; Thread C subsequently creates
Thread A. Clearly there is a recursion involved in the creation of various threads. This requires special
handling to avoid the recursive invocation of start methods.

class A extends Thread { class B extends Thread {
void run() { void run() {
Thread b=new B(); Thread c=new C();
b.start(); c.start();
} }
} }

class C extends Thread {
void run() {
Thread a=new A();
a.start();

Fig. 6. Recursive program.

To handle the above scenario, we perform a strongly connected component search algorithm over the
call graph of the whole program to detect all those start methods of static thread types that are involved
in a recursion. Let {s1,82,---,8,} be the set of all such strongly connected components, where each
si = {®i1, Ti2," -+, Tim }- Bach z;; denote a static thread type. Subsequently, we compute a conservative
inter-procedural control flow graph for each s; by combining the inter-procedural control flow graph of
all z;;. While combining the inter-procedural control flow graphs, start method invocations for static
thread types in s; are treated as normal method invocations and are connected via control flow edges.

While performing symbolic execution (described in Section 5), if we encounter a start method
invocation of a static thread type which belongs to any of the above computed s; then we create a
node in the TCT corresponding to s;. isUnique and mjoin predicates for the created TCT node are
conservatively set to false. ICFG of the created TCT node is set to the inter-procedural control flow
graph of s;.



