
Optimizing Packet Accesses for a Domain Specific
Language on Network Processors

Tao Liu1,2, Xiao-Feng Li3, Lixia Liu3, Chengyong Wu1, Roy Ju4

1Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
{liutao, cwu}@ict.ac.cn

2 Graduate School of Chinese Academy of Sciences, Beijing, China
3 Intel China Research Center Ltd., Beijing, China
{xiao.feng.li, lixia.liu}@intel.com

4 Microprocessor Technology Labs, Intel Corporation, Santa Clara, CA, USA

Abstract. Programming network processors remains a challenging task since
their birth until recently when high-level programming environments for them
are emerging. By employing domain specific languages for packet processing,
the new environments try to hide hardware details from the programmers and
enhance both the programmability of the systems and the portability of the ap-
plications. A frequent issue for the new environments to be widely adopted is
their relatively low achievable performance compared to low-level, hand-tuned
programming. In this paper we present two techniques, Packet Access Combin-
ing (PAC) and Compiler-Generated Packet Caching (CGPC), to optimize
packet accesses, which are shown as the performance bottleneck in such new
environments for packet processing applications. PAC merges multiple packet
accesses into a single wider access; CGPC implements an automatic packet
data caching mechanism without a hardware cache. Both techniques focus on
reducing long memory latency and expensive memory traffic, and they also re-
duce instruction counts significantly. We have implemented the proposed tech-
niques in a high level programming environment for network processor named
Shangri-La. Our evaluation with standard NPF benchmarks shows that for the
evaluated applications the two techniques can reduce the memory traffic by
90% and improve the packet throughput by 5.8 times, on average.

1 Introduction

Network processors (NPs) have been proposed as a key building block of modern
network processing systems. To meet the challenging performance and programma-
bility requirements of network applications, network processors typically incorporate
some unconventional, irregular architectural features, e.g. multiple heterogeneous
processing cores with hardware multithreading, exposed multi-level memory hierar-
chy, and banked register files, etc. [9, 11]. Effective utilization of these features is
critical to the performance of NP-based systems. However, the state-of-the-art of
programming with NPs is still at a low level, often assembly language, which requires
extensive knowledge of both the applications and the architectural details of the target
system. A low-level programming task is tedious, time-consuming, and error-prone. It

is difficult to port an application across different network processors even within the
same family. A high-level programming environment is hence desirable to facilitate
the packet processing application development on NPs. The key to the success of
such a programming environment is not only its ease of programming, but also its
ability to deliver high performance.

Packet processing systems typically store packets in a packet buffer in DRAM,
which usually has a large capacity but a long access latency compared to other mem-
ory levels. Since there are a large number of packet accesses in network applications,
DRAM bandwidth needs to be high enough to sustain maximal packet processing
throughput. Although the DRAM access latency can be partially hidden using multi-
threading, the bandwidth problem remains critical. Actually, DRAM bandwidth has
been considered as the bottleneck of network application performance in some prior
studies [1, 8, 12]. Our approach is to optimize the packet accesses automatically in a
compiler, which reduces both the packet access count and the aggregate access size,
so that the total access time and bandwidth requirement are effectively reduced.

In this paper, we present two techniques used for packet access optimizations. The
first one is Packet Access Combining (PAC), which reduces the number of packet
accesses by merging several access requests into one; and the second technique is
Compiler-Generated Packet Caching (CGPC), which implements an automatic
packet data caching mechanism to minimize the number of accesses to the packet
buffer in DRAM as well as reduce the instruction count.

We implemented the proposed optimizations in Shangri-la [3], which is a pro-
gramming environment for network processors, and targets the Intel IXP family [11].
Shangri-La encompasses a domain-specific programming language designed for
packet processing named Baker [2], a compiler that automatically restructures and
optimizes the applications written in Baker, and a runtime system that performs re-
source management and dynamic adaptation at runtime. The compiler consists of
three components: a profiler, a pipeline compiler, and an aggregate compiler. The
profiler extracts runtime characteristics by simulating the application with test packet
traces. The pipeline compiler is responsible for pipeline construction (partition appli-
cation into a sequence of staged aggregates, where an aggregate includes the code
running on one processing element) and data structure mapping. The aggregate com-
piler takes aggregate definitions and memory mappings from the pipeline compiler
and generates optimized code for each of the target processing cores. It also performs
machine dependent and independent optimizations, as well as domain-specific trans-
formations to maximize the throughput of the aggregates. The work presented here is
implemented in the pipeline compiler and the aggregate compiler.

Our experiments are performed on Intel IXP2400, which contains eight Microen-
gines (MEs) for data plane processing and one XScale core for control plane process-
ing. IXP2400 has four types of memory levels: local memory, scratchpad, SRAM and
DRAM. Experimental results show that our approach can reduce the memory traffic
by 90% and improve the throughput by a factor of 5.8X, on average.

The rest of the paper is organized as follows. Section 2 introduces the related fea-
tures of the Baker language. Section 3 and Section 4 describe Packet Access Combin-
ing and Compiler-Generated Packet Caching, respectively. Section 5 presents the
experimental results. Section 6 reviews related work. Section 7 concludes the paper.

2 Baker Language and Packet Access Characteristics

Baker is a domain-specific programming language for packet processing on highly
concurrent hardware. It presents a data-flow programming model and hides the archi-
tecture details of the target processors. Baker provides domain-specific constructs,
such as Packet Processing Functions (PPFs) and Communication Channels (CCs), to
ease the design and implementation of packet processing applications, as well as
enable effective and efficient compile-time parallelization and optimizations.

bridge

lpm_lookup

options_processor

icmp_processor
encap

l3
_c

ls

l2
_c

ls

l2_bridge_module

arp
l3_fwdr_module

eth_encap_module

l3_switch_module

Rx
Tx

Fig. 1. The packet flow graph of Layer 3 Switch Baker program (L3-Switch): bridges Ethernet

packets and switches IPv4 packets

Baker programs are organized as data flow graphs (referred to as packet flow
graphs) with the nodes representing Packet Processing Functions and the arcs repre-
senting Communication Channels, as shown in Fig. 1. A PPF can have its private
data, functions and channel endpoints, and performs the actual packet processing.
CCs are logically asynchronous and unidirectional queues, and can be created by
wiring the input and output endpoints of PPFs. Baker also provides module as a way
to encapsulate PPFs, shared data and configuration functions. Rx and Tx are native
modules provided by system vendors which can be used as a device driver to receive
and transmit packets with external interfaces, respectively.

protocol ipv4 {
ver : 4;
length : 4;
...
ttl: 8;
prot: 8;
checksum: 16;
...
demux{length << 2};

};

void A.process(ether_packet_t* pkt){
ipv4_packet_t* p;
mac_addr_t mac;
mac = pkt->dst;
...
if(fwd){
p = packet_decap(pkt);
channel_put(l3_fwdr_chnl,p);

}
}

protocol ether {
dst : 48;
src : 48;
type : 16;
demux{ 14 };

};

Fig. 2. Protocol construct and packet primitives in Baker

The format of the packet header of any protocol can be specified using the proto-
col construct, as illustrated in Fig. 2. These definitions introduce new types called
ether_packet_t and ipv4_packet_t, which are processed as built-in types to support
operations on Ethernet and IPv4 packet headers, respectively. To access the packet
fields of a particular protocol header, programmers must specify a pointer to packet
and the field name of corresponding protocol construct. The pointers to packets are
referred as packet handles. As illustrated in Fig. 2, pkt is a packet handle to

ether_packet_t, thus pkt->dst represents the dst field of Ethernet header. We called
the reference to a packet field as a packet access.

Baker provides an encapsulation mechanism to layer different packet protocols.
The packet_encap/packet_decap primitive is to add or remove a protocol header to or
from the current packet. As illustrated in Fig. 2, p = packet_decap(pkt) will remove
the Ethernet header from the pkt packet so as to convert it to an IPv4 packet.

Besides packet accesses and packet encapsulations, Baker also provides other
primitives to ease the manipulations of packets. For example, channel_get and chan-
nel_put are for receiving and transmitting packets through a channel, respectively.

These primitives constitute a packet abstraction model which provides a very con-
venient way for programmers to write network applications without concerning the
underlying implementations. To keep the portability, all packet primitives are imple-
mented as intrinsic functions in the runtime system. The Baker primitives imple-
mented in the runtime system are briefly described below.

The packet handle actually points to metadata in SRAM, which is data that is as-
sociated with a packet but does not come directly from an external source. The meta-
data is useful to store the packet-associated information generated by one PPF and
pass it to another PPF to be processed. For example, the output port is likely part of
metadata. The pointers (head pointer and tail pointer) in the metadata point to the
actual packet data in DRAM, as illustrated in Fig. 3.

ethernet
header

ipv4
header

packet_decap

head
ptr

user-defined
metadata

packet_handle

packet_encap

SRAM
(metadata)

DRAM
(packet data)

mpls
header … mpls

header

tail
ptr

Fig. 3. The layout of packet data and metadata

Packet encapsulations are implemented as intrinsic calls: packet_encap/packet_de-
cap(packet_handle, size). The size is the number of bytes to add to or remove from
the head. As the example in Fig. 2, p = packet_decap(pkt) will be converted to
packet_decap(pkt,14). The 14 is the length of Ethernet header, which can be deter-
mined by the demux field in the protocol construct. The implementation of this intrin-
sic simply increases the head pointer in the metadata by 14 bytes.

Packet accesses (packet reads and writes) are implemented as intrinsic calls: pa-
cket_read/packet_write(packet_handle,offset,size,data). For example, data=p->ttl
and p->ttl=data can be converted to packet_read(p,64,8,data) and packet_write
(p,64,8,data), respectively. The size of 8 means that this packet access will retrieve or
modify a bit field which is 8-bit wide, and the offset of 64 specifies that the distance
to the beginning of the current protocol header is 64 bits. The fourth parameter, data,
is the input or output data to be read from or written to as specified by programmers.
The two intrinsic calls, referred to as packet access intrinsics will access DRAM to
retrieve or modify packet data. They resolve the DRAM address by the value of head
pointer plus the offset parameter.

In the Intel IXP2xxx network processors, DRAM can only be accessed in multi-
ples of 8 bytes starting on any 8-byte boundary. Although packet_read and
packet_write intrinsics can specify arbitrary offset and size, the runtime system must
take care of address alignment and access granularity. For example, write accesses
smaller than 8-byte cause read-modify-write operations to merge data, and the run-
time system will generate a mask to select which bytes to be written into DRAM. In a
read-modify-write operation it will cause two DRAM accesses.

3 Packet Access Combining

In general, a packet_read intrinsic has one DRAM access (for packet data) and one
SRAM access (for packet metadata) and dozens of other instructions. A packet_write
doubles the cost. In a Baker program, each of the packet accesses may operate on
only a few bits of the packet header. However, since each DRAM access operates at
an 8-byte granularity, a naive code generation that translates a packet access into an
intrinsic call can cause a significant waste of DRAM bandwidth and incur unneces-
sary execution time due to the long DRAM access latency.

The idea of PAC optimization is based on the observation that many packet reads
(writes) access contiguous locations. It is possible for the compiler to automatically
merge several packet reads (writes) into one, so that only one packet_read
(packet_write) intrinsic is issued to load (store) all of the needed data at once. Thus
the DRAM access count can be reduced.

PAC optimization should not change the semantics of the original program, so the
application of PAC must comply with control and data dependence requirements.
When combining two packet reads, there are two requirements that must be satisfied:
1. Dominance: The first read must dominate the second read in flow graph;
2. There are no intervening packet writes along the path from the first read to the

second read altering the packet data that the second read will use.
Correspondingly, the requirements of combing two packet writes are:

1. Control Equivalence: The first packet write dominates the second and the second
post-dominates the first.

2. There are no intervening packet reads (writes) along the path from the first write to
the second write using (altering) the packet data of the second write.
The conditions for combining more than two packet reads (writes) can be derived

from the requirements above since the compiler can always merge the first two packet
reads (writes) into one and then merge this new one with the third read (write). The
compiler can follow this process iteratively till all of the reads (writes) that satisfy the
conditions are combined.

Fig. 4 gives an example of PAC optimization. Fig. 4.a is the flow graph before a
PAC optimization. The packet accesses are represented as packet access intrinsic calls.
There are two packet reads and two packet writes accessing nearby but different
fields of IPv4 header. PAC wants to merge the two reads into a single read, and the
two writes into a single write. The flow graph after combining is shown in Fig. 4.b.
The benefit of PAC is clear: two packet access intrinsic calls were removed. To for-

malize the solution of the combining problem, we develop a bit-field dataflow analy-
sis on these packet accesses.

a) Before combining b) After combining

packet_read(p,64,8,s)

paket_write(p,64,8,x)

packet_read(p,80,16,t)

packet_write(p,80,16,y)

s = p->ttl

p->ttl = x

p->checksum = y

t = p->checksum

packet_read(p,64,32,u)
s=(u>>24)&0xff

v=(x & 0xff)<<24

t=u & 0xffff

v=(y & 0xffff)|v
v=(u & 0x00ff0000)|v

packet_write(p,64,32,v)

Fig. 4. An example of PAC

3.1 Algorithm

According to the requirements described above, only those packet accesses that sat-
isfy the following conditions can be combined: First, all accesses must be of the same
type (read or write), and operate on the same packet. Second, the offsets and sizes of
all accesses must be known at compile-time. Third, the size of the combined access
must be within the burst size of a single DRAM access. Last, there shouldn’t be any
violation of control and data dependence due to combining these accesses.

Packet access combining can be performed in the following four steps:
1. Collect the candidate packet access information

We first traverse a program function to collect the necessary information for each
packet access, including the packet handle, offset and size. This information will be
used in the succeeding steps.
2. Compute the dominance relations

As discussed above, these packet accesses to be combined must satisfy the domi-
nance relationship (control dependence). Because one basic block (BB) can only have
one branch or call instruction, these packet access calls must be in different BBs.
Hence, the dominance relationship of packet accesses can be represented as dominate
tree of BBs.
3. Perform a packet field live analysis

We perform a data-flow analysis on packet fields of packet accesses. In the analy-
sis, a packet read can be considered as a use to a bit-field of packet buffer, and a
packet write can be considered as a definition. To uniquely identify each packet ac-
cess and describe the bits information of them, a triplet {bb,ph,pf} was introduced to
represent packet access info during the iterative dataflow analysis. The bb depicts the
basic block that the packet access resides in. The ph (packet handle) indicates which
packet instance it will access. The pf (packet field) is a bit vector each bit of which
represents a bit in the packet buffer. The corresponding bits that the packet access
will read or modify are set to valid while other bits are set to invalid. If the packet
access info is propagated across a packet_encap or packet_decap call, its pf must shift
corresponding bits because the current head pointer has been changed. The dataflow
analysis of packet reads is a backward dataflow problem. Its corresponding flow
equations are specified as Fig. 5. PFrev_in(BBi) and PFrev_out(BBi) are the sets of

reversed input and output packet accesses information of BBi, respectively. After the
bitwise dataflow analysis, PFrev_in of each BB contains all possible packet accesses
which can be propagated to the exit of this BB. We said a packet access s is live at
BBi if s∈PFrev_in(BBi) and the valid bits in s.pf has not been changed with respect
to its original BB (s.bb). A packet access live at a given program point indicates
that it can be combined with another packet access resided at this point without vio-
lating any data dependence.

)))()(,(,()(

)()(

__

)(
__

iiinreviiioutrev

BBSuccBB
joutreviinrev

BBGenBBPFBBKillBBCapBBPF

BBPFBBPF
ij

U

U

=

=
∈ ()

⎩
⎨
⎧

=
otherwise

saccesspackethasBBifpfsphsi
BBGen i

i φ
"")}.,.,{(

()
⎪⎩

⎪
⎨

⎧ ∈∀≠∈∀=
=

otherwiseset
swritepackethasBBif

setxphsphxxsetxphsphxpfxpfsphxbbx
setBBKill ii ""

},..|{},..|).&).(~,.,.{(
,

U

⎪
⎩

⎪
⎨

⎧
∈∀<<
∈∀>>

=
otherwiseset

bitsdecappackethasBBifsetxbitspfxphxbbx
bitsencappackethasBBifsetxbitspfxphxbbx

setBBCap i

i

i)(_}|).,.,.{(
)(_}|).,.,.{(

),(

Fig. 5. Data-flow equations of packet field live analysis for packet reads

4. Finalize the combining
For each packet access, the candidates can be selected by taking a bitwise OR op-

eration on the current packet access’s pf field and those of all live packet accesses at
this point. If the bit width of combined result does not exceed the width limit of
DRAM instructions, the corresponding live packet access is a candidate. We use the
combining density to describe data reuse characteristics as defined in Eq. (1). In this
equation field_len1 and field_len2 are the valid bit widths of the pf fields in the cur-
rent packet access and candidate packet access, respectively. combined_len is the
valid bit width after the combination. For example, if the two packet accesses are to
the same packet field, the value of combining density equals the width of the packet
field. If the packet fields are adjacent, the value is zero, and so on. We will first com-
bine the packet accesses whose combining density is higher.

CombiningDensity=field_len1 + field_len2 - combined_len . (1)

After the combination, the offset and size of current packet access are adjusted to
retrieve all needed packet data and the redundant packet access is eliminated. The
cached packet data can be kept in registers.

The algorithm of PAC can be easily extended to handle more complex cases. For
example, it can combine two packet writes even if they are to non-adjacent fields of a
packet. By using a dominator packet read to cache the data of the gap between two
packet writes, we can combine the two packet writes with the cached gap into a wide
write. Furthermore, it can combine packet writes located in basic blocks that are not
control equivalent. It may still be worth combining if we can reduce the number of
packet writes on the critical path. To maintain correctness, compensation packet
writes must be generated in the corresponding exits to cold paths.

4 Compiler-Generated Packet Caching

By default, for each packet access our compiler will generate a packet access intrinsic
call which is implemented in the runtime system. This approach, though allows the
flexibility of changing the implementation of the packet buffer without modifying the
compiler, will incur significant performance overhead. In fact, we may not need to
invoke the intrinsic call to load the packet data for every reference in the program. If
we preload all needed packet data into a cache, the subsequent packet accesses can be
replaced by cache accesses. Actually, packet data accesses exhibit good spatial local-
ity w.r.t. different fields in the same packet [15]. Based on this observation, we pro-
pose a new approach to implement packet accesses, named Compiler-Generated
Packet Caching (CGPC). CGPC tries to identify the critical path of the packet flow in
a network application based on profiling information and optimize all packet accesses
along the path. If there are multiple accesses to the same packet in the critical path,
the related packet data will be buffered in the fastest level of memory (e.g., the local
memory in IXP2400), and those accesses that can be resolved statically will be re-
placed by the accesses to the buffered data. For those accesses that can only be re-
solved at run time, efficient code sequence will be generated to calculate the offset
and alignment and perform the access. Actually, CGPC can be considered as an ex-
treme situation of PAC that it tries to combine all the packet accesses in a thread into
only one packet read at the thread entrance and one packet write at the thread exit.

4.1 Algorithm

CGPC is performed in two steps. First, an inter-procedure analysis, referred to as
Packet Flow Analysis, is to identify the critical path in the packet flow graph and
calculate associated information of each packet access and packet_encap/decap. Sec-
ond, a compiler generates the instructions for each packet access and packet_encap/
decap based on the packet flow analysis information.

4.1.1 Packet Flow Analysis
The information needed by the packet flow analysis is collected by a profiler. By
utilizing user-supplied packet traces, the profiler simulates the execution of network
applications at a high-level Intermediate Representation (IR) in the compiler. After
the simulation, the profiling information, such as execution frequency and access
statistics, is available. The pseudo code of the algorithm for the packet flow analysis
is presented in Fig. 6. Flow_Anaysis is a recursive function which starts the
analysis from the endpoint of the channel coming out of the Rx module. The cached
packet data should be preloaded at the entry of the packet flow, but the preload width
can not be determined until the analysis is finished. During the analysis, the value of
the current head pointer is tracked and updated whenever encountering a
packet_encap/decap. However, different intrinsic calls and control structures compli-
cate this process. If a packet_encap/decap sits inside a loop with an unknown loop
count, inside an if-branch, or inside a circle of the packet flow graph, we may not be
able to track a constant value of head pointer statically.

Flow_Analysis(currStmt){
switch(currStmt){
case Intrinsic_Call:
{Process_Intrinsic_Call(Intrinsic_Call);
break;}

case Call:
{callee=Get_Callee(Call);
if(callee has been analysed) break;
else{
Flow_Analysis(callee->first_Stmt);}

break;}
case Loop:
{set is_in_loop flag;
estimate loop count by profiler;
Flow_Analysis(Loop body);
if(not in outer loop) reset is_in_loop flag;
break;}

case If:
{Flow_Analysis(if condition);
Flow_Analysis(then branch);
then_ofst=currOfst;
Flow_Analysis(else branch);
else_ofst=currOfst;
if(then_ofst==else_ofst) break;
if(packet_is_over in then/else branch)
set currOfst to else_ofst/then_ofst;

else
set unresolved flag; break;}

…… // other cases
default:
{Flow_Analysis(kid nodes of currStmt);}

}}

Process_Instrinsic_Call(currCall){
if(currCall is packet_encap/decap){
if(is_in_loop){
set unresolved flag;
set currCall dynamic;}

else{
Increase/Decrease currOfst;
set currCall eliminable;}

}
if(currCall is packet_read/write){
if(access offset is variable||unresolved)
set currCall dynamic;

else{
set currCall static;
calculate absolute offset and size;}

update preload & writeback range;
}
if(currCall is channel_put){
if(send packet to Tx or Xcale){
set packet_is_over;
if(cache has been written) writeback cache;

}
if(send packet to ME){
if(cache has been written) writeback cache;
callee=Get_End_Func(currChannel);
Flow_Analysis(callee->first_Stmt);

}
}
if(currCall is packet_drop)
set packet_is_over;

…… // other cases
}

Fig. 6. The algorithm of packet flow analysis

For each packet access, if the head pointer is not resolved as a compile-time con-
stant or its offset parameter is a variable, it will be marked as dynamic. They need a
compiler to generate code to compute the offset and alignment at runtime so as to
access the cached data. Other packet accesses will be marked as static and will have
their offsets and alignments calculated at compile-time. Since the offsets of static
packet accesses are known at compile-time, we can use the absolute offset in the
cache to access packet data across different protocol layers. As a result, some
packet_encap/decaps become redundant if they are used only to provide the encapsu-
lation protection for static packet accesses. These packet_encap/decaps are marked as
eliminable, which means they can be removed safely. Other packet_encap/decaps are
marked as dynamic which will be used in generating code for dynamic packet ac-
cesses. When packets flow to the Tx module or heterogeneous cores (e.g., XScale),
the packet flow path is ended and the cached packet data should be written back to
DRAM if it has been modified. If we use a processor-local memory (e.g., local mem-
ory in ME) as a cache and packets flow across different cores (e.g., MEs), the cached
data should be written back to DRAM when it comes out of one processing core and
reloaded when it enters another core.

Fig. 7 illustrates the critical packet flow path of L3-Switch. The head pointer can
always be determined statically along this path. All packet accesses are resolved ex-
cept one in the lpm_lookup PPF, which is used to verify the checksum of IPv4 header.
Its offset is a variable and this access is executed ten times for every processed packet.
We need to insert code to compute its offset at runtime.

encap
l3

_c
ls

l2
_c

ls
l3_fwdr_module

eth_encap
module

l3_switch_module

2 static

1 static

8 static/
1 dynamic

3 static
preload

writeback
Rx

Tx

lp
m

_l
oo

ku
p

ethernet
header

Cache
al memory)(loc

mpls
header …head

ptr

Packet
access +

offset

Adjust head ptr when meeting
dynamic packet_encap/decap

Fig. 8. Dynamic offset and alignment

resolution
Fig. 7. The critical path of L3-Switch

4.1.2 Compiler-Generated Packet Accesses
After the packet flow analysis, the flags (as shown in Fig. 6) and necessary informa-
tion are annotated on each packet access and packet_encap/decap. In the code gen-
erator, the actual code is generated according to the flags and the information. If the
packet access is static, the cache can be accessed directly with a constant offset and
size provided by the packet flow analysis. An unaligned access can be effectively
optimized to a wide access followed by some shift instructions. As for a dynamic
access, the offset and alignment must be calculated at runtime. Our solution is illus-
trated in Fig. 8. We use a variable to track the value of head pointer and initialize it
when the compiler preloads the cache. When a packet flows across a dynamic
packet_encap/decap, additional instructions are executed to update its value at run-
time. We can then use the variable of head pointer to generate code for the dynamic
packet access. The absolute offset of a dynamic packet access in cache can be deter-
mined by adding the original offset to the current head pointer. A check is performed
on the absolute offset. If the offset within the cache, it can directly access the cached
data. Otherwise, it will fall through to invoke the original intrinsic call.

After the optimization, a DRAM access is performed only when preloading and
writing back the cache. An unaligned DRAM access will cause a much higher cost
than the aligned one. For example, an unaligned write would need a write-after-read
operation to keep the unwritten section intact, which needs to be implemented in two
DRAM accesses. Instead, our compiler implements all preload and write back opera-
tions at the aligned boundaries. All intermediate packet accesses’ offsets are adjusted
according to the alignment. As a result, our implementation properly aligns all
DRAM accesses. Although this approach may waste some cache space to hold un-
used data, it avoids the write-after-read operations on DRAM and reduces the align-
ment instructions.

5 Evaluations

We have evaluated the proposed optimizations with representative workloads on real
network processors. In this section, we will present the hardware evaluation environ-
ment, benchmarks, and experimental results.

5.1 Benchmark Applications

We use three typical network applications, L3-Switch, MPLS and Firewall, for our
evaluation. They are all written in Baker. L3-Switch and MPLS were evaluated using
the NPF standard configurations [16, 17]. Firewall was evaluated using a packet trace
internally developed.

Layer 3 Switch (L3-Switch) [16] implements Ethernet bridging and IPv4 routing.
For each packet received, it performs table lookups to determine the next hop, decre-
ments the Time-To-Live (TTL), and updates the checksum for the packet header.

Multi-Protocol Label Switch (MPLS) [17] attaches one or more labels in the head
of each packet and routes the packet based on the label rather than the destination
address. By using the label as an index into a forwarding table, the routing process
can be accomplished more quickly.

Firewall sits between a private network and its Internet connection, protecting the
internal network against attacks. The firewall takes actions, such as passing or drop-
ping a packet, based on an ordered list of user-defined rules. These rules specify the
actions to take when the fields of incoming packets (e.g. source and destination IPs,
source and destination ports, protocol etc.) match certain patterns.

5.2 Experimental Environment

Our evaluations were conducted on a RadiSys ENP-2611 evaluation board, which
contains an Intel IXP2400 network processor running MontaVista Linux on the
XScale core. IXP2400 consists of eight multi-threaded MicroEngines (MEs) for traf-
fic processing, an Intel XScale core for control plane processing, 8MB SRAM, and
64MB DRAM [10]. An IXIA packet generator with two 1Gbps optical ports was used
to generate packet traffics and collect statistics. When the ports are used in full duplex
mode, the peak input rate is 2Gbps.

Table 1. The parameters of different levels of memories in IXP 2400 (Unit B stands for Bytes)

Memory Type Size Access time
(Cycles)

Start Address
Alignment

Min
Length

Max
Length

Local Memory 2560B 3 4B boundary 4B 4B
Scratchpad 16KB 60 4B boundary 4B 64B

SRAM 256MB 90 4B boundary 4B 64B
DRAM 2GB 120 8B boundary 8B 128B

The memory hierarchy of IXP2400 consists of four different memory levels: local
memory, Scratchpad, SRAM, and DRAM, with increasing capacities and access la-
tencies. Table 1 lists their access parameters. There is no hardware cache; any access
to the memory units is carried out explicitly with specific instructions for respective
memory types.

For all configurations in our evaluation, six MEs with each ME having eight thread
contexts all ran the same code from the critical path of an application. The other two

MEs were dedicated to receive (Rx) and transmit (Tx) module, respectively. The cold
path and control plane code of the application were mapped to XScale.

5.3 Packet Access Count and Aggregate Access Size

We compared the number of packet-related DRAM accesses and the packet forward-
ing rates for the three applications, with and without the proposed optimizations. The
BASE configuration enables only typical scalar optimizations. We evaluated these
two optimizations on top of BASE separately. PAC enables the packet access combin-
ing. Procedure inlining was performed to expose more opportunities for combining.
CGPC represents the compiler-generated packet caching. Since CGPC can be consid-
ered as an aggressive version of PAC, we have not evaluated the combined effect.

Table 2. Memory access statistics (per packet) and instruction counts

 DRAM
Access
Count

Aggregate
Access Size

(Bytes)

Instruction
Count1

BASE 29 696 2033
PAC 13 200 1190

L3-
Switch

CGPC 2 72 770
BASE 16 384 1851
PAC 9 212 1428

MPLS

CGPC 2 48 1495
BASE 24.2 580 1742
PAC 4.4 140 572

Firewall

CGPC 1 32 375

Table 2 shows the DRAM access count and aggregate access size per packet and
the instruction count for each benchmark application. We can see that PAC can re-
duce the DRAM access dramatically. CGPC has the lowest number of DRAM ac-
cesses and reduces the aggregate access size by 90% on average (L3-Switch: 89.7%,
MPLS: 87.5%, Firewall: 94.5%). Taking L3-Switch as an example, its packet ac-
cesses are marked in Fig. 7. There are 9 static packet reads, 5 static unaligned packet
writes, and 1 dynamic packet read on the critical path. The dynamic packet read is
caused by a checksum checking, which iterates through the packet header in a unit of
2-byte. PAC merges the static packet accesses but cannot catch the dynamic one.
CGPC can deal with all of the packet accesses, thus only need DRAM accesses in the
preload and write back operations. MPLS presents a challenge to our techniques
initially. It pushes, swaps, and pops MPLS labels dynamically, which may include an
arbitrary number of MPLS headers and our techniques can not determine the cache
layout statically. However, the results demonstrate that CGPC remain effective for

1 The instruction count is an approximate number of the instructions actually executed in Mi-

croEngines for one packet processing. It includes critical path code and packet accesses. A
packet read takes about 50 instructions and a packet write takes about 100 instructions.

this dynamic situation. Overall, PAC and CGPC not only reduce the memory traffic,
but also reduce the number of executed instructions.

5.4 Forwarding Rate

The forwarding rates of three applications on the minimum sized 64-byte packets are
presented in Fig. 9. The numbers of MEs to execute the applications are plotted on
the X-axis and the achieved forwarding rates are plotted on the Y-axis. To obtain the
full benefits of PAC, we unrolled the checksum checking loop in L3-Switch before
applying PAC to convert the dynamic packet read to static. PAC reduces the packet
processing time by removing considerable DRAM accesses and instructions. As a
result, it gets a higher forwarding rate. CGPC provides a higher performance impact
than PAC because it has no excessive DRAM accesses and the solution for resolving
the offset and alignment is effective. Compared to BASE, CGPC improves the
throughput by 5.8 times on average (L3-Switch: 7.6; MPLS: 3.9; Firewall: 5.9).

0.0

20.0

40.0

60.0

80.0

100.0

1 2 3 4 5 6ME

F
o
r
w
a
r
d
i
n
g

R
a
t
e
(
2
G
b
p
s
)

BASE (L3-switch)
PAC (L3-switch)
CGPC (L3-switch)
BASE (MPLS)
PAC (MPLS)
CGPC (MPLS)
BASE (Firewall)
PAC (Firewall)
CGPC (Firewall)

Fig. 9. Performance of L3-Switch, MPLS and Firewall

In the BASE configuration, all three applications get their memory bus saturated
when the number of MEs increases. However, PAC provides good scalability by re-
lieving the contention of DRAM bandwidth. Compared to PAC, CGPC generates
fewer instructions and DRAM accesses so that it obtains nearly perfect scalability and
reaches the full line rate quickly. The result shows the system performance is largely
determined by both the instruction count and DRAM bandwidth. We also applied
these optimizations on SRAM accesses without as apparent benefits as DRAM ac-
cesses. It is because IXP2400 has only one DRAM controller but two independent
SRAM controllers.

6 Related Work

Several high-level programming languages, such as microC [11] and picocode [9],
have been introduced with their corresponding NPs. But they are all extended to ex-
pose hardware details and their performances heavily rely on the use of such features.
A number of domain-specific languages, such as Click [13], NesC [7], etc., have been

developed to ease programming, and they are more hardware-independent and in-
clude special constructs to express the tasks in packet processing applications. But
they do not focus on efficient compilation.

Mudigonda et al. [15] analysed the characteristics of packet data and application
data accesses. They exhibit the spatial locality of packet data accesses and temporal
locality of application data accesses. They use a cache to improve the hit rate of ap-
plication data structures. Iyer et al. [12] studied a cache-based memory hierarchy of
packet buffer. Hasan et al. [8] proposed several techniques to exploit row locality (i.e.
successive accesses falling within the same DRAM rows) of DRAM accesses. But
their techniques needed hardware support and focused on the input- and output-side
of packet processing, which can be implemented in our Rx and Tx modules. Sher-
wood et al. [18] designed a pipelined memory subsystem to improving the throughput
in accessing application data structures.

Davidson and Jinturkar [6] described a memory coalescing algorithm for general
purpose processors similar to packet access combining. This algorithm replaced nar-
row array access with double-word accesses in unrolled loops. It performed a profit-
ability and safety analysis on programs, and generated alignment and alias checks at
runtime if necessary. But Packet Access Combining works on a whole procedure and
focuses on packet accesses. It utilizes some domain knowledge and does not need a
complex alias analysis. Thus, PAC is always profitable when it can be applied.

There are several techniques which can be used to improve packet accesses.
McKee et al. [14] designed a separate stream buffer to improve the performance of
stream accesses. Chen et al. [4] described a hardware-based prefetching mechanism
to hide memory latency.

7 Conclusion

Performance and flexibility are two major but sometime conflicting requirements to
packet-processing systems and the programming environments associated with them.
High level programming environments with domain specific languages can satisfy the
flexibility requirement. However, how to utilize hardware features effectively to
achieve high performance with automatic compiler supports in such programming
environments requires more explorations. In this paper, we address one major type of
memory accesses in network applications – accesses to packet data structures, which
constitute a significant portion of the total memory accesses. We propose two compi-
lation techniques to reduce the latencies of packet accesses and the contention of
DRAM bandwidth.

Packet access combining tries to reduce the number of packet accesses by utilizing
wide memory references and code motion. It does not incur extra memory space
compared with caching. Furthermore, it is hardware-independent and always benefi-
cial when applied. Compiler-generated packet caching can be viewed as compiler-
controlled caching. It buffers the packet data to be referenced and replace all of the
packet accesses on the critical path with accesses to a buffer in cache. Through a
profiling-based program analysis, it minimizes the required cache size and the num-
ber of cache misses.

We performed experiments on a real packet processing platform with three repre-
sentative network applications, L3-Switch, MPLS and Firewall. The experimental
results demonstrate that the efficiency of packet accesses is critical to the system
performance, and our techniques can reduce the number of packet accesses and the
total memory bandwidth requirements significantly.

Reference

1. W. Bux, W. E. Denzel, T. Engbersen, A. Herkersdorf, and R. P. Luijten. “Technologies and
building blocks for fast packet forwarding.” IEEE Communications Magazine, pp. 70-77,
January 2001.

2. M. Chen, E. Johnson, R. Ju. “Compilation system for throughput-driven multi-core proces-
sors.” In Proc. of Micro-37, Portland, Oregon, December 2004.

3. M. Chen, X. Li, R. Lian, J. Lin, L. Liu, T. Liu, and R. Ju. “Shangri-la: Achieving high per-
formance from compiled network applications while enabling ease of programming.” In
Proc. of ACM SIGPLAN PLDI, Chicago, Illinois, USA, June 2005.

4. T. Chen and J. Baer. “Effective Hardware-based Data Prefetching for High-performance
Processors.” IEEE Transactions on Computers, 44(5), May 1995.

5. T. Chiueh and P. Pradhan. “High-performance IP routing table lookup using CPU caching.”
In IEEE Infocom’99, New York, NY, March 1999.

6. J. W. Davidson and S. Jinturkar. “Memory Access Coalescing: A Technique for Eliminating
Redundant Memory Accesses.” In Proc. of ACM SIGPLAN PLDI, pp. 186-195, June 1994.

7. D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler. “The nesC Language:
A Holistic Approach to Networked Embedded Systems.” In Proc. of ACM SIGPLAN PLDI,
June 2003.

8. J. Hasan, S. Chandra, and T. Vijaykumar. “Efficient Use of Memory Bandwidth to Improve
Network Processor Throughput.” In ISCA, 2003.

9. IBM PowerNP Network Processors,
 http://www-3.ibm.com/chips/techlib/techlib.nsf/products/IBM_PowerNP_NP4GS3.
10. Intel Corporation. Intel IXP2400 Network Processor: Hardware Reference Manual. 2002.
11. Intel IXP family of Network processors,
 http://www.intel.com/design/network/products/npfamily/index.htm.
12. S. Iyer, R. R. Kompella, and N. McKeown. “Analysis of a memory architecture for fast

packet buffers.” In Proc. IEEE Workshop High Performance Switching and Routing (HPSR),
2001.

13. E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. “The Click Modular
Router.” Transactions on Computer Systems, 2000.

14. S. McKee, R. Klenke, K. Wright, W. Wulf, M. Salinas, J. Aylor, and A. Batson. “Smarter
Memory: Improving Bandwidth for Streamed References.” IEEE Computer, July 1998.

15. J. Mudigonda, H. Vin, and R. Yavatkar. “A Case for Data Caching in Network Processors.”
Under Review. http://www.cs.utexas.edu/users/vin/pub/pdf/mudigonda04case.pdf

16. Network Processing Forum. “IP Forwarding Application Level Benchmark.”
http://www.npforum.org/techinfo/ipforwarding_bm.pdf.

17. Network Processing Forum. “MPLS Forwarding Application Level Benchmark and An-
nex.” http://www.npforum.org/techinfo/MPLSBenchmark.pdf.

18. T. Sherwood, G. Varghese, and B. Calder. “A Pipelined Memory Architecture for High
Throughput Network Processors.” In 30th International Symposium on Computer Architec-
ture, June 2003.

http://www-3.ibm.com/chips/techlib/techlib.nsf/products/IBM_PowerNP_NP4GS3
http://www.intel.com/design/network/products/npfamily/index.htm
http://www.cs.utexas.edu/users/vin/pub/pdf/mudigonda04case.pdf
http://www.npforum.org/techinfo/ipforwarding_bm.pdf
http://www.npforum.org/techinfo/MPLSBenchmark.pdf

