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Abstract. Tera-scale high-performance computing has enabled sstietd tackle
very large and computationally challenging scientific peats, making the ad-
vancement of scientific discovery at a faster pace. Howesgecpmputing scales
to levels never seen before, it also becomes extremely degasive, /O inten-
sive, and energy consuming. Amongst these, 1/0O is becomingjar bottleneck,
impeding the expected pace of scientific discovery and aisabf data. Further-
more, the applications are becoming increasingly dynamierims of their com-
putation patterns as well as data access patterns to cdpéavgier problems and
data sizes. Due to the complexities of systems and apgitatnd their high
energy consumptions, it is, therefore, very important tdraesls research issues
and develop dynamic techniques at the level of run-timeesystand compilers
to scale I/O in the right proportions. This paper presergsitails of a dynamic
compilation framework developed specifically for 1/O-inséve large-scale ap-
plications. Our dynamic compilation framework includesea af powerful 1/O
optimizations designed to minimize execution cycles anergy consumption,
and generates results that are competitive with hand-gmarcodes in terms of
energy consumption.

1 Introduction and Motivation

Tera-scale high-performance computing has enabled stietd tackle very large and
computationally challenging problems, such as those fantige scientific computing
domain. This in turn helps advancement of scientific disopet a faster pace. How-
ever, as computing scales to levels never seen beforepibalsomes extremely data
intensive, I/O intensive, and energy consuming. Thus, §8ecoming a major bottle-
neck, slowing the expected pace of scientific discovery aradyais of data. This high
I/0 intensiveness also means that a significant portioneoéttergy consumption during
the execution of high-performance applications occurélfO systems. Furthermore,
to cope with larger problems and data sizes, models andcaiplns are being designed
to be dynamic in nature. Thatis, the applications are beegimicreasingly dynamic [8,
9] in terms of their computation patterns and data accessrpat(e.g., changing smaller

* This work is supported by NSF grants #0444158, #040634093@&2 and a grant from
GSRC.



structured mesh based designs to dynamic adaptive mesémefirt techniques for al-
gorithm scalability, or dynamically analyzing the data tgetmine interesting features
or events to steer computation, etc.). Due to the compésxdf systems and applica-
tions, it is, therefore, very important to address resesies and develop techniques
at the level of run-time systems and compilers to scale I/@heright proportions.
If such techniques are not developed, users will be ovemwbelwith I/O bottlenecks
since the complexities of large-scale systems do not lenabtioual optimizations.

Consider a typical scientific exploration process that ives large-scale simula-
tions. It usually has several phases including simulatiamsy post-processing, and
analysis. The simulation phase consists of intensive ceatipns that generate large
quantities of data. The data need to be saved quickly as tieegamerated so that the
computation is not slowed down because of 1/0O bottlenecksoie cases, the simula-
tion can benefit from dynamic steering (which means dynaligichanging I/O access
patterns), by quickly analyzing intermediate results. Asaquent phase usually re-
quires the post-processing of the simulation data. This imelyde transformation of
the data from one format (storage layout) to another, surzatson of the data, reorga-
nization of the data at run-time to facilitate future usecégfitly and most effectively.
In this phase, a large volume of data has to be read efficiarly a large volume of
data may be generated as well. In the next phase, the anphes®, relevant subsets
of the data need to be selected and analyzed based on thet@m®pé the data (that
is, the processing and access patterns are data dependedyraamic). The analy-
sis phase may require methods that discover specific patéenh relationships in the
data as well as capturing inter-relationships betweeniffereint datasets. Clearly, the
complexities of various phases and steps are tremendodislahese phases involve
energy-consuming operations. Data read/write, procgssimganization and flow are
major components and represent a major bottleneck todafpatite future. An impor-
tant impact of this 1/O intensiveness of large-scale appibhns is the increased energy
consumption on the 1/0O system. Frequent accesses to patiaks, for example, can
be responsible from a significant fraction of overall poweddet, as noted by several
prior studies such as [1, 2].

As a result of high-level dynamic changes in the applicaiehavior and/or data
layout, two important entities also changiata access pattern (i.e., how the datasets
are accessed — direction of access, volume of access, fregoé access, etc) and
1/0 performance (e.g., the time spent in I/O activities and energy consuompdin the
disk subsystem). A data-intensive application can bendét d these changes in its
I/0 access pattern and 1/0 performance can be captured adbdek to adynamic
compiler that can re-compile the application to take the best adgardithe changing
behavior and to improve the time/energy spentin I/O.

This paper explores dynamic compilation for I/O-intensamplications. Specifi-
cally, we present an infrastructure that contairdy@amic optimizing compiler/linker,
a high-level 1/0O library (called HLL), amini database system (a metadata manager),
and alayout manager that together manage a parallel, hierarchical storagesy$he
framework provides I/0-optimized access to datasets dégss of the type of the media
they currently reside on, what their storage layouts argylmre the media is located.
Where/how the datasets are stored and in what type of meeljaatte stored are hid-



den from the user. This allows the user applications to acaetataset the same way
regardless of its current location and storage layout. Tmepiler, the HLL, the mini
database, and the layout manager cooperate to maintaiartticem storage system
view. While the dynamic compilation framework discussedhis paper can be used
for optimizing both performance and power/energy, in tlipgr we focus exclusively
on energy reduction on the I/O system.

The rest of this paper is organized as follows. Section 2udises the major com-
ponents of our system at a high-level. Since the main foctlsi®paper is the dynamic
compiler, Section 3 focuses on the compiler alone and dsssuthe suite of 1/0 op-
timizations it employs. Finally, Section 4 concludes thegrawith a summary of our
major contributions.

2 Dynamic Compilation Infrastructure

Figure 1 illustrates the major components of our dynamicpmation framework for
I/O-intensive parallel applications. The storage systeassumed to be a parallel, hier-
archical storage architecture that has typically a diskeddayer such as NAS (Network
Attached Storage) [10] or SAN (Storage Area Network). We alssume that there is
a tertiary storage (tape system) that serves as the nekinethe storage hierarchy. In
this storage architecture, the most critical issue is t@dale and coordinate accesses
to data, and manage the data-flow between the different coem®. We assume that
this storage system is used by parallel applications.
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Fig. 1. High-level view of the dynamic compilation approach.

The main goal of the dynamic compilation support discusseklis paper is to iden-
tify and implement various I/O optimizations dynamicallsing the features provided
in the HLL. The HLL's capabilities include an interface tHatilities the propagation
of 1/0 access patterns and hints for run-time optimizatiéhsthermore, to take ad-
vantage of the past access patterns from the applicatiertith makes use of a mini
database (called the metadata manager) that maintaimmiation about the I/O access
patterns as well as relationships among datasets. Thisnigathe locality conceptin
memories. For example, spatial locality says that datagtivat are close in data space
tend to be accessed together and this locality is determigied) the addresses of data
items. Our approach identifies and takes advantage of sedaddtaset locality, which
indicates which datasets tend to be accessed together. faglaa stored in the mini
database contains such information, and is periodicalijatgd during the course of
execution. The goal of the mini database is to learn and sitwess patterns at various



levels and maintain 1/0O performance statistics. It doespasform 1/O in our imple-

mentation. Since the proposed analyses for dynamic cotigilare oriented towards
exploiting the 1/0O optimizations supported by the HLL, wesfiexplain the HLL and

briefly discuss its functionality and user interface.

The HLL allows an application to access data located in theage hierarchy via
a simple interface expressed in terms of datasets (andasbitctilinear regions of
datasets). The main difference between the HLL and the guevarray-oriented run-
time I/O libraries (e.g., Passion [5, 6] and Panda [12]) & the HLL maintains the
same abstraction (dataset name) across an entire stoexgechi, and that it accom-
modates storage hierarchy-specific dynamic I/O optinizesti

The routines in the HLL can be divided into four major groupséxd on their func-
tionality: Initialization/Finalization Routines, Datacsess Routines, Data Movement
Routines, and Hint-Related Routines/Queries. Each rettikes a processor id as one
of its input parameters, and is invoked by each particiggtitocessor. This enables the
HLL to see the global picture (which includes the I/O accesttgpn of each proces-
sor) in its entirety. Initialization/finalization routiseare used to initialize the library
buffers and metadata structures (in the mini database)fimaalize them when all the
work is done. Data access routines manage the data flow best@®mge devices and
memory. An arbitrary rectilinear portion of a dataset camdzel or written using these
routines. Using a read routine, for example, the HLL candamectangular portion of
a dataset from tape (or disk) to memory. Data movement resitame used to transfer
data between storage devices other than memory. Thesep@ygowerful abstraction
by expressing the data movement between any storage daicesa simple copy op-
eration; moreover, these routines work on arbitrary reetér portions of datasets. All
these routines also have their asynchronous counterpaitseturn the control to the
application code immediately (but perform the specifiedrafien at the background).
Hint-related routines are used to pass specific hints onemglataset to the HLL (hints
and queries are not discussed in this paper). Queries, aritibehand, are used by the
HLL to extract specific information from the mini database@uatthe datasets such as
their current locations in the storage hierarchy, the sifdiseir subfiles, etc.

The HLL contains a large set of 1/0 optimizations (implenszhas library routines)
that can be incorporated into the application in an on-dehfashion using dynamic
linking. However, if a desired I/O optimization (for the b&#© performance and energy
savings) is not available in the HLL, the proposed dynamingiter (that will be de-
scribed shortly) generates the optimized version by malkgegof the already available
routines (in the HLL).

3 Detailsof the Dynamic Compilation Framework

Our dynamic compiler has four major components as depiat€tijure 2: (1) dynamic
compiler; (2) dynamic linker; (3) performance tracer; addl §teering unit. The per-
formance tracer is responsible from collecting both I/OCesspattern information and
performance/energy statistics. The 1/0 access patteonnétion includes access di-
rections for data arrays (e.g., row-wise vs. column-wiseases), whether the dataset
is accessed in the read-write mode or mostly in the read+onlye, which datasets are



Table 1. Aniillustration of performance optimization rules incorpted for data access strategies
for efficient 1/0. The “Invoked if” column lists the conditis under which the corresponding
optimization is invoked by the dynamic compiler.

Optimization Brief Explanation Invoked if
Collective 1/0 (CIO) Distributing the I/O requests of different processors|Access pattern of the data is differe
processor among them so that each accesses as |from its storage pattern, and multiple
many consecutive data as possible it involves some|processors are use to access the data.
extra communication between processors.
Subfiling (SUB) Dividing large array into subarrays to reduce transfdA small subregion of a file is accessgd.
latency between different levels of the storage hierapafth high temporal locality.

-

accessed with temporal affinity, how frequently the dataaet accessed, and similar
information that indicates how different datasets are malaied by the application.
The performance statistics include the number of accessd#férent storage units
(e.g., tapes, disks), misses in disk/file caches, and thegpant in I/0O and the energy
consumption in different storage elements.

After collecting this information from the metadata mamage performance tracer
passes it to the steering unit (note that the performandgzeraollects only application-
specific data from the metadata manager, which keeps mattatatifferent entities
and applications). The main responsibility of the steeting is to decide whether any
dynamic linking and/or compilation needs to be performed & so, select the most
appropriate libraries and/or optimizations to be invok@ééhile different triggering cri-
teria can be used for determining whether dynamic compitdinking is necessary at
a particular point during execution, in this work we use aadstucture centered ap-
proach as explained in rest of this section. As shown in Eg@uour dynamic compiler
and linker are invoked by the steering unit.
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Fig. 2. Components of the dynamic compilation framework.
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Table 1 lists the I/O optimizations currently supported by dynamic compilation
framework. The second column briefly describes each opditioiz, and the third col-
umn gives the condition(s) under which each optimizatido ise invoked dynamically
at run-time.

In collective I/0O, small disk requests are merged into felaeger requests to min-
imize the number of times the disks are accessed. While ibeamsed for both read
and write operations, we describe it here only for the reagatons. In two-phase 1/10
[6], a client-side collective I/O implementation, the pegsors first communicate with
each other so that each processor knows the total data #xhtmbe read from the disk
system. In the second step, they decide what data each pooce=ds to read so that
the number of disk accesses is minimized. In the next stemribcessors perform disk



accesses (in parallel). In the last step, they engage irpimieessor communication so
that each data item is transferred to its original requeliteeeds to be noted that col-
lective 1/0, where applicable, can be beneficial from thegyneonsumption viewpoint
since it can reduce the number of disk accesses. While itéstkrat it also causes some
extra interprocessor data communication, the energyiadulny these communications
is normally very small compared to the energy gains achievettie disk system.

Our dynamic compilation analysis for collective 1/0O hasifeomponents: (1) De-
termining I/O access pattern to the data; (2) Determiniogpsfe pattern (layout) of the
data; (3) Comparing access and storage patterns to decietbevtio apply collective
I/0 or not; and (4) Modifying the code dynamically if necassahe access pattern
information is obtained from the performance tracer, whiebps track of the dynamic
I/O access patterns. The storage pattern indicates howataeisl stored in the stor-
age system, and is maintained by our metadata managersH ti® patterns do not
match collective 1/O is expected to be useful and can redoeggg consumption, and
the steering unit either links the appropriate library no@t(in the HLL) that imple-
ments collective 1/O (if such a library routine is availahler dynamically recompiles
the application code (that is, the application code is ctedpto implement collective
I/0 using the existing 1/0O support provided by the HLL). Tignamic compilation is
confined to the relevant part(s) of the code, that is, typidak loop nest (or a set of
related loop nests) that accesses the data in questiorefoherthe energy spent during
dynamic compilation is not expected to be excessive.

It is also possible that the steering unit may decide a “g@rayout (pattern)
change” for the dataset in question. This may be requireédges where the desired
modification to the application code may not preserve thgimal semantics of the
application (hence, it is not legal). In such cases, therisigeainit advises the layout
manager (see Figures 1 and Figure 2) to change the storamé t#ithe data. It should
be noted that the layout manager can receive such requestsrultiple applications
running concurrently on the same storage system, and sigiveia dataset can be ac-
cessed by multiple applications, its layout should be meditinly if it is going to be
beneficial globally (i.e., from multiple applications’ mpective). In other words, the
steering unit of our framework just makes a suggestion (denisg only one applica-
tion), and the layout manager is free to obey it or not. In l@iper, however, we do not
evaluate the behavior of layout optimizer.

It should be emphasized that applying I/O optimization$sag collective 1/0 in a
dynamic compilation/linking based setting brings someguribenefits. For example,
in many cases, the data access patterns cannot be extraatteally. Consequently, a
static compiler either cannot apply collective I/O (as iedmot know the access pat-
tern) or can apply it conservatively, which means reducedgnsavings. Also, in some
cases, the same data can be shared by multiple applicdtigossible that, between
two successive accesses by the same application to the saaset] the layout of data
could be modified. In such a case, we need to change the I/@sastrategy of the ap-
plication on-the-fly to take advantage of the new storageuayDynamic compilation
and linking allow us adapt the I/0O access behavior to theectistatus (layout, location)
of the data.



The second optimization for which we discuss the necessargrdic compilation
support in this paper is subfiling [11]. In many I/O-interesapplications such as ter-
rain imaging, document imaging, and visualization, altfiothe datasets manipulated
are very large, at a given time, only small portions (regiohmterest) of the datasets
are used. Unfortunately, most current solutions to laggesdata movement across
the storage hierarchies proposed by hierarchical storageagement systems [7, 3,
4] retrieve the entire file that contains the dataset in goesThis increases latency
enormously, and also wastes significant bandwidth. In augithis also increases the
energy consumption significantly. For example, to satisfyayram request of 50 KB
of data, they retrieve, say, an entire 8 GB file from tape t&.dis fact, this limitation
forces the application programmers/users to break theasdss into small, individually
addressable objects, thereby cluttering the storage spatenaking file management
very difficult. In addition, this process is very time consagand error-prone. Instead,
subfiling moves a minimum amount of data between storageedgwhen satisfying a
given program’s I/O requirements. This is achieved by birepkip the large datasets
into uniform, small-sized chunks, each of which is storechasbfile in the storage
hierarchy. As mentioned above, if we do not employ any sulgfijla large file needs
to be transferred from tape to disk. This increases bothsade¢ency and energy con-
sumption. Therefore, subfiling is expected to bring energydiits in both tape and
disk accesses (though in this paper we focus only on the diskgg benefits). Then,
an important job of the dynamic compilation framework is &tatmine the optimal
chunk size and restructure the code on-the-fly based on ita@proach achieves this
by exploiting the data access pattern information. Spedificthe data access pattern
information gives us the type and volume of data reuse. Famgke, if the accesses
are localized (clustered) in small regions of the dataketchunk size should be kept
small; otherwise, we can use a large chunk size. It shoutdtssobserved that using
subfiling in conjunction with dynamic compilation brings iamportant advantage over
the static compilation-directed subfiling. If we do not us@amic compilation, then
we are forced to select a specific chunk size (most probalsigdan the profile data),
generate code customized for that size, and use that sizegiwut the execution. In
comparison, with the dynamic compilation support, we caangfe the chunk size dur-
ing the course of execution, thus better adapting to the mjmahanges in the 1/10
access patterns.

While dynamic compilation has the potential for improvihg performance of 1/O-
intensive applications and reducing their energy consiomgt it also comes with its
own costs that need to be accounted for. Therefore, our dgnemmpilation frame-
work should be selective in applying 1/0O optimizations. Hwer, an overly selective
compiler will not work well either as it can miss lots of optization opportunities. Our
approach maintains cost information within the metadataagar. This cost informa-
tion consists of the time/energy overhead incurred for é&Zloptimization for the last
couple of invocations. When the next time the same I/O optitinn is needed, the
steering unit obtains this cost information from the metadaanager (through the per-
formance tracer) quickly, and uses it in deciding whetherdhptimization in question
should really be applied. A similar cost-benefit tradeo#lso carried out by the layout
manager with one major difference. Unlike the dynamic cdengivhich modifies the



generated code), the layout manager modifies the storagetlajthe data. And, since
a given dataset can be manipulated by different applicatiorifferent fashions, the
changes to its layout should be performed with extreme @afarther argument for
this is the fact that a typical layout change in the storagagesy can be much more
expensive (in terms of the number of execution cycles itak®al energy consumption)
than a typical dynamic code restructuring at run-time.

4 Concluding Remarks

This paper has presented the structure and operation ofardgrcompilation infras-
tructure that specifically targets 1/0O-intensive scieatipplications. Focusing on the
energy benefits of dynamic compilation in this applicatiemain, we have described
dynamic compilation framework that employs a suite of I/Qimjzations, so that it
allows 1/O-intensive applications to optimize energy sgéi.
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