
Dynamic Compilation for Reducing Energy
Consumption of I/O-Intensive Applications⋆

Seung Woo Son1, Guangyu Chen1, Mahmut Kandemir1, and Alok Choudhary2

1 Pennsylvania State University, University Park PA 16802, USA,
{sson,gchen,kandemir}@cse.psu.edu

2 Northwestern University, Evanston IL 60208, USA,
choudhar@ece.northwestern.edu

Abstract. Tera-scale high-performance computing has enabled scientists to tackle
very large and computationally challenging scientific problems, making the ad-
vancement of scientific discovery at a faster pace. However,as computing scales
to levels never seen before, it also becomes extremely data intensive, I/O inten-
sive, and energy consuming. Amongst these, I/O is becoming amajor bottleneck,
impeding the expected pace of scientific discovery and analysis of data. Further-
more, the applications are becoming increasingly dynamic in terms of their com-
putation patterns as well as data access patterns to cope with larger problems and
data sizes. Due to the complexities of systems and applications and their high
energy consumptions, it is, therefore, very important to address research issues
and develop dynamic techniques at the level of run-time systems and compilers
to scale I/O in the right proportions. This paper presents the details of a dynamic
compilation framework developed specifically for I/O-intensive large-scale ap-
plications. Our dynamic compilation framework includes a set of powerful I/O
optimizations designed to minimize execution cycles and energy consumption,
and generates results that are competitive with hand-optimized codes in terms of
energy consumption.

1 Introduction and Motivation

Tera-scale high-performance computing has enabled scientists to tackle very large and
computationally challenging problems, such as those foundin the scientific computing
domain. This in turn helps advancement of scientific discovery at a faster pace. How-
ever, as computing scales to levels never seen before, it also becomes extremely data
intensive, I/O intensive, and energy consuming. Thus, I/O is becoming a major bottle-
neck, slowing the expected pace of scientific discovery and analysis of data. This high
I/O intensiveness also means that a significant portion of the energy consumption during
the execution of high-performance applications occurs in the I/O systems. Furthermore,
to cope with larger problems and data sizes, models and applications are being designed
to be dynamic in nature. That is, the applications are becoming increasingly dynamic [8,
9] in terms of their computation patterns and data access patterns (e.g., changing smaller

⋆ This work is supported by NSF grants #0444158, #0406340, #0093082 and a grant from
GSRC.



structured mesh based designs to dynamic adaptive mesh refinement techniques for al-
gorithm scalability, or dynamically analyzing the data to determine interesting features
or events to steer computation, etc.). Due to the complexities of systems and applica-
tions, it is, therefore, very important to address researchissues and develop techniques
at the level of run-time systems and compilers to scale I/O inthe right proportions.
If such techniques are not developed, users will be overwhelmed with I/O bottlenecks
since the complexities of large-scale systems do not lend tomanual optimizations.

Consider a typical scientific exploration process that involves large-scale simula-
tions. It usually has several phases including simulation runs, post-processing, and
analysis. The simulation phase consists of intensive computations that generate large
quantities of data. The data need to be saved quickly as they are generated so that the
computation is not slowed down because of I/O bottlenecks. In some cases, the simula-
tion can benefit from dynamic steering (which means dynamically changing I/O access
patterns), by quickly analyzing intermediate results. A subsequent phase usually re-
quires the post-processing of the simulation data. This mayinclude transformation of
the data from one format (storage layout) to another, summarization of the data, reorga-
nization of the data at run-time to facilitate future use efficiently and most effectively.
In this phase, a large volume of data has to be read efficiently, and a large volume of
data may be generated as well. In the next phase, the analysisphase, relevant subsets
of the data need to be selected and analyzed based on the properties of the data (that
is, the processing and access patterns are data dependent and dynamic). The analy-
sis phase may require methods that discover specific patterns and relationships in the
data as well as capturing inter-relationships between the different datasets. Clearly, the
complexities of various phases and steps are tremendous, and all these phases involve
energy-consuming operations. Data read/write, processing, organization and flow are
major components and represent a major bottleneck today andfor the future. An impor-
tant impact of this I/O intensiveness of large-scale applications is the increased energy
consumption on the I/O system. Frequent accesses to parallel disks, for example, can
be responsible from a significant fraction of overall power budget, as noted by several
prior studies such as [1, 2].

As a result of high-level dynamic changes in the applicationbehavior and/or data
layout, two important entities also change:data access pattern (i.e., how the datasets
are accessed – direction of access, volume of access, frequency of access, etc) and
I/O performance (e.g., the time spent in I/O activities and energy consumption on the
disk subsystem). A data-intensive application can benefit alot if these changes in its
I/O access pattern and I/O performance can be captured and feedback to adynamic
compiler that can re-compile the application to take the best advantage of the changing
behavior and to improve the time/energy spent in I/O.

This paper explores dynamic compilation for I/O-intensiveapplications. Specifi-
cally, we present an infrastructure that contains adynamic optimizing compiler/linker,
a high-level I/O library (called HLL), amini database system (a metadata manager),
and alayout manager that together manage a parallel, hierarchical storage system The
framework provides I/O-optimized access to datasets regardless of the type of the media
they currently reside on, what their storage layouts are, orwhere the media is located.
Where/how the datasets are stored and in what type of media they are stored are hid-



den from the user. This allows the user applications to access a dataset the same way
regardless of its current location and storage layout. The compiler, the HLL, the mini
database, and the layout manager cooperate to maintain thisuniform storage system
view. While the dynamic compilation framework discussed inthis paper can be used
for optimizing both performance and power/energy, in this paper we focus exclusively
on energy reduction on the I/O system.

The rest of this paper is organized as follows. Section 2 discusses the major com-
ponents of our system at a high-level. Since the main focus ofthis paper is the dynamic
compiler, Section 3 focuses on the compiler alone and discusses the suite of I/O op-
timizations it employs. Finally, Section 4 concludes the paper with a summary of our
major contributions.

2 Dynamic Compilation Infrastructure

Figure 1 illustrates the major components of our dynamic compilation framework for
I/O-intensive parallel applications. The storage system is assumed to be a parallel, hier-
archical storage architecture that has typically a disk-based layer such as NAS (Network
Attached Storage) [10] or SAN (Storage Area Network). We also assume that there is
a tertiary storage (tape system) that serves as the next level in the storage hierarchy. In
this storage architecture, the most critical issue is to schedule and coordinate accesses
to data, and manage the data-flow between the different components. We assume that
this storage system is used by parallel applications.

Fig. 1. High-level view of the dynamic compilation approach.

The main goal of the dynamic compilation support discussed in this paper is to iden-
tify and implement various I/O optimizations dynamically using the features provided
in the HLL. The HLL’s capabilities include an interface thatfacilities the propagation
of I/O access patterns and hints for run-time optimizations. Furthermore, to take ad-
vantage of the past access patterns from the application, the HLL makes use of a mini
database (called the metadata manager) that maintains information about the I/O access
patterns as well as relationships among datasets. This is akin to the locality concept in
memories. For example, spatial locality says that data items that are close in data space
tend to be accessed together and this locality is determinedusing the addresses of data
items. Our approach identifies and takes advantage of so-called dataset locality, which
indicates which datasets tend to be accessed together. The metadata stored in the mini
database contains such information, and is periodically updated during the course of
execution. The goal of the mini database is to learn and storeaccess patterns at various



levels and maintain I/O performance statistics. It does notperform I/O in our imple-
mentation. Since the proposed analyses for dynamic compilation are oriented towards
exploiting the I/O optimizations supported by the HLL, we first explain the HLL and
briefly discuss its functionality and user interface.

The HLL allows an application to access data located in the storage hierarchy via
a simple interface expressed in terms of datasets (and arbitrary rectilinear regions of
datasets). The main difference between the HLL and the previous array-oriented run-
time I/O libraries (e.g., Passion [5, 6] and Panda [12]) is that the HLL maintains the
same abstraction (dataset name) across an entire storage hierarchy, and that it accom-
modates storage hierarchy-specific dynamic I/O optimizations.

The routines in the HLL can be divided into four major groups based on their func-
tionality: Initialization/Finalization Routines, Data Access Routines, Data Movement
Routines, and Hint-Related Routines/Queries. Each routine takes a processor id as one
of its input parameters, and is invoked by each participating processor. This enables the
HLL to see the global picture (which includes the I/O access pattern of each proces-
sor) in its entirety. Initialization/finalization routines are used to initialize the library
buffers and metadata structures (in the mini database), andfinalize them when all the
work is done. Data access routines manage the data flow between storage devices and
memory. An arbitrary rectilinear portion of a dataset can beread or written using these
routines. Using a read routine, for example, the HLL can bring a rectangular portion of
a dataset from tape (or disk) to memory. Data movement routines are used to transfer
data between storage devices other than memory. These provide a powerful abstraction
by expressing the data movement between any storage device pair as a simple copy op-
eration; moreover, these routines work on arbitrary rectilinear portions of datasets. All
these routines also have their asynchronous counterparts that return the control to the
application code immediately (but perform the specified operation at the background).
Hint-related routines are used to pass specific hints on a given dataset to the HLL (hints
and queries are not discussed in this paper). Queries, on theother hand, are used by the
HLL to extract specific information from the mini database about the datasets such as
their current locations in the storage hierarchy, the sizesof their subfiles, etc.

The HLL contains a large set of I/O optimizations (implemented as library routines)
that can be incorporated into the application in an on-demand fashion using dynamic
linking. However, if a desired I/O optimization (for the best I/O performance and energy
savings) is not available in the HLL, the proposed dynamic compiler (that will be de-
scribed shortly) generates the optimized version by makinguse of the already available
routines (in the HLL).

3 Details of the Dynamic Compilation Framework

Our dynamic compiler has four major components as depicted in Figure 2: (1) dynamic
compiler; (2) dynamic linker; (3) performance tracer; and (4) steering unit. The per-
formance tracer is responsible from collecting both I/O access pattern information and
performance/energy statistics. The I/O access pattern information includes access di-
rections for data arrays (e.g., row-wise vs. column-wise accesses), whether the dataset
is accessed in the read-write mode or mostly in the read-onlymode, which datasets are



Table 1. An illustration of performance optimization rules incorporated for data access strategies
for efficient I/O. The “Invoked if” column lists the conditions under which the corresponding
optimization is invoked by the dynamic compiler.

Optimization Brief Explanation Invoked if
Collective I/O (CIO)Distributing the I/O requests of different processors Access pattern of the data is different

processor among them so that each accesses as from its storage pattern, and multiple
many consecutive data as possible it involves some processors are use to access the data.
extra communication between processors.

Subfiling (SUB) Dividing large array into subarrays to reduce transferA small subregion of a file is accessed.
latency between different levels of the storage hierarchywith high temporal locality.

accessed with temporal affinity, how frequently the datasets are accessed, and similar
information that indicates how different datasets are manipulated by the application.
The performance statistics include the number of accesses to different storage units
(e.g., tapes, disks), misses in disk/file caches, and the time spent in I/O and the energy
consumption in different storage elements.

After collecting this information from the metadata manager, the performance tracer
passes it to the steering unit (note that the performance analyzer collects only application-
specific data from the metadata manager, which keeps metadata for different entities
and applications). The main responsibility of the steeringunit is to decide whether any
dynamic linking and/or compilation needs to be performed, and if so, select the most
appropriate libraries and/or optimizations to be invoked .While different triggering cri-
teria can be used for determining whether dynamic compilation/linking is necessary at
a particular point during execution, in this work we use a data structure centered ap-
proach as explained in rest of this section. As shown in Figure 2, our dynamic compiler
and linker are invoked by the steering unit.

Fig. 2. Components of the dynamic compilation framework.

Table 1 lists the I/O optimizations currently supported by our dynamic compilation
framework. The second column briefly describes each optimization, and the third col-
umn gives the condition(s) under which each optimization isto be invoked dynamically
at run-time.

In collective I/O, small disk requests are merged into fewerlarger requests to min-
imize the number of times the disks are accessed. While it canbe used for both read
and write operations, we describe it here only for the read operations. In two-phase I/O
[6], a client-side collective I/O implementation, the processors first communicate with
each other so that each processor knows the total data that need to be read from the disk
system. In the second step, they decide what data each processor needs to read so that
the number of disk accesses is minimized. In the next step, the processors perform disk



accesses (in parallel). In the last step, they engage in interprocessor communication so
that each data item is transferred to its original requester. It needs to be noted that col-
lective I/O, where applicable, can be beneficial from the energy consumption viewpoint
since it can reduce the number of disk accesses. While it is true that it also causes some
extra interprocessor data communication, the energy incurred by these communications
is normally very small compared to the energy gains achievedon the disk system.

Our dynamic compilation analysis for collective I/O has four components: (1) De-
termining I/O access pattern to the data; (2) Determining storage pattern (layout) of the
data; (3) Comparing access and storage patterns to decide whether to apply collective
I/O or not; and (4) Modifying the code dynamically if necessary. The access pattern
information is obtained from the performance tracer, whichkeeps track of the dynamic
I/O access patterns. The storage pattern indicates how the data is stored in the stor-
age system, and is maintained by our metadata manager. If these two patterns do not
match collective I/O is expected to be useful and can reduce energy consumption, and
the steering unit either links the appropriate library routine (in the HLL) that imple-
ments collective I/O (if such a library routine is available), or dynamically recompiles
the application code (that is, the application code is compiled to implement collective
I/O using the existing I/O support provided by the HLL). Thisdynamic compilation is
confined to the relevant part(s) of the code, that is, typically the loop nest (or a set of
related loop nests) that accesses the data in question. Therefore, the energy spent during
dynamic compilation is not expected to be excessive.

It is also possible that the steering unit may decide a “storage layout (pattern)
change” for the dataset in question. This may be required in cases where the desired
modification to the application code may not preserve the original semantics of the
application (hence, it is not legal). In such cases, the steering unit advises the layout
manager (see Figures 1 and Figure 2) to change the storage layout of the data. It should
be noted that the layout manager can receive such requests from multiple applications
running concurrently on the same storage system, and since agiven dataset can be ac-
cessed by multiple applications, its layout should be modified only if it is going to be
beneficial globally (i.e., from multiple applications’ perspective). In other words, the
steering unit of our framework just makes a suggestion (considering only one applica-
tion), and the layout manager is free to obey it or not. In thispaper, however, we do not
evaluate the behavior of layout optimizer.

It should be emphasized that applying I/O optimizations such as collective I/O in a
dynamic compilation/linking based setting brings some unique benefits. For example,
in many cases, the data access patterns cannot be extracted statically. Consequently, a
static compiler either cannot apply collective I/O (as it does not know the access pat-
tern) or can apply it conservatively, which means reduced energy savings. Also, in some
cases, the same data can be shared by multiple applications.It is possible that, between
two successive accesses by the same application to the same dataset, the layout of data
could be modified. In such a case, we need to change the I/O access strategy of the ap-
plication on-the-fly to take advantage of the new storage layout. Dynamic compilation
and linking allow us adapt the I/O access behavior to the current status (layout, location)
of the data.



The second optimization for which we discuss the necessary dynamic compilation
support in this paper is subfiling [11]. In many I/O-intensive applications such as ter-
rain imaging, document imaging, and visualization, although the datasets manipulated
are very large, at a given time, only small portions (regionsof interest) of the datasets
are used. Unfortunately, most current solutions to large-scale data movement across
the storage hierarchies proposed by hierarchical storage management systems [7, 3,
4] retrieve the entire file that contains the dataset in question. This increases latency
enormously, and also wastes significant bandwidth. In addition, this also increases the
energy consumption significantly. For example, to satisfy aprogram request of 50 KB
of data, they retrieve, say, an entire 8 GB file from tape to disk. In fact, this limitation
forces the application programmers/users to break their datasets into small, individually
addressable objects, thereby cluttering the storage spaceand making file management
very difficult. In addition, this process is very time consuming and error-prone. Instead,
subfiling moves a minimum amount of data between storage devices when satisfying a
given program’s I/O requirements. This is achieved by breaking up the large datasets
into uniform, small-sized chunks, each of which is stored asa subfile in the storage
hierarchy. As mentioned above, if we do not employ any subfiling, a large file needs
to be transferred from tape to disk. This increases both access latency and energy con-
sumption. Therefore, subfiling is expected to bring energy benefits in both tape and
disk accesses (though in this paper we focus only on the disk energy benefits). Then,
an important job of the dynamic compilation framework is to determine the optimal
chunk size and restructure the code on-the-fly based on it. Our approach achieves this
by exploiting the data access pattern information. Specifically, the data access pattern
information gives us the type and volume of data reuse. For example, if the accesses
are localized (clustered) in small regions of the dataset, the chunk size should be kept
small; otherwise, we can use a large chunk size. It should also be observed that using
subfiling in conjunction with dynamic compilation brings animportant advantage over
the static compilation-directed subfiling. If we do not use dynamic compilation, then
we are forced to select a specific chunk size (most probably based on the profile data),
generate code customized for that size, and use that size throughout the execution. In
comparison, with the dynamic compilation support, we can change the chunk size dur-
ing the course of execution, thus better adapting to the dynamic changes in the I/O
access patterns.

While dynamic compilation has the potential for improving the performance of I/O-
intensive applications and reducing their energy consumptions, it also comes with its
own costs that need to be accounted for. Therefore, our dynamic compilation frame-
work should be selective in applying I/O optimizations. However, an overly selective
compiler will not work well either as it can miss lots of optimization opportunities. Our
approach maintains cost information within the metadata manager. This cost informa-
tion consists of the time/energy overhead incurred for eachI/O optimization for the last
couple of invocations. When the next time the same I/O optimization is needed, the
steering unit obtains this cost information from the metadata manager (through the per-
formance tracer) quickly, and uses it in deciding whether the optimization in question
should really be applied. A similar cost-benefit tradeoff isalso carried out by the layout
manager with one major difference. Unlike the dynamic compiler (which modifies the



generated code), the layout manager modifies the storage layout of the data. And, since
a given dataset can be manipulated by different applications in different fashions, the
changes to its layout should be performed with extreme care.A further argument for
this is the fact that a typical layout change in the storage system can be much more
expensive (in terms of the number of execution cycles it takes and energy consumption)
than a typical dynamic code restructuring at run-time.

4 Concluding Remarks

This paper has presented the structure and operation of a dynamic compilation infras-
tructure that specifically targets I/O-intensive scientific applications. Focusing on the
energy benefits of dynamic compilation in this application domain, we have described
dynamic compilation framework that employs a suite of I/O optimizations, so that it
allows I/O-intensive applications to optimize energy savings.

References

1. J. Chase, D. Anderson, P. Thackar, A. Vahdat, and R. Boyle,“Managing Energy and Server
Resources in Hosting Centers,” InProc. of the 18th Symposium on Operating Systems Princi-
ples, pages 103-116, October 2001.

2. J. Chase and R. Doyle, “Balance of Power: Energy Management for Server Clusters,” In
Proc. of the 8th Workshop on Hot Topics in Operating Systems, page 165, May 2001.

3. L. T. Chen, R. Drach, M. Keating, S. Louis, D. Rotem, and A. Shoshani, “Efficient Organi-
zation and Access of Multi-Dimensional Datasets on Tertiary Storage Systems,”Information
Systems Journal 20(2): 155–183, 1995.

4. L. T. Chen, R. Drach, M. Keating, S. Louis, D. Rotem, and A. Shoshani, “Optimizing Tertiary
Storage Organization and Access for Spatio-Temporal Datasets,” InProc. of the NASA Goddard
Conference on Mass Storage Systems, 1995.

5. A. Choudhary, R. Thakur, R. Bordawekar, S. More, and S. Kutipidi, “PASSION: Optimized
Parallel I/O,”IEEE Computer, June 1996.

6. A. Choudhary, R. Bordawekar, M. Harry, R. Krishnaiyer, R.Ponnusamy, T. Singh, and
R. Thakur, “PASSION: Parallel and Scalable Software for Input-Output,”NPAC Technical Re-
port SCCS-636, Syracuse, NY, September 1994.

7. R. A. Coyne, H. Hulen, and R. Watson, “The High-Performance Storage System,” InProc. of
Supercomputing, Portland, OR, November 1993.

8. F. Darema, “Dynamic Data Driven Applications Systems: A New Paradigm for Application
Simulations and Measurements,” InInternational Conference on Computational Science, pages
662–669, 2004.

9. F. Darema, “Dynamic Data Driven Applications Systems: New Capabilities for Application
Simulations and Measurements,” InInternational Conference on Computational Science, pages
610–615, 2005.

10. G. Gibson and R. Van Meter, “Network Attached Storage Architecture,”Communications of
the ACM, 43(11). November 2000.

11. G. Memik, M. Kandemir, A. Choudhary, “APRIL: A Run-Time Library for Tape Resident
Data,” InProc. of the NASA Goddard Conference on Mass Storage Systems and Technologies,
Baltimore, MD, April 2000.

12. K. E. Seamons, Y. Chen, P. Jones, J. Jozwiak, and M. Winslett, “Server-Directed Collective
I/O in Panda,” InProc. of Supercomputing, San Diego, CA, December 1995.


