Testing Speculative Work in a Lazy/Eager
Parallel Functional Language*

Alberto de la Encina, Ismael Rodriguez, and Fernando Rubio

Facultad Informatica. Universidad Complutense de Madrid
C/. Prof. José Garcia Santesmases, E-28040 Madrid. Spain.
{albertoe,isrodrig,fernando}@sip.ucm.es

Abstract Eden is a parallel extension of the functional language Haskell.
Eden inherits from Haskell its laziness, which allows it to avoid unnec-
essary computations. However, in order to enable the parallel execution
of processes in Eden, this feature must be disabled when new processes
are instantiated. Hence, any newly created process can be speculative,
as it is not known whether the computations it performs will actually
be required for the overall computation. Therefore, the performance of
a program may be affected by the unneeded speculation. In this paper
we present a framework to compare the speculated computations of an
Eden program with the computations it actually requires. Thus, the pro-
grammer is provided with a profiling tool allowing him to produce better
programs where speculative work fits better the actual necessities.

1 Introduction

Parallel programming faces several specific challenges that are not met in se-
quential programming. The programmer of a sequential program defines a com-
putation in terms of some subcomputations, and the coordination of them is
trivially achieved because the order of subcomputations is implicitly given. How-
ever, the coordination of subcomputations in parallel programs increases their
complexity. In this sense, the functional paradigm provides some advantages for
the programmer. In particular, parallel functional languages are endowed with
useful abstraction mechanisms like function composition and higher-order func-
tions. The higher-order programming level provided by them allows to define
the coordination of subcomputations in terms of the same constructions used in
the rest of the program, which enables the definition and use of skeletons [2,3,7]
to develop simpler parallel programs. Besides, since functional programs do not
have state, side-effects are eliminated. So, the dependencies between processes
are limited to obtaining the arguments needed to execute each function. These
features ease the coordination issues and allow to define them in a natural way.

Several parallel functional languages have been proposed (see e.g. [20,7,17,19)]).
Among them, Eden has the interesting characteristic of requiring relatively low

* Work partially supported by the MCYT project TIC2003-07848-C02-01, the JCCLM
project PAC-03-001, and the Marie Curie project MRTN-CT-2003-505121/TAROT.

programming effort to create programs with acceptable speedups (see [12]). Its
main advantage is that it combines high-level constructions to simplify the de-
velopment of parallel programs, and some controlled low-level constructions to
allow increasing the efficiency. Eden extends the (lazy evaluation) functional
language Haskell [15] by adding syntactic constructions for defining and instan-
tiating processes. As a Haskell extension, Eden applies the laziness for deciding
the computations to be executed in each moment. That is, a computation is per-
formed only after it is detected that the result of that computation is required for
continuing another computation that is already initiated. Let us note that pure
laziness implies sequential computation. So, in order to allow parallel computa-
tions, Eden creates new processes eagerly. Moreover, any newly created process
is able to perform computations in parallel before its creator actually demands
the result for continuing its execution. This feature, which is necessary for en-
abling parallelism, may cause that a program performs some computations that
turn out to be unneeded. In fact, Eden processes are speculative: They perform
computations under the assumption that they will actually be needed.

The uncontrolled speculation may be a source of inefficiency in parallel pro-
grams. In order to achieve a better use of resources and a higher performance, the
programmer should be provided with a measure of the unnecessary speculation
of a program. In this paper we present a method for comparing the speculative
computations and the computations actually needed in an Eden program. Basi-
cally, the method consists in comparing the data actually needed by a process
and the speculative data evaluated by processes launched by this process.

Unfortunately, making a functional program to show the results of partial
computations in some points is not easy. Let us remind that, contrarily to an
imperative program, a functional program does not have state. Thus, the obser-
vation of partial computations cannot be based on observing how some variables
change, because variables do not exist in functional environments. Besides, due
to the laziness of Eden, the execution of a computation may turn out to be
unnecessary, but a simple observation (e.g., writing a result in the screen or in
a file) could create a false demand on such unneeded computation. Hence, ob-
servations must be defined in such a way that they produce a (neutral) result
that is actually required only in the same situations as if the observations were
not introduced. We will address this issue by using and extending Hood (Haskell
Object Observation Debugger [5]). This tool allows a programmer to observe the
behavior of a Haskell program by inserting some calls to an observation function
in the program. The observation function records the value returned by a func-
tion in some point of the program, but without creating extra demand. These
functions will be the basis of our method to compare the useful speculation and
the actual speculation in an Eden program.

The rest of the paper is structured as follows. In the next section we sketch
the Eden language. Then, in Section 3 we present the observation constructions
of Hood. Next, in Section 4 we present our method to assess the unnecessary
speculation in Eden programs. A case study is shown in Section 5, and related
work in Section 6. Section 7 contains our conclusions and lines of future work.

2 The Eden Language

Eden [7,13] extends the lazy functional language Haskell [15] by adding syntactic
constructs to explicitly define and instantiate processes. It is possible to define a
new process abstraction p by using the following notation that relates the inputs
and the outputs of the process: p = process x -> e , where variable x will
be the input of the process, while the behavior of the process will be given
by expression e. Process abstractions can be compared to functions, the main
difference being that the former, when instantiated, are executed in parallel.

Process abstractions are not actual processes. To really create a process, a
process instantiation is required. This is achieved by using the predefined infix
operator #. Given a process abstraction and an input parameter, it creates a
new process and returns the output of the process. Each time an expression el #
e2 is evaluated, the instantiating process will be responsible for evaluating and
sending e2, while a new process is created to evaluate the application (el e2).

Once a process is running, only fully evaluated data objects are communi-
cated. The only exceptions are lists, which are transmitted in a stream-like fash-
ion, i.e. element by element. Each list element is first evaluated to full normal
form and then transmitted. Concurrent threads trying to access not yet available
inputs are temporarily suspended. This is the only way in which Eden processes
synchronize. Notice that process creation is explicit, but process communication
(and synchronization) is completely implicit.

In contrast to most parallel functional languages, Eden also includes high-
level constructions (not shown in the paper) both for developing reactive appli-
cations and for dynamically establishing direct connections between any pair of
processes. This allows handling low-level parallel features that cannot be used in
conventional functional languages. Thus, Eden provides an intermediate point
between very high-level parallel functional languages (whose performance use
to be poor), and classical parallel languages (which do not allow using high-
level constructions). We do not claim that Eden can obtain optimal speedups,
but it can obtain quite acceptable speedups with small programming effort (see
e.g. [13,12]).

Eden’s compiler (see http://www.mathematik.uni-marburg.de/inf/eden)
has been developed by extending the most efficient Haskell compiler (GHC [14]).
Hence, Eden’s compiler reuses GHC’s capabilities to interact with other program-
ming languages. Thus, Eden can be used as a coordination language, while the
sequential computation language can be, for instance, C.

To easily port the compiler to different architectures, the runtime system
works on top of a message passing library (the user can choose PVM or MPI).

Eden Skeletons Process abstractions in Eden are not just annotations, but first
class values which can be manipulated by the programmer (passed as parameters,
stored in data structures, and so on). This facilitates the definition of skeletons
as higher order functions. Next, we illustrate, by using simple examples, how
skeletons can be written in Eden. More complex skeletons can be found in [13,18].

The most simple skeleton is map. Given a list of inputs xs and a function £ to
be applied to each of them, the sequential specification in Haskell is as follows:

map f xs = [f x | x <- xs]

that can be read as for each element x belonging to the list xs, apply function
f to that element. This can be trivially parallelized in Eden. In order to use a
different process for each task, we will use the following approach:

map_par f xs = [pf # x | x <- xs] ‘using‘ spine
where pf = process x -> f x

The process abstraction pf wraps the function application (£ x). It determines
that the input parameter x as well as the result value will be transmitted through
channels. The spine strategy (see [21] for details) is used to eagerly evaluate the
spine of the process instantiation list. In this way, all processes are immediately
created. Otherwise, they would only be created on demand.

Let us remark that it is not necessary to explicitly use constructions for
synchronizing the processes. The main process initially sends a task to each of
the worker processes of the map_par. Afterwards, as soon as any of the workers
finishes its assignment, it automatically sends the result to the main process
(by using PVM or MPI messages). When the main process has received all the
results that it needs, it finishes the computation.

map_par is an essential primitive skeleton used to eagerly create a set of in-
dependent processes, but it can be easily improved by reducing the number of
processes to be created. In a map_farm the number of processes to be created is
fixed (for instance, it can be the number of processors), and tasks are evenly dis-
tributed into processes. The implementation firstly distributes the tasks among
the processes, producing a list of lists where each inner list is to be executed
by an independent process. Then, it applies map_par, and finally it collects the
results joining the list of lists of results into a single list of results. Notice that,
due to the laziness, these three tasks are not done sequentially, but in interleav-
ing. As soon as any worker computes one of the outputs it is computing, it sends
this subresult to the main process, and it goes on computing the next element
of the output list. Notice that the communications are asynchronous, so that it
is not necessary to wait for acknowledgments from the main process. When the
main process has received all the needed results, it finishes the computation. The
Eden source code of this skeleton is shown below, where not only the number np
of processors but also the distribution and collection functions (unshuffle and
shuffle respectively) are also parameters of the skeleton:

map_farm np unshuffle shuffle f xs
= shuffle (map_par (map f) (unshuffle np xs))

Different strategies to split the work into the different processes can be used
provided that, for every list xs, (shuffle (unshuffle np xs)) == xs.

Let us remark that developing skeletons in Eden is relatively easy. Due to
the lack of space, we have only shown the simplest examples, but many others
have already been implemented. Details about them can be found in [13].

3 Basic Hood

In this section we show the basic ideas behind Hood. The interested reader is
referred to [5,4] for more details about it.

When debugging programs written in an imperative language, the program-
mer can explore not only the final result of the computation, but also the inter-
mediate values stored in the variables being used by the program. Moreover, it
is simple to trace how the value of each variable changes along time.

Let us remark that debugging lazy functional code has two main difficulties.
First, lazy functional languages do not contain variables whose value change
along time and that can be traced as in imperative languages. Second, intro-
ducing observations can modify the order of evaluation, affecting to the overall
computation.

Fortunately, Hood allows the programmer to observe something similar to
what can be observed in imperative environments. In fact, Hood allows the pro-
grammer to observe any intermediate structure appearing in a program. More-
over, we can also observe the evolution in time of the evaluation of the structures
under observation.

In order to illustrate what kind of observations can be obtained by using
Hood, let us consider an example. It will be complex enough to highlight im-
portant aspects of Hood, but also relatively simple to be easily understandable
without requiring knowledge about Haskell. Given a natural number, the follow-
ing Haskell function returns the list of digits of that number:!

natural :: Int -> [Int]
natural = reverse

. map (‘mod¢ 10)

. takeWhile (/= 0)

. iterate (‘div‘ 10)

That is, natural 3408 returns the list 3:4:0:8: [], where [] denotes the
empty list and : denotes the list constructor. Note that, in order to compute the
final result, three intermediate lists where produced in the following order:

-- after iterate
3408:340:34:3:0: _
-- after takeWhile
3408:340:34:3:[]
-- after map
8:0:4:3:[]

! The first line of the definition only provides the type declaration of the function:
given an integer it returns a list of integers. The other four lines define the sequence
of functions to be applied to obtain the overall effect, being reverse the last one
to be applied. The higher-order function iterate applies infinite times the first
function it receives. For instance, applying iterate (+3) 1 returns the infinite list
1:4:7:10:13: ...

Notice that the first intermediate list is infinite, although only the first five
elements are computed. As the rest of the list does not need to be evaluated, it
is represented as _ (the underscore char).

By using Hood we can annotate the program in order to obtain the output
shown before. In order to do that, we have to use the observe combinator that
is the core of Hood. The type declaration of this combinator is: observe ::
String -> a -> a . From the evaluation point of view, observe only returns
its second value. That is, observe s a = a. However, as a side effect, the value
associated to a will be squirrelled away, using the label s, in a file that will be
analyzed after the evaluation finishes. It is important to remark that observe
returns its second parameter in a completely lazy, demand driven manner. That
is, the evaluation degree of a is not modified by introducing the observation, in
the same way that it is not modified when applying the identity function id.
Thus, as the evaluation degree is not modified, Hood can deal with infinite lists
like the one appearing after applying iterate (‘div‘¢ 10).

If we consider again our previous example, we can observe all of the inter-
mediate structures by introducing three observations as follows:

natural :: Int -> [Int]
natural = reverse

. observe "after map" . map (‘mod‘ 10)
. observe "after takeWhile" . takeWhile (/= 0)
. observe "after iterate" . iterate (‘div‘ 10)

After executing natural 3408, we will obtain the desired result. Hood does
not only observe simple structures like those shown before. In fact, it can observe
anything appearing in a Haskell program, including functions. For instance,

observe "length" length (4:2:5:[])
will generate the following observation:

-- length
{\N i[> 3%

That is, we are observing a function that returns the number 3 (without
evaluating the concrete elements appearing in the list) when it receives a list with
three elements. Let us remark that it is only relevant the number of elements,
but not the concrete elements. That is, the observation mechanism detects that
the laziness of the language will not demand the concrete elements to compute
the overall output. As it can be expected, higher-order functions can also be
observed, but we do not show it due to lack of space.

4 Testing Speculation by Parallelizing Hood

In this section we present our method to assess the speculation of a parallel Eden
program. The method is based on using the observation functionalities provided

by Hood in specific points of the program under assessment. Let us recall that
the application of observe to a term returns only the (partial) evaluation of the
term that is actually required by other subcomputations in the context where
observe is invoked. Hence, it gives us the (partial) term that is demanded in
the context of the observation. When a process instantiates another process,
the former process demands the computation of a term from the latter (from
now on, invoker and instantiated processes, respectively). In order to perform
our analysis, we need to consider the evaluation of this term at two different
points. On the one hand, the observation of the term required by the invoker
(in the context of the invoker) gives us the true necessities of the program at
this point. On the other hand, the observation of the term constructed by the
instantiated process (in the context of instantiated process) gives us the result of
the speculated work performed by the instantiated process. By comparing both
values, we can assess the amount of unnecessary speculation performed by the
program at this point. In fact, if we obtain not only the final values of the term
at both sides but also the order in which each part of the term is calculated,
then we can infer not only the amount of unnecessary work but also the relative
speeds of both parts. Hence, we can enrich the profiling capabilities of Eden.

4.1 A Simple Example

Let us consider a naive but illustrative example. The following process generates
the (infinite) list of primes greater than or equal to a given input number n.
The process receives a natural number n as input, and produces a (potentially
infinite) list of primes outputs:

pprimes = process n —-> outputs
where outputs = generatePrimes n
generatePrimes x = if (isPrime x) then x : restOfPrimes
else restOfPrimes
where restOfPrimes = generatePrimes (x+1)

The list of primes outputs is obtained by calling function generatePrimes
with parameter n. Given any parameter x, this function firstly computes the
(infinite) list of all the rest of primes, that is, the list of all primes greater than
or equal to x+1 (as we will see below, depending on the necessities of other
external computations, only a finite part of the list might be computed). Then,
x is added at the head of the list if x is prime or it is ignored otherwise.

Let us suppose that we are interested in using this process to obtain the
shortest list of consecutive primes (greater than or equal to initialNumber)such
that the multiplication of its elements is greater than or equal to a given minimal
threshold threshold.? For example, given initialNumber=2and threshold=26,
we wish to obtain [2,3,5] since 2 x 3 * 5 = 30. The function myComputation
performs this task:

2 A similar functionality will be required in Section 5 to implement the LinSolv algo-
rithm. In particular, it will be required to apply the Chinese Remainder Theorem.

myComputation initialNumber threshold = take neededNumber primes
where primes = pprimes # initialNumber
products = scanl (*) 1 primes
neededNumber = length (takeWhile (< threshold) products)

Let us explain how function myComputation works. The term primes repre-
sents the list of all primes from initialNumber on, and it is computed by instant-
ing a new process that executes function pprimes with parameter initialNumber.
Fortunately, the rest of expressions used in the context of function myComputation
will only demand a finite amount of elements of primes. Thus, the new process
will not compute new primes forever. This is so because when the invoker pro-
cess finishes the computation of function myComputation, the runtime system
automatically terminates the instantiated process. The term products performs
the multiplication of all elements in list primes by using function scanl. Func-
tion scanl applies a given binary operator to all the elements in a list. This
is done by applying the function to each element in order and cumulating the
partial result from each element to the next. An initial cumulated value is given
as parameter. Function scanl returns a new list where the elements are the
cumulated values after each element in the input list is applied. For instance,
scanl (x) 1 [2,3,5] returns the list [1,2,6,30]. The term neededNumber
computes the number of elements in products that are below threshold. Since
the i*" element in products provides the multiplication of the first i primes of
primes, neededNumber gives us the number of elements needed in list primes.
The number neededNumber is calculated by taking the list of the elements of
products below threshold and computing its length. Finally, the output of
myComputation is given by taking neededNumber elements from the list primes.

Let us remark that the aim of the previous program is not to provide an
efficient parallel solution, but to serve as a simple but illustrative basis to develop
a first approach to our method. In particular, we will use the previous example
to study the speculative work performed by the instantiated process to compute
the function pprimes. Although this process is devoted to produce an infinite
list of numbers, not all of them will be actually required. However, we do not
know in advance how many elements of the list will be actually required. We are
interested in comparing the amount of primes used by the process that executes
the function myComputation with the amount of primes computed by the process
that runs the function pprimes. In fact, all primes calculated by pprimes that
are higher than the last prime used by myComputation are the result of the
unnecessary speculated work, because these primes are useless for the program
necessities. Let us note that a programmer is not likely to properly assess the
amount of unnecessary speculative work of this program in advance, because
the time required by each process to perform each operation depends on several
uncontrollable factors. Actually, both involved processes will race each other to
perform their computations. Hence, if their relative speed is unbalanced (in any
of both senses) then the overall performance of the program will fall.

Next we show how the previous program can be modified to provide the
required information. The modification will be based on introducing observations

that will report the computation/use of the list of primes in both processes.
First, let us consider the instantiated process. In order to observe the list of
primes that is produced by this process, we just need to observe the list that
it returns to its invoker. The term to be returned is now replaced by a new
expression. It returns the same value to the invoker, but only after any change
on the evaluation of outputs is properly reported to a log file with a suitable tag
(outsFromProcess). So, though the introduction of the observation is innocuous
for the overall computation, the required profiling information will be obtained:

pprimes = process n -> (observe "outsFromProcess" outputs)
where outputs = generatePrimes n

Let us consider the instantiated process. In order to minimize the number of
requests between invoker processes and instantiated processes, any value com-
puted by an instantiated process is immediately sent to the invoker in Eden.
This means that all primes computed by the instantiated process are locally
available for being used by the invoker. However, let us note that the laziness is
locally applied in each process in Eden. Hence, the number of primes obtained
by the invoker (i.e., actually taken from those received by the communication
channel) perfectly matches its necessities, and no unneeded prime is used. So,
by observing the list of primes obtained by the invoker from the instantiated
process, we can calculate the true necessities of this process. Any change in this
list will be reported in a file with the tag insFromProcess:

myComputation initialNumber threshold = take neededNumber primes
where primes = observe "insFromProcess" (pprimes # initialNumber)
products = scanl (*) 1 primes
neededNumber = length (takeWhile (< threshold) products)

After running the program using 327 and 49472453 as inputs in a two-
processors environment, our observations inform us that outsFromProcess has
37 entries, while insFromProcess has only 4. That is, 33 unnecessary primes
where computed by the auxiliary process in our naive example.

4.2 General Scheme

In the previous example, the speculative work was performed by the instanti-
ated process. However, this could be the other way around: The invoker process
instantiates a new process and afterwards produces some values that this new
process may or may not need. The values demanded by the instantiated pro-
cesses are its parameters. In this case, the instantiated process takes the values
computed by the invoker as long as it needs them, and the speculative work
is performed by the invoker process. Let us note that the application of our
method to this case is similar to that shown in the previous example. Actually,
the method developed in the previous example can be generalized to deal with
any scenario where the speculative work of some processes has to be assessed.
Next we present a redefinition of the basic Eden constructors. This redefinition

performs all the required tracing issues in such a way that the programmer can
forget any details concerning observations: He must just instantiate the processes
he wants to analyze by calling the functions provided by the new constructors and
introducing his function as parameter. Then, the system automatically reports
any change on both its input and its output. By applying the new observation
constructors to both an invoker and an instantiated process, all the needed in-
formation will be properly reported. Thus, if we want to observe the inputs and
outputs of a process that computes a given function f then, instead of directly
using £, we will call the following function processObs using f as parameter:

processObs f = process ins -> (observe "outsFromProcess" outs)
where outs = f ins’
ins’ = observe "insToProcess" ins

The previous function defines a process with input ins. In order to observe the
data that this new process receives from its creator and it actually requires,
this parameter is observed by the second observation in the previous definition,
labelled by insToProcess. After function f is normally applied to the input, the
output outs is obtained. The observation of this term (first observation, labelled
by outsFromProcess) reports the data this process transmits to its creator.

The previous function allows us to observe the treatment of inputs and out-
puts of the instantiated process. Similarly, we need a new functionality to observe
the behavior of the invoker process. Next we redefine the process instantiation
operator to include the observation capabilities. The new operator, based on the
standard operator #, is ##:

p ## actualParameters =
observe "insFromProcess"
(p # (observe "outsToProcess" actualParameters))

The new operator allows any process to instantiate a new process by using
the standard one. Besides, two observations are introduced to report the inputs
and outputs that the invoker process exchanges with the new process. Observa-
tions labelled by insFromProcess report the data that the invoker receives (and
actually requires) from the newly instantiated process. Observations labelled by
outsToProcess report the data that is sent from the invoker to the instantiated
process (regardless of whether the instantiated process requires them).

The use of both new constructors leads to the general scheme depicted in
Figure 1. By combining the new process abstractions processObs and ## we
obtain four relevant data. These data provide us with two critical measures
concerning the usefulness of the speculation at this point of the program. On
the one hand, the difference between outsFromProcess and insFromProcess
gives us how much unnecessary speculative work was done by the new process.
On the other hand, the difference between outsToProcess and insToProcess
provides us a measure to know how much unnecessary speculative work was
performed by the process creating the new instantiation.

outsToProcess o A N A
= E = EEEE 51][]]]]

Iy
Ny
Invoker Process

insToFrocess

1P

insFromProcess

[EIEIEE]E Instantiated Process
1 5 :
EoEEEE :] 5]) e o]
WA A KA N outsFromProcess

Figure 1. Invoker and Instantiated Processes

Let us note that the definitions of processObs and ## could be trivially ex-
tended to include extra parameters representing the strings that want to be used
for marking the inputs and outputs of the processes. Moreover, the framework
can be easily applied to other general schemes and programming structures in
Eden. In particular, all the skeletons defined in the Eden library can be triv-
ially rewritten in terms of the new process abstraction and process instantiation
operators. Hence, they inherit the capability to test the amount of speculative
work.

5 Case Study: LinSolv

The 1inSolv algorithm finds an exact solution of a linear system of equations
of the form Ax = b where A € Z"*",b € Z",n € N. In contrast to more
common numerical algorithms, which usually produce an approximate solution
over floating point numbers for a given accuracy, the algorithm presented here
finds an exact solution and works over arbitrary precision integers.

To find an exact solution for a given system of equations, 1inSolv uses a
multiple homomorphic images approach [9]. This is a common computer algebra
approach and consists of the following three stages: (1) map the input data into
several homomorphic images; (2) compute the solution in each of these images;
and (3) combine the results of all images to a result in the original domain.

This structure is particularly useful for operations on arbitrary precision
integers. In this case the original domain is Z, the set of all integer values, and
the homomorphic images are Z modulo p, written Z,, with p being a prime
number. If the input numbers are very big and each prime number fits into one
machine word the basic arithmetic in the homomorphic images is cheap because
fixed precision arithmetic can be used. Only in the combination phase, when
applying a fold-based Chinese Remainder Algorithm (CRA) (see [10]), expensive
arbitrary precision arithmetic has to be used to construct the result values.

Details about the implementation of 1inSolv in Haskell can be found in [12].
In brief, the main part to be parallelized consists in solving each of the homo-
morphic images, whose basic definition is: xList = map get_homSol primes

xList_all = map_farm get_honfSol prines

xList = filter lucky xList_all

Figure 2. Parallel 1inSolv (Eden speculative version)

xList_all = map_rw get_honSol primes

xList = filter lucky xList_all
xList_unlucky = filter (not.lucky) xList_all

(p_needed, p_spec) = splitAt (1 + tolnt noO'Prines) prines
primes’ = p_needed ++ (additional xList_unlucky p_spec)

additional :: [Integer] -> [Integer] -> [Integer]
additional xs ys = zipWth (\ xy ->vy) xs ys

Figure 3. Parallel 1inSolv (Eden conservative version)

where primes is an infinite list of primes, and get_homSol solves the system
modulo a given prime. Thus, the basic parallel structure of the algorithm consists
in performing all computations in the homomorphic images in parallel. It uses
LU-decomposition followed by forward and backsubstitution to compute the
solution pmx in the homomorphic image [16]. From a speculation point of view,
the main difficulty in the parallelization is that we have to make sure that new
results are computed if primes turn out to be “unlucky”, i.e. if the determinant of
the input matrix A in the homomorphic image generated by this prime number
is zero. Let us remark that this is similar to the naive example we showed in the
previous section. However, in this case the task of the processes is not only to
create primes, but also to solve a linear system modulo that prime.

Even though the situation now is more complex than in the example of the
previous section, our strategy to check how much useless work is done is the
same. As we have to solve the linear system modulo several prime numbers, the
most obvious parallel scheme is to use a map_par scheme as shown in Section
2, so that an independent process is created for each prime. However, as we
commented in Section 2, it is better to use a map_farm to avoid creating too
many processes. So, in our first approach (shown in Figure 2) we just replaced
the top level map by its parallel counterpart map_farm. Unfortunately, when using
the map_farm version that includes observations, our tools detected a quite big
amount of useless work, that reduced considerably the overall speedup.

As a second approach, to avoid the potential waste of resources due to spec-
ulation we used a conservative version as shown in Figure 3. In this version the
prime numbers are divided into those known to be needed (p-needed) and those
which are only needed if some of the earlier primes are unlucky (p-spec). The
function additional adds for each unlucky prime a new prime number to the
task list primes’. Note in the definition of additional that, due to the demand-
driven evaluation, the availability of unlucky primes in xs triggers the generation
of one result element in ys. With this conservative version, the amount of useless

xList_all = map_rw get_honfSol prinmes

xList = filter lucky xList_all

Figure 4. Parallel 1inSolv (Eden semi-speculative version)

work was zero. Unfortunately, this does not necessarily implies optimal speedups.
The problem is that we had avoided useless work, but at the cost of forcing pro-
cesses to stop for a while each time they finish a task. So, tough the speedups
were better than before, there was still free room for improvement.

Finally, we used a third solution where speculation was restricted but not
completely avoided. In this sense, we used a variation of the task farm skele-
ton as outlined in Section 2. More specifically, we used the replicated workers
paradigm. A manager and a set of worker processes are created, and two tasks
are initially released to each of the workers. As soon as any worker finishes a
task, it sends the result to the manager, and a new task is delivered to the
worker. The computation in the manager is demand-driven and triggered by the
availability of result values. As soon as the manager has all the needed results it
terminates all the worker processes. Notice that in this semi-speculative version
the workers may be working speculatively on useless tasks, but only when the
useful tasks have already been consumed and hence the degree of speculation is
tightly limited. More details about the replicated workers skeleton can be found
in [8]. Figure 4 shows the Eden code for the semi-speculative version of 1inSolv.
The only modification to the sequential code is the use of a parallel replicated
workers map (map_rw) instead of a sequential map over the infinite list of primes.
By using this new version, only a few useless messages where sent. That is, the
speculation was actually controlled.

Finally, we illustrate the speedups that can be obtained with Eden, by run-
ning the semi-speculative version on a concrete parallel machine. We run the
experiments on a 32-node Beowulf cluster consisting of workstations with a 533
MHz Celeron processor, 128 Kb cache and 128 MB of DRAM. The workstations
are connected through a 100Mb/s fast Ethernet switch with a latency of 142
s, measured under PVM 3.4.2. The sequential runtime in this environment was
491.7s. In this environment, an acceptable speedup of 14 is achieved with 16
nodes. For the input data used in these measurements 45 useful and 39 unlucky
primes are generated. This leads to a total of 45 top level threads, one for each
homomorphic image.

6 Related Work

In addition to Hood, during the last years there have been several proposals
for incorporating execution traces to sequential lazy functional languages. In
particular, we can highlight the work done with Hat, HsDebug, and the declar-
ative debuggers Freja and Buddha. The approaches followed in each of them
are quite different, both from the point of view of the user of the system and

from the implementation point of view. From the user point of view, Freja and
Buddha are question-answer systems that directs the programmer to the cause
of an incorrect value, while Hat allows the user to travel backwards from a value
along the redex history leading to it. The interested reader can found a detailed
comparison between Freja, Hat and Hood in [1].

Regarding parallel functional profilers, we can highlight GranSim [11] and
its derivatives (GranSP and GranCC). GranSim is a GpH [20] simulator. This
system provides an accurate and flexible way of studying the dynamic behaviour
of GpH programs. It supports extensive tuning of the simulated architecture,
having parameters such as number of processors, communication latencies, and
others. Additionally, an ideal simulation mode allowing an unlimited number of
processors is provided.

Paradise [6] is an adaptation of GranSim to deal with Eden programs. Cur-
rently, Eden programers can obtain feedback from Paradise in order to improve
the performance of their programs. In this sense, they can detect bottlenecks in
the distribution of work. However, it lacks the possibility to check the amount of
speculation done by the programs. Thus, the approach presented in this paper
constitutes a complement to the profiling capabilities presented in Paradise.

7 Conclusions and Future Work

In this paper we have extended the parallel functional language Eden with capa-
bilities to test how much useless work has been performed in a given execution.
Since the core sequential part of Eden uses lazy evaluation while some parallel
constructions of it require the use of strict evaluation, we have designed a tool
to compare how much data was actually needed (known because of the lazy part
of the language) and how much data was actually transmitted (known because
of the eager parallel part of the language).

We have rewritten the basic constructions of the language to include facilities
for testing the amount of speculative work, and we have also rewritten skeleton
libraries so that we can test the amount of speculation of any program written
by using skeletons. In fact, we have tested the tool with a concrete case study
that consists in solving a linear system of equations.

Currently, our tools only provide textual information about the amount of
speculation, and this is the reason why we do not show examples of outputs of the
tool in this paper. However, we are working on the implementation of a graphical
interface to show not only the amount of speculation, but also the evolution in
time of the speculation of the program. This can be done by recording also time-
information about the observations. Thus, the implementation of this graphical
tool and the application of the framework to a wider set of examples constitute
our current lines of work.

References

1. O. Chitil, C. Runciman, and M. Wallace. Freja, Hat and Hood — a comparative
evaluation of three systems for tracing and debugging lazy functional programs.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

In IFL’00, LNCS 2011, pages 176-193. Springer-Verlag, 2001.

. M. Cole. Algorithmic Skeletons: Structure Management of Parallel Computations.

MIT Press, 1989. Research Monographs in Parallel and Distributed Computing.
M. Cole. Bringing skeletons out of the closet: A pragmatic manifesto for skeletal
parallel programming. Parallel Computing, 30:389—-406, 2004.

A. Encina, L. Llana, and F. Rubio. Formalizing the debugging process in Haskell. In
International Conference on Theoretical Aspects of Computing, ICTAC 05, LNCS
3722, pages 211-226. Springer-Verlag, 2005.

A. Gill. Debugging Haskell by observing intermediate data structures. In Proceed-
ings of the 4th Haskell Workshop. Tech. Rep. University of Nottingham, 2000.

F. Hernandez, R. Pena, and F. Rubio. From GranSim to Paradise. In Scottish
Functional Programming Workshop, SFP’99, pages 11-19. Intellect, 2000.

U. Klusik, R. Loogen, S. Priebe, and F. Rubio. Implementation skeletons in Eden:
Low-effort parallel programming. In Implementation of Functional Languages,
IFL’00, LNCS 2011, pages 71-88. Springer-Verlag, 2001.

U. Klusik, R. Pena, and F. Rubio. Replicated workers in Eden. In Constructive
Methods for Parallel Programming, CMPP’00, pages 143—-164. Nova Science, 2000.
M. Lauer. Computing by homomorphic images. In Computer Algebra — Symbolic
and Algebraic Computation, pages 139-168. Springer-Verlag, 1982.

J. D. Lipson. Chinese remainder and interpolation algorithms. In Symposium
on Symbolic and Algebraic Manipulation, SYMSAM’71, pages 372-391. Academic
Press, 1971.

H. W. Loidl. Gransim user’s guide. Department of Computing Science. University
of Glasgow, 1996.

H. W. Loidl, F. Rubio, N. Scaife, K. Hammond, S. Horiguchi, U. Klusik, R. Loogen,
G. J. Michaelson, R. Pena, A. J. Rebén Portillo, S. Priebe, and P. W. Trinder.
Comparing parallel functional languages: Programming and performance. Higher-
Order and Symbolic Computation, 16(3):203-251, 2003.

R. Loogen, Y. Ortega-Mallén, R. Penia, S. Priebe, and F. Rubio. Parallelism ab-
stractions in Eden. In F. A. Rabhi and S. Gorlatch, editors, Patterns and Skeletons
for Parallel and Distributed Computing, pages 95—128. Springer-Verlag, 2002.

S. L. Peyton Jones. Compiling Haskell by program transformation: A report from
the trenches. In Furopean Symposium on Programming, ESOP’96, LNCS 1058,
pages 18-44. Springer-Verlag, 1996.

S. L. Peyton Jones and J. Hughes. Report on the programming language Haskell
98. Technical report, February 1999. http://www.haskell.org.

W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. Numerical Recipes in C:
The Art of Scientific Computing, chapter LU Decomposition and Its Applications.
Cambridge University Press, 2nd Edition, 1992.

R.F. Pointon P.W. Trinder, H.W. Loidl. Parallel and distributed Haskells. Journal
of Functional Programming, 12(4-5):469-510, 2002.

F. Rubio and I. Rodriguez. A parallel framework for computational science. In
International Conference on Computational Science, ICCS’03, LNCS 2658, pages
1002-1011. Springer-Verlag, 1998.

N. Scaife, Horiguchi S., G. Michaelson, and P. Bristow. A parallel SML compiler
based on algorithmic skeletons. J. Functional Programming, 15(4):615-650, 2005.
P. W. Trinder, K. Hammond, J. S. Mattson Jr., A. S. Partridge, and S. L. Peyton
Jones. GUM: a portable parallel implementation of Haskell. In Programming
Language Design and Implementation, PLDI’96, pages 79-88. ACM Press, 1996.
P. W. Trinder, K. Hammond, H-W. Loidl, and S. L. Peyton Jones. Algorithm +
Strategy = Parallelism. Journal of Functional Programming, 8(1):23-60, 1998.

