
Applying Data Copy to Improve Memory
Performance of General Array Computations

Qing Yi

Department of Computer Science, University of Texas at San Antonio ?

Abstract. Data copy is an important compiler optimization which dy-
namically rearranges the layout of arrays by copying their elements into
local buffers. Traditionally, array copy is considered expensive and has
been applied only to the working sets of fully blocked computations. This
paper presents an algorithm which automatically applies data copy to
optimize the performance of general computations independent of block-
ing. The algorithm automatically decides where to insert copy operations
and which regions of arrays to copy. In addition, when specialized, it is
equivalent to a general scalar replacement algorithm on arbitrary array
computations. The algorithm is fully implemented and has been applied
to optimize several scientific kernels. The results show that the algorithm
is highly effective and that data copy can significantly improve the per-
formance of scientific computations, both when combined with blocking
and when applied alone without blocking.

1 Introduction

Most scientific applications operate on large multi-dimensional arrays that can-
not fit in the caches of modern computers. Such computations typically include
sequences of loop nests, with each loop selectively accessing elements of arrays.
When a loop accesses a non-continuous collection of array elements, that is, when
the array elements accessed together close in time are far from each other in the
memory, the loop demonstrates poor spatial locality and additionally could incur
conflict misses in the cache.

Data copy is an important compiler optimization that can dynamically re-
arrange the layout of arrays. At the beginning of each computation phase, the
transformation can choose to copy a subset of array elements into local buffers.
All the relevant array accesses within the computation phase can then be changed
to instead operate on the local buffers. At the end of the computation phase,
if the selected elements are modified, the local buffers are copied back to the
original arrays. Because the local buffers store working sets of computations
continuously, data copy optimization can significantly improve the spatial local-
ity of computations.

Data copy was first proposed by Lam, Rothberg and Wolf [9] to reduce cache
conflict misses for blocked computations. As an example, Figure 1(a) shows a
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int j, k, i,j,k,i;
double alpha, *A, *B, *C;
......
for ( j=0; j<n; j+=16)

for ( k=0; k<l; k+=16)
l i:for ( i=0; i<m; i+=16)
lj : for (j= j; j<min(n, j+15); ++j)
lk: for (k= k; k<min(l, k+15); ++k)
li: for (i= i; i<min(m, i+15); ++i)

{
s: C[i+j*m] = c[i+j*m] +

alpha * A[i+k*m]*B[k+j*l];
}

int j, k, i,j,k,i, bi, bk, v0, v1;
double alpha, *A, *B, *C;
......
for ( j=0; j<n; j+=16)

for ( k=0; k<l; k+=16)
l i:for ( i=0; i<m; i+=16) {

bi = min(m- i,16); bk = min(l- k,16);
v0 = 0;

for ( v1= k; v1< k+ bk; ++ v1)
for ( v2= i; v2< i+ bi; ++ v2)
A buf[ v0++] = A[ v1*m+ v2];

lj : for (j= j; j<min(n, j + 15); ++j) {
v0 = 0;

for ( v1= i; v1< i+ bi; ++ v1)
C buf[ v0++] = C[j*m+ v1];

lk: for (k= k; k< k+ bk; ++k) {
B buf = B[j*l+k];

li: for (i= i; i<min(m, i+15); ++i)
s: C buf[i- i] = c buf[i- i] +

alpha*B buf*A buf[(k- k)* bi+i- i];
}
v0 = 0;

for ( v1=j*m+ i; v1<min(m, i+16); ++ v1)
C[ v1] = C buf[ v0++];
}
}

(a) without array copy (b) with array copy

Fig. 1. Example: blocked matrix multiplication

code fragment (written in C) that performs matrix multiplication, C = C +
alpha ∗ A ∗ B, where alpha is a scaling factor, and A,B,C are m ∗ l, l ∗ n and
m∗n matrices respectively (each stored in a linearized single-dimensional array).
The computation in Figure 1(a) is fully blocked in all loop dimensions, where
A,B and C are each partitioned into 16∗16 sub-matrices, and each computation
phase (enumerated by the inner loops lj , lk and li) multiplies a pair of sub-
matrices. Because the working set of each computation phase is small enough to
fit in the cache of most memory systems, the loop structure in (a) is likely to
perform well on modern computers.

The computation in Figure 1(a), however, is not guaranteed to have good
memory performance. Because the working set of each computation block is not
stored continuously in the memory, each memory access may bring useless ele-
ments into cache, resulting in poor spatial locality. Further, when non-continuous
array elements are brought into cache, their addresses may conflict with each
other, resulting in premature evictions of useful elements. To resolve such prob-
lems, compilers could apply data copy transformation, which copies all elements
accessed within the computation phase into continuous buffers.
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This paper presents a new data copy algorithm for optimizing the perfor-
mance of general array computations. Figure 1(b) shows the result of transfor-
mation after automatically applying our algorithm to the code in (a). Here all
elements accessed by the inner loops are copied into separate buffers. Specifically,
elements in array B are copied into a scalar variable B buf , elements in C are
copied into a single-dimensional buffer C buf , and elements in A are copied into
a two-dimensional buffer A buf . The buffer sizes are 1 for B buf , bi for C buf ,
and bi ∗ bk for A buf respectively, where bi and bk are the iteration numbers
of loops li and lk respectively. The loop body has been accordingly changed to
access elements from the local buffers. Since elements in C buf are modified,
these elements are copied back to the original matrix C at the end. As shown in
Section 4, the code in (b) can significantly outperform the code in (a) in many
cases.

The algorithm in this paper significantly improves previous research [9, 13],
which treats array copy as an auxiliary optimization for blocking. Previous for-
mulations would have optimized Figure 1(a) by performing all copy operations
at the beginning and end of each computation block, i.e., the location that ma-
trix A is copied in Figure 1(b). Our algorithm is much more flexible in that it
treats data copy as a stand-alone optimization. Based on heuristics to reduce
both buffer size and the overall copy cost, our algorithm automatically decides
where to insert copy operations and which regions of the arrays to copy. The
transformed code can use buffers at various levels, corresponding to the differ-
ent levels of caches in modern computers. Our algorithm can also be specialized
to perform scalar replacement optimization, which relocates array elements to
scalar variables.

The algorithm in this paper is fully implemented and has been applied to
optimize several kernels both combined with blocking and without blocking.
Our results show that the algorithm is highly effective and that array copy
can significantly improve the performance of scientific computations, both when
combined with blocking and when applied separately without blocking.

2 Related Work

Lam, Rothberg and Wolf [9] first proposed applying array copy to reduce cache
conflict misses in blocked computations. A few years later, Temam, Granston and
Jalby [13] investigated different strategies for applying array copy after blocking
and presented an effective strategy that selectively copy arrays based on compile-
time cost-benefit analysis. Both Lam et al and Temum et al assumed that the
blocked computations access arrays only through regular affine expression sub-
scripts, where data copy can always be safely applied. They both consider data
copy as an auxiliary optimization for blocking, where copy operations are in-
serted only at the beginning and end of blocked computations. Since then, very
little work has been published to further investigate applying data copy to opti-
mize array computations in scientific applications.
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The data copy algorithm in this paper extends previous work in two aspects.
First, our algorithm can optimize computations even if they contain regions of
code that access arrays through non-affine expression subscripts. Second, our
algorithm includes heuristics both to automatically select arrays to copy and
to automatically identify different locations to insert copy operations. Thus our
algorithm can be applied to optimize general computations independent of block-
ing.

Besides array copy, many data layout optimizations have been proposed to
improve the memory system performance of regular array operations [11, 12, 3].
These optimizations statically reorganize the layout of arrays to reduce cache
conflict misses and to improve spatial locality. They are effective when compu-
tations access arrays in a consistent fashion throughout an entire application.
However, when computations include different phases, a single memory layout
may not be sufficient. This paper does not attempt to globally restructure the
layout of data structures. Instead, we dynamically rearrange array elements ac-
cessed in each computation phase when beneficial.

Despite being considered expensive, dynamic data layout transformations
have been widely applied in optimizing irregular applications [6, 7, 10], where
the structures of the input data are unknown until runtime. Because arrays in
irregular applications are accessed through indirect pointers (or index arrays),
current compiler technology cannot automate the optimization. In contrast, the
data copy transformation in this paper is applied automatically to optimize
regular array computations.

The algorithm presented in this paper is similar to the scalar-replacement al-
gorithm by Carr and Kennedy [5] in many respects. Their algorithm aggressively
promotes array elements into scalar variables so that these elements can later
be allocated to registers. Our algorithm can similarly be configured to perform
scalar replacement through restrictions on the size of array regions being copied.
Our algorithm is more general than the algorithm by Carr and Kennedy in that
we apply data copy to dynamically rearrange the layout of arrays in addition to
performing scalar replacement.

3 Applying Data Copy

Figure 2 presents our algorithm for applying data copy to arbitrary array compu-
tations. This algorithm takes a code fragment C, partitions the array references
in C into groups where each group can be safely copied into a single buffer, per-
forms profitability analysis on each group of array references, and finally applies
transformations when beneficial. Section 3.1 describes each step of the algorithm.
Section 3.2 then describes the profitability analysis in more detail.

3.1 Data Copy Algorithm

As shown in Figure 2, given an input code fragment C, the algorithm includes
the following steps.
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Apply-data-copy(C)
(1) R = construct-dependence-graph(C)

nodes(R): memory references in C; edges(R): dependences between references
∀e ∈ edges(R), dep(e): dependence relation; precise(e): whether dep(e) is precise

(2) Construct a DAG R′ from R
order = evaluate-reference-order(C); nodes(R′) = nodes(R)
for (each edge e : r1 → r2 in R)

if (order(r1) < order(r2)) then add e : r1 → r2 to R′

else if (order(r1) > order(r2)) then add reverse(e) : r2 → r1 to R′

(3) groups = apply-typed-fusion(R′)
BadEdges = {e ∈ edges(R′) | not precise(e)}
∀r ∈ nodes(R), type(r) = array-name(r)

(4) Profitability-analysis(R,groups)
for (each refs ∈ groups), compute

init-stmt(refs) and save-stmt(refs): start and ending points of computation
cp-region(refs): elements to be copied to local buffer
shift-buf(refs): offset to shift local buffer
init-region(refs): elements to be copied before starting

(5) For (each refs ∈ groups), perform array copy transformation
(5.1) buf = create-buffer(cp-region(refs))
(5.2) if (!cover-modify(init-stmt(refs), save-stmt(refs),refs))

init = copy-init(buf ,init-region(refs)); insert-before(init-stmt(refs), init)
if (is-modified(refs) or shift-buf(refs) 6= 0)
save = copy-save(buf ,cp-region(refs),shift-buf(refs));
insert-after(save-stmt(refs), save)

(5.3) for (each r ∈ refs)
r buf = buffer-access(r,buf ,cp-region(refs)); replace-ref(r, r buf)

Fig. 2. Algorithm for applying array copy

Step (1) Construct a dependence graph R, where each node of R is a memory
reference in the original code C, and each edge from reference r1 to r2 indicates
that r1 and r2 may access the same memory location (i.e., r2 and r1 depend on
each other), and r1 is evaluated before r2. Each edge e from r1 to r2 is anno-
tated with two attributes: dep(e), the dependence relation that must be satisfied
between iterations of loops surrounding r1 and r2; and precise(e), whether the
dependence relation dep(e) is precisely determined by the dependence analysis
algorithm (i.e., whether both r1 and r2 contain only affine expression subscripts).
Only when precise(e) is true, r1 and r2 are guaranteed to refer to the same mem-
ory location when dep(e) is satisfied, and the elements accessed by r1 and r2 can
be copied into a single buffer.

The dependence graph R can be constructed using well-studied dependence
analysis techniques [1, 14, 4]. The only difference here is that nodes in R are mem-
ory references rather than statements, and that a pair of references may depend
on each other even if neither modifies the memory (that is, input dependences
are considered together with the true, output and anti dependences).
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Step (2) Prepare for Step (3) by converting the dependence graph R into a
DAG (directed acyclic graph) R′. First, define a function order which assigns
a unique integer number to each memory reference and thus imposes a linear
order on all memory references. Specifically, ∀r1, r2 ∈ nodes(R), if order(r1) <
order(r2), then r1 appears before r2 in C in static evaluation order; that is, r1 is
traversed before r2 when we statically interpret the statements in C, assuming all
loop bodies and conditional branches (both true and false branches) are entered
exactly once.

Copy all the nodes and edges from R into R′. Ensure R′ is acyclic by enforcing
that every edge e from r1 to r2 inR′ satisfies the condition order(r1) < order(r2).
Specifically, ∀e : r1 → r2 in the original graph R, if order(r1) < order(r2), copy
e into R′. Otherwise, if order(r1) > order(r2), reverse dep(e) and then add the
reversed dependence from r2 to r1 into R′. Finally, if r1 == r2, the edge is
simply ignored because it does not affect the partitioning of memory references.

Step (3) Partition the memory references in R′ into separate groups by applying
the typed-fusion algorithm by Kennedy and McKinley [8], originally developed
for performing loop fusion optimizations. The input to the original typed-fusion
algorithm is a loop dependence graph, where each node of the graph is a loop,
and each edge from node x to y indicates that there are dependences from
statements inside loop x to statements inside loop y. An edge from x to y is
annotated as a bad edge if the dependence relations between x and y prevent
them from being legally fused. Additionally, each node in the loop dependence
graph is assigned a type so that loops of different types are never fused. For each
given type of loops (e.g., parallel or serial loops), the typed-fusion algorithm
aggressively clusters nodes of the given type that are not connected by fusion-
preventing bad paths. In order for the algorithm to work correctly, it is required
that the input dependence graph must be acyclic (i.e., a DAG).

To adapt the typed-fusion algorithm for partitioning memory references, we
use the DAG R′ (computed in Step (2)) as input to the algorithm. Here bad
edges are defined to include each edge e ∈ R′ such that precise(e) is false,
so that memory references connected by imprecise dependence paths are never
placed into the same group. The names of arrays are used to represent types of
memory references, and all non-array memory references are assigned a unique
dummy type, which is never used as input to the fusion algorithm. Therefore no
data copy transformation is applied to non-array memory references.

After applying the typed-fusion algorithm to the dependence DAG R′, the
result is a collection of clustered groups, where each group refs includes a col-
lection of array references that can be safely relocated to a single buffer. Based
on the correctness proof of the original typed-fusion algorithm, it is guaranteed
that no references in refs are connected to each other by imprecise dependence
paths.

Step (4) Use profitability analysis (described in Section 3.2) to further filter and
configure the groups of array references to be copied. For each group of memory
references refs, this step computes the following attributes.
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– init-stmt(refs) The starting point of a computation phase to apply data
copy. When applying the transformation, the initialization operations should
be inserted before this statement.

– save-stmt(refs) The ending point of the computation phase. If the local
buffer needs to be saved, the necessary operations should be inserted after
this statement.

– cp-region(refs) The region of array elements to be relocated to the local
buffer.

– shift-buf(refs) The offset to shift the local buffer between consecutive it-
erations of the current computation phase. Since accessing the local buffer
is cheaper than operating on the original array, when appropriate, the local
buffer can be shifted to reduce the overhead of copying from the original
array. For more details, see Section 3.2.

– init-region(refs) The region of array elements to be copied into the local
buffer before init-stmt(refs). Specifically, init-region(refs) equals to cp-
region(refs) if the local buffer cannot be shifted (that is, shift-buf(refs)
= 0); otherwise, init-region(refs) contains the elements accessed by refs at
the first iteration of the computation phase.

The above attributes are used by Step (5) to perform data copy transformations.
As example, Figure 3 presents the configuration of these attributes when apply-
ing data copy to the matrix multiplication code in Figure 1(a). The evaluation
of these attributes is described in more detail in Figure 4 and in Section 3.2.

Step (5) For each group of array references refs to be copied, perform the
transformation by allocating a local buffer, inserting operations to copy data
between buffer and the original array, and replacing array references in refs
with the corresponding buffer accesses.

First, step (5.1) invokes function create-buffer to allocate a local buffer from
the heap. The allocation is placed at the outermost location where the size of the
buffer can be correctly evaluated. Deallocation of the buffer is also automatically
inserted if necessary.

Then, step (5.2) inserts operations to copy data between the local buffer and
the original array. Unless each iteration of the computation phase modifies all ele-
ments accessed by refs before reading them (cover-modify(init-stmt(refs),save-
stmt(refs),refs) is true), operations are inserted before init-stmt(refs) to copy
elements from the original array to the local buffer. Similarly, if the computa-
tion phase modifies elements accessed by refs, or if the local buffer needs to be
shifted (shift-buf(refs) 6= 0) between consecutive iterations of the computation
phase, the necessary operations are inserted after save-stmt(refs).

Finally, step (5.3) replaces each array reference in refs with the correspond-
ing buffer access.

3.2 Profitability Analysis

This section describes Step (4) of the data copy algorithm in Figure 2. As shown
in Figure 4, this step uses heuristics to determine whether a data copy trans-
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references: {A[i+ k ∗m]}
init-stmt: lj
save-stmt: lj
cp-region and init-region
start: i+ k ∗m
copy: (0,min(m− i, 16),1),

(0,min(l − k, 16),m)
shift-buf: 0

references: {B[k + j ∗ l]}
init-stmt: li
save-stmt: li
cp-region and init-region
start: k + j ∗ l
copy: ()

shift-buf: 0

references: {C[i+ j ∗m]}
init-stmt: lk
save-stmt: lk
cp-region and init-region
start: i+ j ∗m
copy: (0,min(m− i,16),1)

shift-buf: 0

Fig. 3. Array copy configurations for Figure 1(a)

formation is beneficial and how to perform the transformation to ensure prof-
itability. For each group of memory references refs to be copied, it includes the
following sub-steps.

Step (4.1) To reduce the overhead of performing data copy, make sure that each
array element accessed by refs needs to be copied at most twice: initially copied
from the original array to the local buffer, and finally copied back from local
buffer to original array.

First, invoke function split-disconnected-refs(refs,R) to separate array refer-
ences in refs that are not connected by dependence paths in R. Disconnected
memory references are removed from refs and added into the overall collection
(groups) of array reference groups.

To ensure that each array element is copied at most twice, find inroot =
common-loop(refs), the innermost loop that surrounds all array references in
refs. For each reference r2 6∈ refs, if r2 is connected with references in refs
by dependence edges, and if ∃r1 ∈ refs such that lr1r2 is the innermost loop
surrounding both r1 and r2, then the required copy operations must be inserted
between r1 and r2 and inside loop lr1r2 . If lr1r2 is nested at a deeper loop level
within inroot, the copy operations inside lr1r2 will be evaluated multiple times at
each iteration of inroot (the current computation phase). To avoid such situation,
split refs so that r1 is placed into a separate group. After this step, all copy
operations can be safely inserted immediately inside inroot.

Using Figure 1(a) as example, when applying steps (1)-(3) of the algorithm
in Figure 2, Figure 3 presents the resulting three array reference groups. Since
no splitting is necessary, this step merely set inroot to loop li for all reference
groups.

Step (4.2) Decide the outermost loop, cproot, where copy operations can be
safely inserted; that is, it is safe to relocate all elements accessed by refs at
each iteration of cproot. A single iteration of cproot therefore comprises the
computation phase of the current copy transformation.

First, invoke function copy-loop(inroot,refs,R) to find the outermost loop,
outroot, that contains all references in refs but does not contain any reference
r such that (i) r is outside inroot, and (ii) r and refs may depend on each other
within outroot. If outroot == inroot, copy operations must be inserted inside
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Profitability-analysis(R,groups)
for (each refs ∈ groups)
(4.1) Ensure each element is copied at most twice:

split-disconnected-refs(refs, R); inroot = common-loop(refs)
cut = {r1∈refs | ∃r2 6∈refs s.t. dep(r2,refs)6=∅ and common-loop(r1,r2) is inside inroot }
if (cut 6= ∅) split(refs,cut); groups∪ = {cut}; inroot = common-loop(refs)

(4.2) Compute outermost loop level to perform copy:
outroot = copy-loop(inroot,refs,R)
if (outroot == inroot) cproot = inroot
else cproot = loop-immediately-outside(outroot)

(4.3) Impose size limit on the local buffer
split-disconnected-refs(refs,R(cproot));
cut={r∈refs | is-too-big(array-region(r,cproot))}
if (cut == refs) cproot = loop-immediately-inside(cproot); repeat step (4.3)
else split(refs,cut); groups∪ = {cut}; go back to step (4.1)

(4.4) Ensure profitability of copy transformation
reuse = {l | l ∈ loops-between(cproot, inroot) and carry-temporal-reuse(refs,l)}
if (reuse 6= ∅) cproot = loop-immediately-outside(outermost-loop(reuse))
else if (|refs| ≤ 3) groups− = {refs}; continue

(4.5) configure copy transformation
cp-region(refs) = array-region(refs,cproot)
shift-buf(refs) = array-region-shift(refs,cproot)
if (shift-buf(refs) 6= 0 and cproot 6= inroot and cproot 6=loop-immediately-outside(outroot))

init-stmt(refs) = cproot; init-region(refs)=init-array-region(refs,cproot)
save-stmt(refs)=last-stmt(refs,loop-body(cproot))

else
init-stmt(refs)=first-stmt(refs,loop-body(cproot)); init-region(refs)=cp-region(refs)
shift-buf(refs)=0; save-stmt(refs)=last-stmt(refs,loop-body(cproot))

Fig. 4. Profitability analysis of array copy

inroot (cproot = inroot). Otherwise, since no reference r 6∈ refs can interfere
with the memory accessed by refs throughout the execution of outroot, it is
safe to insert copy operations outside outroot. So cproot should be the loop
immediately enclosing outroot.

Using Figure 1(a) as example, since no dependence interference exists, we
have outroot = lj for all three array reference groups in Figure 3. Consequently
we would have cproot = l i for all reference groups.

Step (4.3) Impose a size limit on the local buffer. The size limit is dependent on
various features of the computer architecture and is given to the data copy algo-
rithm as a configuration parameter. In our prototype implementation, the size
limit is imposed by restricting the dimensionality of local buffers using command-
line options (see Section 4).

First, invoke function split-disconnected-refs(refs,R(cproot)) to separate ref-
erences that are disconnected from each other in the dependence graph of cproot.
Next, find each reference r in refs such that at each iteration of cproot, the el-
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ements accessed by r exceed the buffer size limit. If the collection of references
that access too many elements includes everything in refs (cut == refs), lower
cproot to be the loop immediately inside and repeat step (4.3). Otherwise, since
only a subset of references in refs are causing the problem, split refs by remov-
ing such references, then restart from step (4.1).

Using Figure 1(a) as example, after Step (4.2), we have cproot = l i for
all reference groups in Figure 3. Since each reference group has a single array
reference, and each array reference accesses at most 16 ∗ 16 elements at each
iteration of loop l i, the local buffer for each reference group has two dimensions.
If only single-dimensional buffers are allowed, this step would reset cproot = lj
for all reference groups. Similarly, if only scalar replacement is allowed, we would
have cproot({B[k + j ∗ l]}) = lk, and cproot({A[i+ k ∗m]}) = cproot({C[i+ j ∗
m]}) = li.

Step (4.4) Evaluate the benefit of applying data copy and refrain from apply-
ing the transformation (by removing refs from groups) if the benefit does not
outweigh the cost.

First, find all the loops between cproot and inroot that carry temporal reuses
of refs; that is, these loops do not increase the overall size of elements accessed
by refs. Collect these loops into a set reuse in Figure 4.

If reuse is not empty, it is profitable to perform array copy because the local
buffer will be reused many times. Find the outermost loop l in reuse such that
all the other loops between cproot and l merely increase the buffer size without
introducing any memory reuse. Reduce buffer size by lowering cproot to be the
loop immediately enclosing l.

If reuse is empty, the copied elements are reused at most a few times (≤ the
number of elements in refs). If the number of elements in refs is less than 3,
the copy overhead is likely to outweigh the benefit of reuse. In this case, remove
refs from the groups of references to be optimized.

Using Figure 1(a) as example, suppose that cproot = l i for all reference
groups in Figure 3 before entering this step. After this step, we would have
reuse = {lj}, {lk} and {li} for reference groups {A[i + k ∗ m]}, {C[i + j ∗
m]} and {B[k + j ∗ l]} respectively. Consequently, cproot({C[i + j ∗ m]}) and
cproot({B[k + j ∗ l]} would be reset to lj and lk respectively, resulting in the
data copy transformation shown in Figure 1(b).

Step (4.5) Suppose it is beneficial to apply data copy at each iteration of loop
cproot. Compute necessary configurations to determine where to insert copy
operations and what to copy.

First, invoke function array-region(refs,cproot) to summarize all the array
elements accessed by refs at each iteration of cproot. The result includes the
starting address of the array to be copied and a sequence of tuples, (i1, n1, s1),
(i2, n2, s2), ..., (im, nm, sm), where in each (ij , nj , sj)(j = 1, ...,m), ij specifies
the current array dimension to be copied, nj specifies the number of elements to
be copied at dimension ij , and sj specifies the incremental stride at dimension
ij . This formulation allows multiple copy specifications for each array dimension,
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Fig. 5. performance of dgemm (nx:original non-blocked version; n0:optimized with 0-
dimensional data copy; n1:optimized with 1-dimensional data copy; bx:optimized with
loop blocking; b0:optimized with blocking and 0-dimensional data copy; b1:optimized
with blocking and 1-dimensional data copy; b2:optimized with blocking and 2-
dimensional data copy)

thus allowing linearized arrays (e.g., the arrays in Figure 1(a)) to be correctly
copied. Given the the sequence (i1, n1, s1)(i2, n2, s2)...(im, nm, sm), the size of
the buffer is n1 ∗ n2 ∗ ... ∗ nm.

After computing cp-region(refs), invoke function array-region-shift(refs,cproot)
to compute the intersection of cp-region between consecutive iterations of cproot.
If the overlapping region is not empty (shift-buf(refs) 6= 0), it is more efficient to
shift the local buffer rather than re-initiating the entire buffer from the original
array. Shifting the local buffer is safe if cproot does not contain other references
that interfere with refs (cproot 6= inroot and cproot is not the loop enclosing
outroot).

If shifting the local buffer is necessary, the local buffer should be initial-
ized before entering cproot. Thus init-stmt(refs) = cproot. The initialization
should copy elements accessed by refs at the first iteration of cproot, so init-
region(refs) = init-array-region(refs, cproot). The buffer needs to be shifted
and re-initialized at the end of each iteration of cproot, so save-stmt(refs) is the
last statement in the loop body of cproot.

If shifting of local buffer is not necessary, we configure the transformation
to always initialize the entire buffer in the loop body of cproot before the first
statement that contains a reference in refs. Similarly, if necessary, the entire
buffer should be restored back to the original array after the last statement that
contains a reference in refs.

The configurations for applying array copy to Figure 1(a) is shown in Fig-
ure 3. Based on these configurations, applying Step (5) of Figure 2 to the code
in Figure 1(a) would result in the optimized code in Figure 1(b).

4 Experimental Results

We have implemented our data copy algorithm within the loop transforma-
tion framework by Yi, Kennedy and Adve [15], which has been integrated as
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Fig. 6. performance of dgetrf (nx:original non-blocked version; n0:optimized with 0-
dimensional data copy; n1:optimized with 1-dimensional data copy; bx:optimized with
loop blocking; b0:optimized with blocking and 0-dimensional data copy; b1:optimized
with blocking and 1-dimensional data copy)
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Fig. 7. performance of tomcatv using mesh sizes 1000, 1024, 2000 and 2048 (nx:original
version; n0:optimized with 0-dimensional data copy; n1:optimized with 1-dimensional
data copy)

a C/C++ source-to-source translator within ROSE, a C/C++ compiler infras-
tructure at LLNL [17]. This section presents the result of applying our algorithm
to optimize three kernels, dgemm (matrix multiplication), dgetrf (matrix LU
factorization with partial pivoting), and tomcatv (mesh generation with Thomp-
son solver). All kernels are written in C. Both dgemm and dgetrf are transcribed
from the corresponding non-blocked Fortran kernels in the LAPACK library [2],
and tomcatv is transcribed from the Fortran kernel in SPEC95. When applying
optimizations to these transcribed C codes, the dependence analysis in ROSE
assumed that no arrays are aliased.

Data copy is applied to optimize all kernels. In addition, blocking is applied
to dgemm and dgetrf to investigate the combination of blocking and data copy
(the result of applying blocking to tomcatv is not shown because it was not
beneficial). For each blocked version, different block sizes were experimented and
the version with the best performance is presented. When performing data copy
transformation, the optimizer is configured by command-line options to restrict
the dimensionality of required buffers — if the buffer dimension is restricted to
be m (denoted as m-dimensional copy), the optimizer would only perform data
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copy to arrays that require at most m dimensional buffers. When the buffer
dimension is restricted to be 0, only scalar replacement is performed.

For each kernel, different problem sizes were experimented. The performance
of each version was measured on three different machine architectures: a Dell
PC with two 2.2GHz Intel XEON processors (each with a 512KB cache) and
2GB memory; a SGI workstation with a 195 MHz R10000 processor, 32KB
2-way associative first-level cache, 1MB 4-way associative second-level cache,
and 256MB memory; and a single 8-way P655+ node (with 16GB memory)
on a IBM terascale machine. The kernels were compiled using gcc on the Dell
PC and vendor-provided compilers on the SGI work station and IBM machine.
All versions were compiled using -O3 option, which instructs the compilers to
perform aggressive backend optimizations. The processor time (proctime) spent
executing each version is presented.

Figure 5 presents the performance of dgemm using two matrix sizes, 20002

and 20482. Seven versions are measured for each matrix size, including the orig-
inal non-blocked version (version nx), versions optimized with data copy op-
timizations only (versions n0 and n1), the version optimized with only block-
ing(version bx, shown in Figure 1(a)) and the versions optimized with both block-
ing and data copy (versions b0,b1 and b2, version b2 is shown in Figure 1(b)1).

From Figure 5, we see that 0-dimensional array copy (i.e., scalar replacement)
is beneficial for dgemm in all cases, and the improvements range from 3%-12%.
When using matrix size 20002, additional copy transformations do not further
improve performance. However, when using matrix size 20482, the additional
data copy, especially the two dimensional copy of array A, significantly improves
the performance (over 40% for the blocked versions on the Dell PC and on the
SGI workstation). Here the 20482 matrices have incurred much more cache con-
flict misses, which are subsequently eliminated when the accessed elements are
copied into local buffers. The optimizations did not improve the performance as
much on the IBM machine due to the heavy integer operation overhead intro-
duced by the optimizations, which will be further investigated.

Figure 6 presents the performance of dgetrf (matrix LU factorization with
partial pivoting) using two matrix sizes, 10002 and 10242. Six versions are mea-
sured for each matrix size, including the original non-blocked version (version
nx), versions optimized with data copy only (versions n0 and n1), the version
optimized with blocking only (version bx), and versions optimized with both
blocking and copy optimizations (versions b0 and b1). Because dgetrf can be
blocked only in the column direction (for details, see Yi et al [16]), at most a
single dimension of the matrix needs to be copied. Thus there is no b2 version
for dgetrf .

From Figure 6, we see that 0-dimensional array copy (scalar replacement)
is not profitable for dgetrf on the Dell PC and incurs a slight overhead on
the IBM machine due to increased register pressure. The 1-dimensional copy
transformation, however, significantly improves performance in most cases by

1 The b1 and b0 versions are different from version b2 in that array A is not copied in
b1, and only array B is copied in b0
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20%-40% except when using 10002 matrix on the SGI workstation and when
using 10242 matrix on the IBM machine. Here because the original arrays were
accessed with a large stride, applying data copy have provided much better
spatial locality. Again, the versions using 10242 matrix have performed much
worse than using 10002 matrix due to conflict misses in memory systems.

Figure 7 presents the performance of tomcatv (mesh generation with Thomp-
son solver) using four mesh sizes, 10002, 10242, 20002 and 20482. Because block-
ing is generally not profitable for tomcatv, array copy is the only optimization
applied. Three versions are measured for each mesh size, denoted using nx (the
original version), n0 (optimized with 0-dimensional data copy), and n1 (opti-
mized with 1-dimensional data copy). In tomcatv, as each element is accessed
within the inner loop, the four neighboring elements are also accessed. The local
buffer therefore serves as a small shifting window through the entire mesh.

From Figure 7, we see that 0-dimensional array copy (scalar replacement)
is profitable for tomcatv in almost all cases (ranging from 0.5% to 12%). The
1-dimensional copy transformation significantly improves performance by 11%-
19% when using 10242 and 20482 meshes on the SGI workstation and on the
IBM machine, but slightly slows down performance by 0.5%-8% in other cases.
Here again, when using 10242 and 20482 meshes, the extra benefit of applying
array copy comes from the reduction of conflict misses in the memory system.

In summary, the experimental results indicate that selectively applying data
copy to optimize array computations can significantly improve the performance
of scientific applications, especially when array elements are accessed in large
strides and when conflict misses become a factor in the memory performance.
The performance measurements also indicate that data copy does not need to
be applied together with blocking to be effective. In fact, data copy optimization
was able to significantly improve performance for all three kernels without block-
ing. Finally, even when data copy is not beneficial, the overhead is not overly
significant, and only small slow downs (.5%-8%) in performance are observed for
all kernels.

5 Conclusion

This paper presents a general algorithm for applying data copy to optimize ar-
bitrary array computations. The algorithm is fully implemented and has been
applied to automatically optimize several scientific computation kernels on dif-
ferent platforms. The results indicate that the algorithm is highly effective and
that array copy can significantly improve the performance of scientific compu-
tations, both when combined with blocking and when applied alone without
blocking.
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