
LSU EE 4755 Homework 4 Due: 12 October 2016

Problem 0: First, follow the instructions for account setup and homework workflow on the course
procedures page, http://www.ece.lsu.edu/koppel/v/proc.html.

Look through the code in hw04.v. Module lookup_behav in file hw04.v has a w-bit input char
and an n-element array of w-bit quantities named chars. (Parameter nelts is n and parameter
charsz is w.) The module also has a 1-bit output found which is logic 1 iff any element of chars
is equal to char. Finally, the module has a ⌈lg n⌉-bit output index which is set to the element
number of chars that matches char, or 0 if found is 0. Assume that no two elements of chars are
identical.

For example, suppose input char is set to 102 and that chars is {63,124,102,92}. Then
output found will be 1 and index will be 2. If char were 7 index would be 0 and found would
be 0, if char were 63 index would be 0 and found would be 1, etc. The alert student will have
recognized that n = 4 and that w ≥ 7 in these examples.

Module lookup is coded in synthesizable behavioral form that describes combinational logic.
The hw04.v file contains two other modules which are to do the same thing, lookup_linear and
lookup_tree, but those modules are not yet finished.

The testbench tests all of these modules. It tests them for sizes (n) of 4, 5, 10, 15, 16, 30, 40,
and 64. To change which sizes are tested (or the order in which they are tested) edit the testbench
module.

To have the testbench test only some of these modules (say, skip the lookup_tree tests until
after lookup_linear is working) look for the for loop with mut=0 and modify it appropriately. (It
should be easy to figure out the numbers.)

A synthesis script is provided that will synthesize all three modules at different sizes and both
with and very lax timing constraint and a very strict timing constraint. The script can be run using
the command rc -files syn.tcl. Initially it will stop with an error. To see it run to completion
before starting the assignment have it only synthesize lookup_behav (see below). Pre-set synthesis
options (in file .synth_init) were chosen to reject any design that is not combinational.

If there is an error when using the synthesis script then follow the manual synthesis steps on
the procedures page and look for error messages.

To change which modules are synthesized edit the set modules line (near the bottom) in file
syn.tcl. The values for nelts and other items can also be changed by editing the file.

Note: There are no points for this problem.

Problem 1: Complete lookup_linear so that it does the same thing as lookup_behavioral but
by using as many copies of lookup_elt as it needs. That is, lookup_linear should use generate
statements to instantiate lookup_elt and it should include whatever other code is needed to use
these instances to compute the correct outputs.

• Behavioral or structural code can be used.

• The module must be synthesizable.

• Assume that all elements of chars are different.

Problem 2: Complete module lookup_tree so that it performs the lookup using recursive instan-
tiations of itself. Take care so that index is computed efficiently. Hint: think about how to compute
index efficiently when n (nelts) is a power of 2, then get the same efficiency for any n.

1

http://www.ece.lsu.edu/koppel/v/
http://www.ece.lsu.edu/koppel/v/proc.html


If completed correctly, the cost and especially the performance at larger sizes should be
better than lookup_behavioral and (unless you did an unexpectedly good job) better than
lookup_linear.

• Behavioral or structural code can be used.

• The module must be synthesizable.

• Assume that all elements of chars are different.

Problem 3: Run the synthesis script and characterize the strengths and weaknesses of each mod-
ule. (For example, module X has lowest cost for low-speed designs.)

In a follow-on homework assignment additional questions will be asked about these modules.

2


