
LSU EE 4755 Homework 6 Due: 2 December 2015

Problem 0: The homework Verilog file, hw06.v, contains something similar to the integer com-
pression modules presented in class. (Follow the homework workflow instructions on the course
procedures page to get a copy of the assignment package.) These modules compress an ASCII
character stream by substituting a binary-encoded integer for a string of ASCII digits. These
modules were based on 2014 Homework 4. Feel free to look at that assignment an solution for help.

Module icomp_none is a version of the module that does no compression at all. It does though
implement the handshaking protocol so that characters can be passed from input to output. This
module can be studied to help understand how the others work.

Module icomp_2cyc is one of the compression modules covered in class. It computes the
encoded value in stage 0, and checks for overflow in stage 1. Don’t modify this module, save if for
reference. Module icomp_sol is initially identical to icomp_2cyc, but it should be modified as part
of this assignment.

The testbench is set to simulate icomp_sol on a sample test string. At the end it will report
the amount of compression and whether there was any errors. The testbench also prints out a
trace showing some module inputs and outputs and the status of internal signals. Examine the
testbench code to see how this is done and feel free to modify it to add signals of your own. A more
detailed trace of execution can be obtained using the SimVision gui. To start that use the com-
mand irun hw06.v -gui. See http://www.ece.lsu.edu/koppel/v/v/s/SimVisionIntro.pdf

for documentation. (On campus access only without password.)
The synthesis script will synthesize the modules icomp_2cyc and icomp_sol. Use the synthesis

script to make sure that your designs are synthesizable and to determine their cost and performance.
(There is nothing to turn in for this assignment.)

Problem 1: In module icomp_sol there is a declaration of a variable named val_encode_size_1,
but no uses of that variable. Add code to that module so that val_encode_size_1 is set to the num-
ber of bytes that are needed for the number currently in the register val_encode_1. For example,
if val_encode_1 has a 0, then val_encode_size_1 should be 0. If val_encode_1 has a 123 then
val_encode_size_1 should be 1 (one byte), if val_encode_1 has a 300 then val_encode_size_1

should be 2 (for 2 bytes), etc.
To help with your solution add code to the testbench to show the value of this variable.

Problem 2: Modify module icomp_sol so that a group of ASCII digits is compressed into the
smallest number of bytes needed, up to max_chars. For example, if max_chars is 4 then just use
one byte to compress 200, two bytes for 4000, and for 1234567890123 use a four-byte integer (for
1234567890) followed by a one byte integer (for 123).

Precede the compressed integer by the character 128 plus the number of bytes in the compressed
number. For example, if the compressed value takes two bytes then where the first character of the
uncompressed value would go emit a 130, then the next two characters should be the compressed
number. (See how char_out is assigned in the unmodified code.)

To solve this problem you’ll need to understand how the existing code works, how to inter-
pret the trace output provided by the simulator, and how to use the SimVision waveform viewer.
Random guesses based on a vague understanding will get you nowhere.

• The module should be written for arbitrary values of max chars.

• Make sure that the testbench is not reporting errors.

1

http://www.ece.lsu.edu/koppel/v/
http://www.ece.lsu.edu/koppel/v/v/s/SimVisionIntro.pdf


• Make sure that your module is compressing the string.

2


