
LSU EE 4755 Homework 2 Solution Due: 16 September 2015

The Verilog part of the solution to this assignment can be found in

/home/faculty/koppel/pub/ee4755/hw/2015f/hw02/hw02/hw02-sol.v and a syntax-highlighted ver-

sion can be found at http://www.ece.lsu.edu/koppel/v/2015/hw02-sol.v.html.

Problem 0: Follow the instructions for account setup and homework workflow on the course
procedures page, http://www.ece.lsu.edu/koppel/v/proc.html. Run the testbench on the un-
modified file. There should be errors on all but the min_4 (Four-element) module. Try modifying
min_4 so that it simulates but produces the wrong answer. Re-run the simulator and verify that
it’s broken. Then fix it.

Note: There are no points for this problem.

Problem 1: Module min_n has an elt_bits-bit output elt_min and an elt_count-element array
of elt_bits-bit elements, elts. Complete min_n so that elt_min is set to the minimum of the
elements in elts, interpreting the elements as unsigned integers. Do so using a linear connection
of min_2 modules instantiated with a genvar loop. (A linear connection means that the output of
instance i is connected to the input of instance i+ 1.)

Verify correct functioning using the testbench.

Solution appears below.

module min_n

#(int elt_bits = 4,

int elt_count = 8)

(output uwire [elt_bits-1:0] elt_min,

input uwire [elt_bits-1:0] elts [elt_count]);

/// SOLUTION

// Declare wires to interconnect the instances of min_2 instantiated

// in the genvar loop.

//

uwire [elt_bits-1:0] im[elt_count:0]; // im: Inter-Module

assign im[0] = elts[0];

// Instantiate elt_count-1 min_2 modules. The inputs of the first

// module (i=1) connect to elt[0] and elt[1]. Subsequent modules

// connect to an elt and the module instantiated in the previous

// iteration.

//

for (genvar i = 1; i < elt_count; i++)

min_2 #(elt_bits) m(im[i], elts[i], im[i-1]);

// Connect the output of the last instance to the module output.

//

assign elt_min = im[elt_count-1];

endmodule

1

http://www.ece.lsu.edu/koppel/v/
http://www.ece.lsu.edu/koppel/v/2015/hw02-sol.v.html
http://www.ece.lsu.edu/koppel/v/proc.html

Problem 2: Module min_t is to have the same functionality as min_n. Complete min_t so that it
recursively instantiates itself down to some minimum size. The actual comparison should be done
by a min_2 module.

Verify correct functioning using the testbench.
Solution appears below. In this solution recursion ends when elt count is 1, in which case the module output,

elts min is connected directly to the module input, elts[0]. Otherwise two smaller min t modules are instantiated.

module min_t

#(int elt_bits = 4,

int elt_count = 8)

(output uwire [elt_bits-1:0] elt_min,

input uwire [elt_bits-1:0] elts [elt_count-1:0]);

/// SOLUTION

if (elt_count == 1) begin

// Recursion ends here with one elt. Of course, it is the

// minimum. (And the maximum, and the average, and the median.)

//

assign elt_min = elts[0];

end else begin

// If there are at least two elements instantiate two smaller

// modules.

// Compute the number of elements to be handled by each

// module. (Note that elt_count can be odd, which is why we need

// a separate elt_hi and elt_lo.)

//

localparam int elt_hi = elt_count / 2;

localparam int elt_lo = elt_count - elt_hi;

// Wires for interconnection of modules.

uwire [elt_bits-1:0] minl, minh;

// Recursively declare two modules.

//

min_t #(elt_bits,elt_hi) mhi(minl,elts[elt_count-1:elt_lo]);

min_t #(elt_bits,elt_lo) mlo(minh,elts[elt_lo-1:0]);

// Combine the output of the two modules above.

//

min_2 #(elt_bits) m2(elt_min,minl,minh);

end

endmodule

Problem 3: By default the synthesis script will synthesize each module for two array sizes, four

2

elements and eight elements.

(a) Run the synthesis script unmodified. Use the command rc -files syn.tcl. Explain the
differences in performance between the different modules.

The output of the synthesis script appears below.

We should expect the cost and performance of min n and min b to be about the since they should synthesize to

the same hardware. That can be seen by comparing the if statement in min b to the assign in min 2: both will

synthesize to a multiplexor. The behavioral for loop in min b and the generate loop in min n should interconnect

those multiplexors in the same way. From the table below we see that the synthesis program output is consistent with

our expectations.

We should expect the cost of min n and min t to be about the same since they have the same number of comparison

units, they are just connected in a different order. But we should expect min t to be faster since the critical path is

through log
2
n min 2 modules. The delay numbers match our expectations for the eight-element version, but at four

elements the linear versions are faster. One reason for this might be that for some reason, the synthesis program is

using a higher-cost comparison unit in the linear versions, adding to their cost and improving their performance. In the

four-element versions that added performance puts them ahead of the tree version. But for the eight-input versions the

tree version is clearly faster.

Possible Test Question: Estimate the critical path in the tree and linear versions of the min units.

The second table below shows the synthesis of the modules at a much higher delay target so that the synthesis

program will be optimizing primarily for area. In this case the both the cost and performance differences between the tree

and linear versions meet our expectations.

Module Name Area Delay Delay

Actual Target

min_t_elt_bits4_elt_count4 8592 1416 100

min_b_elt_bits4_elt_count4 14360 1367 100

min_n_elt_bits4_elt_count4 14360 1367 100

min_t_elt_bits4_elt_count8 25536 1935 100

min_b_elt_bits4_elt_count8 29460 3712 100

min_n_elt_bits4_elt_count8 29460 3712 100

Module Name Area Delay Delay

Actual Target

min_t_elt_bits4_elt_count4 5180 2413 50000

min_b_elt_bits4_elt_count4 5152 3280 50000

min_n_elt_bits4_elt_count4 5152 3280 50000

min_t_elt_bits4_elt_count8 11784 3609 50000

min_b_elt_bits4_elt_count8 12176 7796 50000

min_n_elt_bits4_elt_count8 12176 7796 50000

(b) Modify and re-run the synthesis script so that it synthesizes the modules with elt_bits set
to 1.

The synthesis program should do a better job on the behavioral and linear models in comparison

to the tree model. Why do you think that is? Hint: The 1-bit minimum module is equivalent to

another common logic component that the synthesis program can handle well. Note: the phrase

about the tree model was not in the original assignment.

In the table below we see that with a 1-bit element size all three modules have identical cost and performance.

With a one-bit element size the circuit acts as an AND gate, and this is something the synthesis program can figure

out. Since the synthesis program sees that min n and min b are performing AND operations it can apply the same kind

of tree reduction technique that we incorporated by hand in min t, and so all modules are the same.

3

Note that the key insight here is that in the general case the synthesis program could not figure out that the

minimum operation is associative, and so it could not apply a tree reduction. But with the element size set to 1, it

converted minimum to AND, which it did recognize as associative.

Module Name Area Delay Delay

Actual Target

min_t_elt_bits1_elt_count4 288 155 100

min_b_elt_bits1_elt_count4 288 155 100

min_n_elt_bits1_elt_count4 288 155 100

min_t_elt_bits1_elt_count8 912 292 100

min_b_elt_bits1_elt_count8 912 292 100

min_n_elt_bits1_elt_count8 912 292 100

4

