
LSU EE 4755 Homework 3 Solution Due: 24 October 2014

Updated 7 November 2014, 13:49:47 CST

The Homework 3 code package contains a simple behavioral multiplier and several sequential multipliers.

It also contains a synthesis script in file syn.cmd.

Problem 0: Copy the code package from /home/faculty/koppel/pub/ee4755/hw/2014f/hw03. Verify
that everything is working by running the simulation on the unmodified file. It should report a 0% error
rate for all modules.

Problem 1: The module mult_seq_csa is a sequential multiplier that instantiates an adder, however
unlike mult_seq_ga shown in class, mult_seq_csa instantiates a carry-save adder from the Chipware library,
CW_csa. The carry save adder computes the sum of three integers, a, b, and c (those are the port names).
It produces two sums, which we’ll call sum_a and sum_b (the port names for these are carry and sum). All
of these ports are w bits wide, where w is a parameter. The actual sum of a, b, and c is obtained by adding
together outputs sum_a and sum_b using a conventional adder. Carry save adders are used when there many
integers to be added. Some arrangement (linear, tree) of many carry-save adders will produce a sum_a and
sum_b, which will be added by a single conventional (called carry-propagate) adder.

The advantage of a carry save adder is that it can compute a sum of w-bit numbers in O(1) time (the
amount of time is not affected by w), which of course is much better than the O(w) time for a ripple adder
or the O(log w) time for much more expensive carry look-ahead adders. The performance advantage of a
CSA is lost for mult_seq_csa because the module only computes one partial product at a time.

(a) Sketch the hardware that will be synthesized for mult_seq_csa. Show the carry-save adder and other
major units as boxes, but be sure to show registers, multiplexors, and other such components. Do not show
the actual output produced by an actual synthesis program. (It’s okay if you look at a synthesis program’s
output.)

The hardware appears below. In the diagram the critical path is shown in red. Notice that the critical path goes through both

the CSA and conventional adders.

CW_csa

a
c
c
u
m

_
s
u
m

-

_
a
_
re

g

+

+

=

p
o
s

<<

p
ro

d

en

wid-1

1

0

0

0

prod

plier

cand

a
c
c
u
m

_
s
u
m

-

_
b
_
re

g

pp a
c
c
u
m

_
s
u
m

_
a

a
c
c
u
m

_
s
u
m

_
b

csa

cand[pos]

O(1)

O(log w)

(b) Based on this sketch of synthesized hardware, explain why the benefit of using a CSA is lost. Also explain
how the module can be made a little faster (with a small change), but is still not a good way to use a CSA.

1

http://www.ece.lsu.edu/koppel/v/

The clock frequency is based on the (longest) critical path. For the module the critical path is the sum of the delay through
the CSA and carry-propagate (regular) adder. If a carry-propagate adder were used

Problem 2: Module mult_seq_csa_m initially contains the m-partial-products-per-cycle module that we
did in class. In this problem modify it to use CSA’s, and avoid the issue identified in the previous problem.

(a) Modify mult_seq_csa_m so that it uses the carry-save adder to compute m partial products per cycle.
Use generate statements to instantiate the CSA’s, and of course, connect them appropriately. (In class we
used generate statements for the pipelined adder to instantiate stages, that code is in mult_pipe_ia in the
same file as the assignment.)

Solution appears below.

module mult_seq_csa_m #(int wid = 16, int pp_per_cycle = 2)

(output logic [2*wid-1:0] prod,

input logic [wid-1:0] plier, input logic [wid-1:0] cand, input clk);

localparam int iterations = (wid + pp_per_cycle - 1) / pp_per_cycle;

localparam int iter_lg = $clog2(iterations);

localparam int wid_lg = $clog2(wid);

logic [iter_lg:0] iter;

wire [2*wid-1:0] accum_sum_a[0:pp_per_cycle], accum_sum_b[0:pp_per_cycle];

logic [2*wid-1:0] accum_sum_a_reg, accum_sum_b_reg;

initial iter = 0;

assign accum_sum_a[0] = accum_sum_a_reg;

assign accum_sum_b[0] = accum_sum_b_reg;

for (genvar i=0; i<pp_per_cycle; i++) begin

wire [wid_lg:1] pos = iter * pp_per_cycle + i;

wire co; // Unconnected.

// The "pos < wid" below is needed in case wid is not an integer multiple of pp_per_cycle.

wire [2*wid-1:0] pp = pos < wid && cand[pos] ? plier << pos : 0;

CW_csa #(2*wid) csa

(.sum(accum_sum_a[i+1]), .carry(accum_sum_b[i+1]), .co(co),

.a(accum_sum_a[i]), .b(accum_sum_b[i]), .c(pp), .ci(1’b0));

end

always @(posedge clk) if (iter == iterations) begin

prod <= accum_sum_a_reg + accum_sum_b_reg;

accum_sum_a_reg <= 0;

accum_sum_b_reg <= 0;

iter <= 0;

end else begin

accum_sum_a_reg <= accum_sum_a[pp_per_cycle];

accum_sum_b_reg <= accum_sum_b[pp_per_cycle];

iter <= iter + 1;

end

endmodule

(b) Sketch the hardware that you expect to be synthesized for an m = 2 version. Make sure that your design
does not do something foolish with the conventional adder.

2

The hardware appears below. Coloring has been used to emphasize the hardware corresponding to each iteration of the
generate loop (blue and green) and hardware corresponding to Verilog outside of the generate loop (black). Pay close attention to
accum sum a[i] and accum sum b[i]. They are declared outside the generate loop but are used to interconnect items in
different generate loop iterations.

The diagram shows the inferred hardware, before any optimization. Note that the conventional adder (the big box with the
plus) receives its inputs from the outputs of register accum sum a reg and accum sum b reg, rather than the CSA outputs.
This gives the adder the entire clock period to produce its sum.

CW_csa

a
c
c
u
m

_
s
u
m

-

_
a
_
re

g

+

+

=

ite
r

<<

p
ro

d

en

it
e
ra

ti
o
n
s

1

0

0

prod

plier

cand

a
c
c
u
m

_
s
u
m

-

_
b
_
re

g

pp

accum_sum_a[1]

accum_sum_b[1]

csa

O(1)

O(log w)

CW_csa

csa

* +

<

2
 (

p
p
_
p
e
r_

it
e
ra

ti
o
n
)

0
 (

i)

w
id

<<

0 pp

* +

<

1
 (

i)

w
id

2 (pp_per_iteration)

0

genvar i = 0

genvar i = 1

Black, because declared outside of generate block.Colored, because declared inside generate block.

3

Problem 3: Run the synthesis program to compare the cost and performance of mult_seq_csa_m to
mult_seq_m. The synthesis script syn.cmd can be used to synthesize these modules at different sizes. To
run it use the command rc -files syn.cmd. Feel free to modify the script. (It is written in TCL, it should
be easy to find information on this language.)

(a) Show the cost and performance versus m for these modules.
The cost and performance appear below. The first table shows the results using the unmodified synthesis script, in which area

was minimized. The second table shows the results using a synthesis script in which the synthesis program was set to minimize delay.

--------------- Area Optimization ------------------------------------

Module Name Area Clock Total Init.

Period Delay Interv

mult_seq_csa_m_wid16_pp_per_cycle1 110308 14170 226720 226720

mult_seq_csa_m_wid16_pp_per_cycle2 135192 13692 109536 109536

mult_seq_csa_m_wid16_pp_per_cycle4 157668 12828 51312 51312

mult_seq_csa_m_wid16_pp_per_cycle8 195212 11110 22220 22220

mult_seq_m_wid16_pp_per_cycle1 74092 16444 263104 263104

mult_seq_m_wid16_pp_per_cycle2 99884 17470 139760 139760

mult_seq_m_wid16_pp_per_cycle4 112664 16508 66032 66032

mult_seq_m_wid16_pp_per_cycle8 154744 16463 32926 32926

--------------- Delay Optimization -----------------------------------

Module Name Area Clock Total Init.

Period Delay Interv

mult_seq_csa_m_wid16_pp_per_cycle1 164940 2054 32864 32864

mult_seq_csa_m_wid16_pp_per_cycle2 195408 2255 18040 18040

mult_seq_csa_m_wid16_pp_per_cycle4 239340 2756 11024 11024

mult_seq_csa_m_wid16_pp_per_cycle8 316748 4043 8086 8086

mult_seq_m_wid16_pp_per_cycle1 125408 3062 48992 48992

mult_seq_m_wid16_pp_per_cycle2 166488 3368 26944 26944

mult_seq_m_wid16_pp_per_cycle4 202096 3777 15108 15108

mult_seq_m_wid16_pp_per_cycle8 263772 4285 8570 8570

(b) If you solved the previous problem correctly the total delay shown for mult_seq_csa_m should be wrong.
Explain why, and (optional) if you like try modifying syn.cmd to fix it.

The TCL script computes the total delay by multiplying the clock period by w/m. (In the TCL script w/m is computed by
the routine get stages. In that routine variable bits is used for w and deg for m.) The values of m and w used by the script
are chosen so that m always divides w, so the problem has nothing to do with integer truncation errors.

The module designed for the solution to Problem 2 uses an extra cycle to compute the sum, so it takes m/w + 1 cycles, and
the TCL script does not take this into account. (Of course, that would be easy enough to fix.)

(c) Explain how you might expect the total delay (time needed to compute a product) of mult_seq_csa_m
to change with increasing m? Explain your expectation and whether the synthesis results bear that out.

The clock period is determined by either the delay of one carry-propagate (conventional) adder or the delay of m carry-save
adders, whichever is larger. For small values of m the carry-propagate adder would have the larger delay. So, one might expect
that the clock period for the modules with m = 1 and m = 2 would be the same. However, the time needed to compute a
product, T (m), would go from T (1) = (w/1 + 1) tclk ≈ wtclk to T (2) = (w/2 + 1) tclk ≈

w

2
tclk which is nearly half the

time. For these small values of m the clock period tclk = tlatch + tadder, where tlatch is the setup time needed for the registers
and tadder is the time needed for the carry-propagate adder. When m is increased further the clock period time will be more like
tclk = tlatch + mtcsa where tcsa is the delay for one carry-save adder. At that point, further increases in m will not improve total
performance by as much:

T (m) = (w/m + 1) (tlatch + mtcsa)

= (w + 1)tcsa +
(w

m
+ 1

)

tlatch

When the synthesis program is optimizing delay, results are consistent with this analysis: Performance improvement with
increasing m is much better when m is small than when m is large.

4

