
1 1

Neighborhood Prefetching

David M. Koppelman

Electrical & Computer Engineering Department

Louisiana State University

Baton Rouge, LA U.S.A.

1 Formatted 0:02, 17 October 2000 from pren˙ppact. 1

2 2Hardware Prefetching

Prefetch:

Fetching a cache line in anticipation of its use.

Motivation:

Cache misses becoming larger component of execution time.

Multiprocessors add interconnect and protocol delays.

Challenges:

Prefetching addresses that will be used. (Easy)

Avoiding addresses that won’t be used. (Hard)

2 Formatted 0:02, 17 October 2000 from pren˙ppact. 2

3 3Address Determination in Some Existing Schemes

Sequential

In£nite sequential sequence.

Sequential sequence indicated in bold.

100, 3000, 101, 2000, 3000, 102, 103, 6, . . .

Stride

In£nite stride sequence.

Stride 10 sequence indicated in bold.

100, 3000, 110, 2000, 3000, 120, 130, 6, . . .

Real address reference sequences are £nite, guaranteeing useless prefetches.

3 Formatted 0:02, 17 October 2000 from pren˙ppact. 3

4 4Unneeded Prefetch Problems

Unneeded Prefetch Problems in All Systems

Resource Consumption. (Cache ports, interconnect bandwidth, etc.)

Eviction of useful lines.

Unneeded Prefetch Problems in Multiprocessors

Adds to false sharing.

4 Formatted 0:02, 17 October 2000 from pren˙ppact. 4

5 5Neighborhood Prefetch

Advantages

Larger variety of address sequences than stride.

Less tendency to prefetch unneeded lines.

5 Formatted 0:02, 17 October 2000 from pren˙ppact. 5

6 6Neighborhood Prefetch

Execution of following code fragment . . .

! Iteration 1: r2 = 0x2000, Line Size 0x100 Characters
!
A: load r1, [r2]

...
B: load r3, [r2+0x500]

...
C: load r4, [r2-0x700]

. . . generates . . .

Address Seq.: 0x2000, . . ., 0x2500, . . ., 0x1900, . . .

6 Formatted 0:02, 17 October 2000 from pren˙ppact. 6

7 7Neighborhood Prefetch Terminology

Term: Example

Base: Address used as reference. 0x2000

Initiator: Instruction accessing base address. A: load r1, [r2]

Offset: Distance from base, in lines. 0, . . ., +5, . . . -7

Neighborhood: Set of small-magnitude offsets. {0,+5,−7}

7 Formatted 0:02, 17 October 2000 from pren˙ppact. 7

8 8

Consider . . .

! Iteration 1: r2 = 0x2000 (Base), Line Size 0x100 Characters
!
A: load r1, [r2] ! (Initiator)

...
B: load r3, [r2+0x500]

...
C: load r4, [r2-0x700]

. . . generates . . .

Address Seq.: 0x2000, . . ., 0x2500, . . ., 0x1900, . . .

Neighborhood: {0,+5,−7}

Notice that the neighborhood . . .

8 Formatted 0:02, 17 October 2000 from pren˙ppact. 8

9 9

Consider . . . and

! Iteration 2: r2 = 0x8000 (Base), Line Size 0x100 Characters
!
A: load r1, [r2] ! (Initiator)

...
B: load r3, [r2+0x500]

...
C: load r4, [r2-0x700]

. . . generates . . .

Address Seq.: 0x8000, . . ., 0x8500, . . ., 0x7900, . . .

Neighborhood: {0,+5,−7}

Notice that the neighborhood . . . is the same in both cases.

Base address and neighborhood used to construct prefetch addresses.

9 Formatted 0:02, 17 October 2000 from pren˙ppact. 9

10 10Neighborhood Prefetch Outline

Hardware monitors addresses that miss the cache.

Hardware determines neighborhoods and stores them in PC-indexed table.

Table checked on miss; if entry found used for prefetching.

10 Formatted 0:02, 17 October 2000 from pren˙ppact. 10

11 11Neighborhood Prefetching Advantages

Superset (loosely) of existing schemes.

Can detect sequential patterns: {0, 1, 2, 3, . . .}.

Can detect stride patterns: {0, 10, 20, 30, . . .}.

Can detect arbitrary patterns: {0, 10, 20, 50}.

Better at avoiding unneeded and harmful prefetches.

Prefetch candidates based on past usage by instruction.

Other schemes inevitably fetch unneeded, possibly harmful, lines.

Particularly important in multiprocessors: less false sharing.

11 Formatted 0:02, 17 October 2000 from pren˙ppact. 11

12 12Neighborhood Prefetch Hardware

Main Parts

Recent Miss Table (RMT)—for determining neighborhoods.

Neighborhood History Table (NHT)—stores neighborhoods.

Prefetch Controller—handles prefetches.

Level 1
Cache

Level 2 Cache

Cache Controller Prefetch
Controller

Recent
Miss
Tbl (RMT)

Neighbr. History
Table (NHT)

Instr
ID

Data
Addr

NHT Entry

Prefetch
Addr

12 Formatted 0:02, 17 October 2000 from pren˙ppact. 12

13 13Neighborhood Prefetching Hardware

Recent Miss Table (RMT)

In
Neighborhood?

Stale?

Compute
Offset

Addr. Ins. ID Time Offsets

Update
Contr.

Zeros

Initialize

Replace
Data

Data Address

Instruction ID

Time

Update

Hit

RMT EntryEntries for recently encountered
neighborhoods.

Each entry holds:

Base Address.

Offsets.

Initiating instruction.

And other data.

On miss update existing entry or create new ones.

Entries occasionally moved to neighborhood history table.

13 Formatted 0:02, 17 October 2000 from pren˙ppact. 13

14 14Neighborhood History Table

Contention?

Above
Thresh.?

Ins. ID
Upd.
Count

Offsets

Offset
Iterator

Adder Prefetch
Address

Address
Valid

Don't
Prefetch

Miss
Address

Neighborhood
History
Table
(NHT)

Instruction
ID

Offset
(Number)

Neighborhood History Table

Entry for memory access instructions.

Retrieved on miss using address of missing instruction.

Used to construct prefetch addresses.

14 Formatted 0:02, 17 October 2000 from pren˙ppact. 14

15 15Evaluation

Evaluated by execution driven simulation using Proteus.

Machine model:

Sixteen-node multiprocessor.

Full-map directory-based cache coherence.

In-order execution, four-way issue, SPARC ISA.

Virtual memory, nonblocking stores, blocking loads.

Mesh topology.

Execution Bottlenecks

Cache and Network Latency (all accesses)

Hot Spots at Memories (application dependent)

15 Formatted 0:02, 17 October 2000 from pren˙ppact. 15

16 16Base Con£guration Parameters

Simulation Parameter Value

System Size 16 processors
Network Topology 4 × 4 mesh

VM Page Size 212 bytes
TLB Capacity 64 entries
TLB Replacement LRU, fully assoc.

Cache Size 27 sets
Cache Associativity 8, LRU Repl.
Cache Line Size 64 bytes
L1 Cache Hit Latency 1 cycle
L2 Cache Hit Latency 7 cycles
Total L2 Miss Latency 50 (min), 135 (typ)

Directory Size full map
Completion Buffer 5 stores
Raw Memory Latency 10 cycles

Protocol Message Size 8 bytes (plus data)
Network Interface Width 4 bytes
Network Link Width 4 bytes
Hop Latency 20 cycles (plus waiting)

Neighborhood Size 16 offsets
NHT Size 256 entries
RMT Size 8 entries

16 Formatted 0:02, 17 October 2000 from pren˙ppact. 16

17 17SPLASH-2 Benchmarks Used

Cholesky - Processor States

Time / Cycles x 1,000
29,000 29,500 30,000 30,500 31,000 31,500 32,000 32,500

0

5

10

15

P
r
o
c
e
s
s
o
r

Key gives state duration; 6,145 events within window.

Idle.
9.9%, 7,226,708
Busy.
51.3%, 37,419,194

Getting lock.
2.9%, 2,132,612
In barrier, idle.
1.8%, 1,341,954

In barrier, busy.
0.0%, 8,704
Util. off.
0.6%, 433,602

Page Relocation.
0.1%, 52,198
Waiting for Work
33.3%, 24,317,444

FFT: Processor States (65536 elements)

Time / Cycles x 1,000
10,600 10,800 11,000 11,200 11,400 11,600 11,800 12,000 12,200 12,400 12,600

0

5

10

15

P
r
o
c
e
s
s
o
r

Key gives state duration; 1,285 events within window.

Idle.
12.3%, 4,903,735
Busy.
5.2%, 2,073,508
Getting lock.
0.0%, 3,449

In barrier, idle.
3.5%, 1,416,591
In barrier, busy.
0.0%, 0
Util. off.
1.3%, 538,225

Page Relocation.
0.0%, 0
Transpose
25.4%, 10,169,381
FFT1DOnce
39.7%, 15,884,653

TouchArray
11.9%, 4,743,302
Read Unity Roots
0.7%, 274,175

LU: Processor States (128 x 128)

Time / Cycles x 1,000
1,600 1,700 1,800 1,900 2,000 2,100 2,200 2,300 2,400 2,500 2,600

0

5

10

15

P
r
o
c
e
s
s
o
r

Key gives state duration; 490 events within window.

Idle.
8.6%, 1,619,161
Busy.
2.3%, 431,110
Getting lock.
0.0%, 0

In barrier, idle.
51.3%, 9,706,937
In barrier, busy.
0.0%, 0
Util. off.
0.4%, 69,794

Page Relocation.
0.0%, 0
Factor
0.6%, 107,297
Divide
2.9%, 547,455

Modify 1
3.7%, 698,597
Modify 2
30.4%, 5,753,757

Processor States, Radix 262,144 Keys

Time / Cycles x 1,000
2,000 2,500 3,000 3,500 4,000 4,500 5,000 5,500

0

5

10

15

P
r
o
c
e
s
s
o
r

Key gives state duration; 792 events within window.

Idle.
5.6%, 3,404,382
Busy.
4.3%, 2,594,781
Getting lock.
0.5%, 299,969

In barrier, idle.
3.8%, 2,313,782
In barrier, busy.
0.0%, 0
Util. off.
0.3%, 162,204

Page Relocation.
0.0%, 0
Histo Count
15.1%, 9,147,684
Histo Sum.
2.2%, 1,346,309

Prefix
1.5%, 930,635
Permute
66.7%, 40,415,336

Processor States: Barnes, 16384 Particles

Time / Cycles x 1,000,000
340 350 360 370 380 390 400 410 420 430 440

0

5

10

15

P
r
o
c
e
s
s
o
r

Key gives state duration; 64,969 events within window.

Idle.
5.6%, 105,049,088
Busy.
1.5%, 27,362,336
Getting lock.
11.8%, 222,497,952

In barrier, idle.
41.2%, 776,715,424
In barrier, busy.
0.0%, 12,000
Util. off.
0.3%, 5,800,928

Page Relocation.
0.0%, 0
Load Tree.
1.7%, 32,313,312
Partition.
0.4%, 8,363,296

Compute Forces.
36.8%, 693,226,976
Advance.
0.7%, 12,861,440

Processors States: FMM, 16384 Particles

Time / Cycles x 1,000,000
190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350

0

5

10

15

P
r
o
c
e
s
s
o
r

Key gives state duration; 27,714 events within window.

Idle.
5.7%, 168,070,480
Busy.
2.7%, 79,011,680
Getting lock.
0.2%, 5,541,232

In barrier, idle.
5.4%, 158,631,568
In barrier, busy.
0.0%, 1,024
Util. off.
0.1%, 4,093,626

Page Relocation.
0.0%, 0
Up Pass
3.7%, 108,897,808
Interactions.
73.9%, 2,162,685,072

Down Pass
7.1%, 207,970,016
Positions
1.0%, 30,332,544

Processor States: Ocean, 258 x 258

Time / Cycles x 1,000,000
30 35 40 45 50 55 60

0

5

10

15

P
r
o
c
e
s
s
o
r

Key gives state duration; 17,547 events within window.

Idle.
5.7%, 37,134,008
Busy.
0.0%, 696
Getting lock.
1.1%, 7,542,502

In barrier, idle.
6.2%, 40,614,072
In barrier, busy.
0.0%, 76,150
Util. off.
0.3%, 1,655,542

Page Relocation.
0.0%, 0
Slave 1.
0.6%, 4,011,792
Slave 2.
43.9%, 288,092,584

Jacob. Calc 2
7.3%, 47,629,576
Laplac. Calc.
9.4%, 61,508,868
Relax.
25.6%, 168,443,496

Processor States: Water N Squared, 512 Molecu

Time / Cycles x 1,000,000
26 28 30 32 34 36 38 40 42 44 46

0

5

10

15

P
r
o
c
e
s
s
o
r

Key gives state duration; 301,758 events within window.

Idle.
5.6%, 21,611,140
Busy.
26.6%, 102,722,810
Getting lock.
0.5%, 1,950,730

In barrier, idle.
7.5%, 28,871,476
In barrier, busy.
0.0%, 18,610
Util. off.
0.3%, 1,090,129

Page Relocation.
0.0%, 0
Kinetic
0.0%, 67,508
Interf.
51.9%, 200,430,898

Interf Comp
7.6%, 29,144,604

17 Formatted 0:02, 17 October 2000 from pren˙ppact. 17

18 18Evaluation

Ran SPLASH-2 Benchmarks

Compared:

Neighborhood Prefetch (Cache Size 7
8 Other Systems)

Adaptive Sequential Prefetch (Preupgrades, Tuned for System)

Conventional System

Experiments Presented

Base: 64KB: 8 way assoc. × 64 byte lines × 128 sets.

Cache Size: 8KB (24 sets) to 1MB (211 sets).

Line Size: 8 bytes to 1024 bytes.

18 Formatted 0:02, 17 October 2000 from pren˙ppact. 18

19 19Base: Prefetch Outcome

Chl FFT LU Rdx Bar FMM Ocn WSQ Avg

Unused +Miss +Inv Hit Sl Hit Sl Upg
Neighb. Pref. Adap. Seq. Pref.

P
re

f.
O

ut
co

m
e

P
er

 O
rig

in
al

 M
is

s*

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

19 Formatted 0:02, 17 October 2000 from pren˙ppact. 19

20 20Base: Normalized Stall and Execution Time

6 2

Chl FFT LU Rdx Bar FMM Ocn WSQ Avg

Access Stall Time Execution Time
Neighb. Pref. Adap. Seq. Pref.

N
or

m
al

iz
ed

 to
 N

o
P

re
fe

tc
h

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

20 Formatted 0:02, 17 October 2000 from pren˙ppact. 20

21 21Base: Miss Latency

 16
7.

9

Chl

14
3.

4

FFT

18
9.

9

LU

14
4.

5

Rdx
15

2.
0

Bar

11
9.

0

FMM

 5
9.

9

Ocn

13
6.

2

WSQ Avg

Miss Upgrade
No Pref. Neighb. Pref. Adap. Seq. Pref.

N
or

m
al

iz
ed

 M
is

s
La

te
nc

y

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

21 Formatted 0:02, 17 October 2000 from pren˙ppact. 21

22 22Cache Size: Normalized Stall and Execution Time

5 2
6

1
5

2 6
2

6 2 6
2 7

1 6
1

4 5 6 7 8 9 10 11

Access Stall Time Execution Time
Neighb. Pref. Adap. Seq. Pref.

N
or

m
al

iz
ed

 to
 N

o
P

re
fe

tc
h

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

22 Formatted 0:02, 17 October 2000 from pren˙ppact. 22

23 23Cache Size: Prefetch Outcome

4 5 6 7 8 9 10 11

Unused +Miss +Inv Hit Sl Hit Sl Upg
Neighb. Pref. Adap. Seq. Pref.

P
re

f.
O

ut
co

m
e

P
er

 O
rig

in
al

 M
is

s*

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

23 Formatted 0:02, 17 October 2000 from pren˙ppact. 23

24 24Cache Size: Miss Ratio

44 55 66 77 88 99 1010 1111

No Pref. Neighb. Pref. Adap. Seq. Pref.

Le
ve

l T
w

o
M

is
s

R
at

io

0.0050
0.0060

0.0080

0.0100

0.0150

0.0200

0.0300

0.0400

0.0500

24 Formatted 0:02, 17 October 2000 from pren˙ppact. 24

25 25Line Size: Execution Time

33 44 55 66 77 88 99 1010

No Pref. Neighb. Pref. Adap. Seq. Pref.

E
xe

cu
tio

n
T

im
e

/ M
eg

ac
yc

le
s

10

15

20

30

25 Formatted 0:02, 17 October 2000 from pren˙ppact. 25

26 26Line Size: Normalized Stall and Execution Time

6
2

7 1 6 2
6 2

5 2 2 3
3 2

2
3

3 4 5 6 7 8 9 10

Access Stall Time Execution Time
Neighb. Pref. Adap. Seq. Pref.

N
or

m
al

iz
ed

 to
 N

o
P

re
fe

tc
h

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

26 Formatted 0:02, 17 October 2000 from pren˙ppact. 26

27 27Line Size: Miss Ratio

33 44 55 66 77 88 99 1010

No Pref. Neighb. Pref. Adap. Seq. Pref.

Le
ve

l T
w

o
M

is
s

R
at

io

0.006

0.008
0.010

0.015

0.020

0.030

0.040
0.050
0.060

0.080
0.100

27 Formatted 0:02, 17 October 2000 from pren˙ppact. 27

28 28Line Size: Prefetch Outcome

3 4 5 6 7 8 9 10

Unused +Miss +Inv Hit Sl Hit Sl Upg
Neighb. Pref. Adap. Seq. Pref.

P
re

f.
O

ut
co

m
e

P
er

 O
rig

in
al

 M
is

s*

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

28 Formatted 0:02, 17 October 2000 from pren˙ppact. 28

29 29Conclusions

Chl FFT LU Rdx Bar FMM Ocn WSQ Avg

Unused +Miss +Inv Hit Sl Hit Sl Upg
Neighb. Pref. Adap. Seq. Pref.

P
re

f.
O

ut
co

m
e

P
er

 O
rig

in
al

 M
is

s*

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

6 2

Chl FFT LU Rdx Bar FMM Ocn WSQ Avg

Access Stall Time Execution Time
Neighb. Pref. Adap. Seq. Pref.

N
or

m
al

iz
ed

 to
 N

o
P

re
fe

tc
h

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

 16
7.

9

Chl

14
3.

4

FFT

18
9.

9

LU

14
4.

5

Rdx

15
2.

0

Bar

11
9.

0

FMM

 5
9.

9

Ocn

13
6.

2

WSQ Avg

Miss Upgrade
No Pref. Neighb. Pref. Adap. Seq. Pref.

N
or

m
al

iz
ed

 M
is

s
La

te
nc

y

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

5 2
6

1
5

2 6
2

6 2 6
2 7

1 6
1

4 5 6 7 8 9 10 11

Access Stall Time Execution Time
Neighb. Pref. Adap. Seq. Pref.

N
or

m
al

iz
ed

 to
 N

o
P

re
fe

tc
h

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

4 5 6 7 8 9 10 11

Unused +Miss +Inv Hit Sl Hit Sl Upg
Neighb. Pref. Adap. Seq. Pref.

P
re

f.
O

ut
co

m
e

P
er

 O
rig

in
al

 M
is

s*

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

44 55 66 77 88 99 1010 1111

No Pref. Neighb. Pref. Adap. Seq. Pref.

Le
ve

l T
w

o
M

is
s

R
at

io

0.0050
0.0060

0.0080

0.0100

0.0150

0.0200

0.0300

0.0400

0.0500

33 44 55 66 77 88 99 1010

No Pref. Neighb. Pref. Adap. Seq. Pref.

E
xe

cu
tio

n
T

im
e

/ M
eg

ac
yc

le
s

10

15

20

30

6
2

7 1 6 2
6 2

5 2 2 3
3 2

2
3

3 4 5 6 7 8 9 10

Access Stall Time Execution Time
Neighb. Pref. Adap. Seq. Pref.

N
or

m
al

iz
ed

 to
 N

o
P

re
fe

tc
h

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

33 44 55 66 77 88 99 1010

No Pref. Neighb. Pref. Adap. Seq. Pref.

Le
ve

l T
w

o
M

is
s

R
at

io

0.006

0.008
0.010

0.015

0.020

0.030

0.040
0.050
0.060

0.080
0.100

3 4 5 6 7 8 9 10

Unused +Miss +Inv Hit Sl Hit Sl Upg
Neighb. Pref. Adap. Seq. Pref.

P
re

f.
O

ut
co

m
e

P
er

 O
rig

in
al

 M
is

s*

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

Conclusions

Neighborhood Prefetch handles wider variety of reference patterns.

Less prefetching of unneeded lines.

Reduces miss ratio by nearly 50%.

Reduces execution time by 10% or more.

Performance better than adaptive sequential prefetch . . .

. . . though implementation considerably more complex.

Future Work: Prefetch on Hit

Wallpaper prefetch? (Repeat neighborhoods.)

29 Formatted 0:02, 17 October 2000 from pren˙ppact. 29

