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2 2Hardware Prefetching

Prefetch:

Fetching a cache line in anticipation of its use.

Motivation:

Cache misses becoming larger component of execution time.

Multiprocessors add interconnect and protocol delays.

Challenges:

Prefetching addresses that will be used. (Easy)

Avoiding addresses that won’t be used. (Hard)
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3 3Address Determination in Some Existing Schemes

Sequential

In£nite sequential sequence.

Sequential sequence indicated in bold.

100, 3000, 101, 2000, 3000, 102, 103, 6, . . .

Stride

In£nite stride sequence.

Stride 10 sequence indicated in bold.

100, 3000, 110, 2000, 3000, 120, 130, 6, . . .

Real address reference sequences are £nite, guaranteeing useless prefetches.
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4 4Unneeded Prefetch Problems

Unneeded Prefetch Problems in All Systems

Resource Consumption. (Cache ports, interconnect bandwidth, etc.)

Eviction of useful lines.

Unneeded Prefetch Problems in Multiprocessors

Adds to false sharing.
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5 5Neighborhood Prefetch

Advantages

Larger variety of address sequences than stride.

Less tendency to prefetch unneeded lines.
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6 6Neighborhood Prefetch

Execution of following code fragment . . .

! Iteration 1: r2 = 0x2000, Line Size 0x100 Characters
!
A: load r1, [r2]

...
B: load r3, [r2+0x500]

...
C: load r4, [r2-0x700]

. . . generates . . .

Address Seq.: 0x2000, . . ., 0x2500, . . ., 0x1900, . . .

6 Formatted 0:02, 17 October 2000 from pren˙ppact. 6



7 7Neighborhood Prefetch Terminology

Term: Example

Base: Address used as reference. 0x2000

Initiator: Instruction accessing base address. A: load r1, [r2]

Offset: Distance from base, in lines. 0, . . ., +5, . . . -7

Neighborhood: Set of small-magnitude offsets. {0,+5,−7}
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8 8

Consider . . .

! Iteration 1: r2 = 0x2000 (Base), Line Size 0x100 Characters
!
A: load r1, [r2] ! (Initiator)

...
B: load r3, [r2+0x500]

...
C: load r4, [r2-0x700]

. . . generates . . .

Address Seq.: 0x2000, . . ., 0x2500, . . ., 0x1900, . . .

Neighborhood: {0,+5,−7}

Notice that the neighborhood . . .
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9 9

Consider . . . and

! Iteration 2: r2 = 0x8000 (Base), Line Size 0x100 Characters
!
A: load r1, [r2] ! (Initiator)

...
B: load r3, [r2+0x500]

...
C: load r4, [r2-0x700]

. . . generates . . .

Address Seq.: 0x8000, . . ., 0x8500, . . ., 0x7900, . . .

Neighborhood: {0,+5,−7}

Notice that the neighborhood . . . is the same in both cases.

Base address and neighborhood used to construct prefetch addresses.
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10 10Neighborhood Prefetch Outline

Hardware monitors addresses that miss the cache.

Hardware determines neighborhoods and stores them in PC-indexed table.

Table checked on miss; if entry found used for prefetching.
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11 11Neighborhood Prefetching Advantages

Superset (loosely) of existing schemes.

Can detect sequential patterns: {0, 1, 2, 3, . . .}.

Can detect stride patterns: {0, 10, 20, 30, . . .}.

Can detect arbitrary patterns: {0, 10, 20, 50}.

Better at avoiding unneeded and harmful prefetches.

Prefetch candidates based on past usage by instruction.

Other schemes inevitably fetch unneeded, possibly harmful, lines.

Particularly important in multiprocessors: less false sharing.
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12 12Neighborhood Prefetch Hardware

Main Parts

Recent Miss Table (RMT)—for determining neighborhoods.

Neighborhood History Table (NHT)—stores neighborhoods.

Prefetch Controller—handles prefetches.

Level 1
Cache

Level 2 Cache

Cache Controller Prefetch
Controller

Recent
Miss
Tbl (RMT)

Neighbr. History
Table (NHT)

Instr
ID

Data
Addr

NHT Entry

Prefetch
Addr
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13 13Neighborhood Prefetching Hardware

Recent Miss Table (RMT)

In
Neighborhood?

Stale?

Compute
Offset

Addr. Ins. ID Time Offsets

Update
Contr.

Zeros

Initialize

Replace
Data

Data Address

Instruction ID

Time

Update

Hit

RMT EntryEntries for recently encountered
neighborhoods.

Each entry holds:

Base Address.

Offsets.

Initiating instruction.

And other data.

On miss update existing entry or create new ones.

Entries occasionally moved to neighborhood history table.
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14 14Neighborhood History Table

Contention?

Above
Thresh.?

Ins. ID
Upd.
Count

Offsets

Offset
Iterator

Adder Prefetch
Address

Address
Valid

Don't
Prefetch

Miss
Address

Neighborhood
History
Table
(NHT)

Instruction
ID

Offset
(Number)

Neighborhood History Table

Entry for memory access instructions.

Retrieved on miss using address of missing instruction.

Used to construct prefetch addresses.
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15 15Evaluation

Evaluated by execution driven simulation using Proteus.

Machine model:

Sixteen-node multiprocessor.

Full-map directory-based cache coherence.

In-order execution, four-way issue, SPARC ISA.

Virtual memory, nonblocking stores, blocking loads.

Mesh topology.

Execution Bottlenecks

Cache and Network Latency (all accesses)

Hot Spots at Memories (application dependent)
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16 16Base Con£guration Parameters

Simulation Parameter Value

System Size 16 processors
Network Topology 4 × 4 mesh

VM Page Size 212 bytes
TLB Capacity 64 entries
TLB Replacement LRU, fully assoc.

Cache Size 27 sets
Cache Associativity 8, LRU Repl.
Cache Line Size 64 bytes
L1 Cache Hit Latency 1 cycle
L2 Cache Hit Latency 7 cycles
Total L2 Miss Latency 50 (min), 135 (typ)

Directory Size full map
Completion Buffer 5 stores
Raw Memory Latency 10 cycles

Protocol Message Size 8 bytes (plus data)
Network Interface Width 4 bytes
Network Link Width 4 bytes
Hop Latency 20 cycles (plus waiting)

Neighborhood Size 16 offsets
NHT Size 256 entries
RMT Size 8 entries
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17 17SPLASH-2 Benchmarks Used
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FFT: Processor States  (65536 elements)
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LU: Processor States (128 x 128)
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Processor States, Radix 262,144 Keys
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Processor States: Barnes, 16384 Particles
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Processors States: FMM, 16384 Particles
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Processor States: Ocean, 258 x 258
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Processor States: Water N Squared, 512 Molecu
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18 18Evaluation

Ran SPLASH-2 Benchmarks

Compared:

Neighborhood Prefetch (Cache Size 7
8 Other Systems)

Adaptive Sequential Prefetch (Preupgrades, Tuned for System)

Conventional System

Experiments Presented

Base: 64KB: 8 way assoc. × 64 byte lines × 128 sets.

Cache Size: 8KB (24 sets) to 1MB (211 sets).

Line Size: 8 bytes to 1024 bytes.

18 Formatted 0:02, 17 October 2000 from pren˙ppact. 18



19 19Base: Prefetch Outcome
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20 20Base: Normalized Stall and Execution Time

6 2
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21 21Base: Miss Latency
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22 22Cache Size: Normalized Stall and Execution Time
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23 23Cache Size: Prefetch Outcome

 

4 5 6 7 8 9 10 11

Unused +Miss +Inv Hit Sl Hit Sl Upg
Neighb. Pref. Adap. Seq. Pref.

P
re

f. 
O

ut
co

m
e 

P
er

 O
rig

in
al

 M
is

s*

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

23 Formatted 0:02, 17 October 2000 from pren˙ppact. 23



24 24Cache Size: Miss Ratio
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25 25Line Size: Execution Time
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26 26Line Size: Normalized Stall and Execution Time
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27 27Line Size: Miss Ratio
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28 28Line Size: Prefetch Outcome
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29 29Conclusions
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Conclusions

Neighborhood Prefetch handles wider variety of reference patterns.

Less prefetching of unneeded lines.

Reduces miss ratio by nearly 50%.

Reduces execution time by 10% or more.

Performance better than adaptive sequential prefetch . . .

. . . though implementation considerably more complex.

Future Work: Prefetch on Hit

Wallpaper prefetch? (Repeat neighborhoods.)
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