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Tradeoffs of Shared Memory Over Message Passing

Typical Shared Memory System

• Multiple processors access single address space.

• Physical memory distributed throughout system.

• Caches provide fast access.

Programmer concentrates on reading and writing data . . .

. . . but ignores data location.

Advantage:

Less work for programmer.

Disadvantage:

Data movement less efficient.

Movement initiated by time-consuming cache misses . . .

. . . when the data is already needed.

2 PDCS-97 Formatted 15:49, 1 October 1997 from pdcs. 2



3 3
Second-Cache Miss

Some misses are more time consuming than others.

Second-Cache Miss:
A miss to one cache that initiates messages to a second cache.

Second-Cache Read Miss
Read miss to first cache, data exclusive in second cache.

Second-Cache Write Miss
Write miss to first cache, data to be invalidated in second cache(s).
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Second-Cache Write Miss Example

Consider a system with directory-based cache coherence.

Initially, block (data) shared in caches 2 and 3; memory 1 is home.

1 Processor 0 issues write which misses.
2 Cache 0 sends a write-request message to memory 1.
3 Memory 1 sends invalidate messages to caches 2 and 3.
4 Caches 2 and 3 acknowledge invalidation.
5 Memory 1 grants exclusive access to proc. 0

At finish, block exclusive in cache 0, not cached elsewhere.
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Processor 0 must wait four message transit times.
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Reducing Second-Cache Miss Delays (Previous Work)

Software Prefetching

Requires programmer or compiler identification of prefetchable addresses.

Automatic Hardware Prefetching

E.g., Dahlgren, Dubois, and Stenström.

Limited to constant-stride accesses.

Subject to learning delays.

Manual Hardware Prefetching and Stream Buffers

Limited to constant-stride accesses.

Requires programmer or compiler identification of prefetchable addresses.
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Reducing Second-Cache Miss Delays (Previous Work)

Identification of Sharing Patterns (Migratory Data)

Cox and Fowler; Stenström, Brorsson, and Sandberg.

On read miss get exclusive copy if, based on history, write expected.

Subject to per-block learning delays.

Actions Based on Instruction History

Lilja.

Store instructions invalidate or update based upon execution history.

Uses compiler analysis.
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Speculative Actions Using Instruction History

Speculative Actions

Speculatively invalidate line or revert line to shared . . .

. . . if that line might be accessed elsewhere.

Eliminates second-cache misses1 . . .

. . . potentially halving miss latency.

Basis for Initiating Speculative Action

Assume those lines last-accessed by an instruction . . .
. . . will share the same fate.

E.g., suppose lines 100, 225, and 312 were last accessed by st %r1,[%r2].

If line 100 gets invalidated assume 225 and 312 will soon be invalidated too.

1 when done properly
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Implementation of Speculative Actions

Each cache constructs a linked list for each instruction.

List holds lines accessed by the instruction.

Line moved from list to list each time it’s accessed.

After a line is invalidated the corresponding linked list is traversed . . .

. . . and each member is invalidated . . .

. . . with a delay between invalidations (to avoid congestion).

Traversal stops when count maximum reached or list exhausted.

Exclusive lines that are reverted to shared are handled analogously.
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Implementation Details

Instruction History Table (IHT)

Entry holds data about a memory-access instruction.

Holds list head and table.

Holds outcome data used for performance adjustment.

Line History Table

Entry holds data about a line.

Holds list pointers and last accessor.

310 LD  R1, [R2]

314 ADD R3,R1,R4

320 MUL R5,R3,R6

324 ST [R7], R5

310

324
Addr
H
ead

Instr. Hist. Table (IHT) Line History Table (LHT)
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Cost and Hit Latency Impact

Cost

Assume cost dominated by storage.

Consider system using 16-byte lines.

Line history table adds 30% to cache size.

IHT entries are about 12 bytes each.

Number of entries independent of cache size.

For base configuration, 1000-entry IHT 5% of cache size.

Cost less than 50% cost of cache.

Impact on Cache Hit Latency

List changes need not use same storage as data.

Changes can be completed after access (don’t affect hit time).
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Evaluation

Evaluated using execution-driven simulation

Simulated System (Basic)

Cached virtual shared memory system, full-map directory-based cache coherence.

Nonblocking writes, reads out of order with respect to writes.

Eight-way, 213 set, 16-byte line, physically mapped caches.

One-cycle cache hit latency, ten-cycle memory latency.

Two instruction-per-cycle effective CPU issue rate.

Sixteen processors, mesh interconnect.

Simulator

Proteus, version L3.11(.5).

Execution-driven, on SPARC (Solaris 3.5) host.

Simulation via assembly-level code augmentation.
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Experiments

Workload

Four Splash 2 kernels: Radix, LU, FFT, Cholesky.

Four Splash 2 applications: FMM, Barnes, Ocean, Water N2.

Goals

Determine absolute performance.

Determine sensitivity to:

• Cache Size

• Line Size

• Network Latency

• Memory Throughput (paper only)
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Results

Misses by Type Without (left) and With (right) Speculative Actions

Second cache misses in bold.

Misses normalized to conventional system (left bar).
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• Substantial reduction in second cache misses.

• Small increase in total number of misses.
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14 14Effect on Memory Access Latency and Traffic in Radix
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Effect on Memory Access Latency in Ocean

Conventional, States
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Effect of Cache Size
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• Reduction in SC misses at all sizes . . .

. . . fewer SC misses when caches small . . .

) little benefit with undersized caches.

• Or, improved performance . . .

. . . when increasing cache size ineffective.
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Effect of Network Latency
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• Greater benefit when latency higher.
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Effect Of Line Size
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• Lower benefit with longer lines.

Effect of line size app. dependent.

LU, FMM, Cholesky faster with long lines.

Apps and Radix slower with longer lines.
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Summary

Second cache misses effectively reduced.

Benefit best with large cache and latency.

Benefit depends on application, small for some.

Cost comparable to cache.
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