
Speculative Multiprocessor Cache Line Actions Using Instruction and Line History1

David M. Koppelman2

Department of Electrical & Computer Engineering
Louisiana State University, Baton Rouge

102 EE Building, Baton Rouge, LA, 70803 U.S.A.

Abstract: A technique is described for reducing miss latency in
coherent-cache shared-memory parallel computers. Miss latency
is reduced by speculatively invalidating and updating (copying an
exclusively held line back to memory) cache lines at one proces-
sor that might be needed at another processor. A line becomes
a candidate for speculative invalidation when another line last
accessed by the same instruction is invalidated. A line becomes
a candidate for speculative updating under corresponding condi-
tions. The technique can be implemented by constructing linked
lists of lines for each memory access instruction. The amount
of memory needed by an implementation is less than 50% the
size of the cache, roughly comparable to the cost of adding error-
correcting memory. No time need be added to cache hits. In
execution-driven simulations of such systems running programs
from the Splash 2 suite invalidations and updates are reduced by
50% or more. Total time spent servicing misses is reduced by
about 20% on 16-processor systems, execution time is reduced as
much as 20% for some benchmarks on high latency systems.

Keywords: Multiprocessor, Coherent Caches, Cache Manage-
ment, Instruction History, Speculative Invalidation

1 Introduction

The time needed to complete shared-memory operations is
a significant factor in the performance of coherent-cache shared-
memory parallel computers. The messages needed to maintain
cache coherence can take hundreds of cycles or more to reach
distant processors. Even on the fastest systems in which messages
reach their destinations in tens of cycles memory operations take
much longer than the several cycles typically needed when the
cache is hit [3,13,16].

On systems using directory-based cache-coherence [3,13] an
operation that misses the cache must wait for two or four message
transit times. (The number of messages may be higher.) For
example, a read miss to a memory location that is not exclusively
held may be satisfied in two message delays: the message sent
to the home memory and a return message containing the data.
Misses can result in four message delays in the case of a write
to a location which is cached elsewhere and in the case of a read
miss to a location which is exclusively held (by another cache). In
the former case the copies held elsewhere are invalidated, in the
latter a request is made for the newly written data. (See [3,13]
for details.) Cache misses that must wait four message delays will
be called second-cache misses.

A method is introduced here which reduces the number
of second-cache misses by speculatively invalidating or updating
(restoring to the shared state) cache lines. Speculative invali-
dation reduces the number of write misses in which the data is
cached elsewhere. Speculative updating reduces the number of
read misses in which the data is exclusively held. As a result
of these actions miss latency is reduced since fewer messages, on
average, are needed.

The choice of lines to speculatively invalidate or update is
made assuming that those lines last accessed by an instruction

may share the same fate. That is, if one line last-accessed by a
particular instruction is invalidated, then other lines last-accessed
by the instruction will likely be invalidated. The same idea is used
for updating.

This idea is implemented by constructing, for each active
memory access instruction, a linked list of accessed lines. A line
is added to the list when the access instruction operates on it. A
line can belong to only one list at a time, so a subsequent access
by another instruction will remove the line from the first list and
place it on the new instruction’s list.

The updating of the pointers needed to implement the
linked list, as well as the speculative actions, need not be com-
pleted during a cache access. Therefore, maintaining the lists adds
little or nothing to the cache-hit latency. The speculative actions
do add to the volume of communication; added volume is only
a problem if it slows down other traffic. Execution-driven simu-
lations show that the additional volume only adds a very small
amount to the time needed for normal network traffic, while the
overall time for shared-memory access is reduced.

Other methods of reducing shared-memory access latency
have been reported. Prefetching is in some ways similar to the
technique described here. Software prefetch schemes use prefetch
instructions, which bring data to a cache but otherwise have no
effect, inserted by the programmer or compiler. (See [9,15] for
prefetching on serial systems and [8,12] for parallel systems.) Soft-
ware prefetching works well when the data needed can be identi-
fied well enough in advance. The scheme described here does not
depend upon such identification by a compiler or programmer; no
changes at all need be made to object code.

Prefetch instructions are not needed in hardware prefetch-
ing schemes. A hardware prefetching scheme is described by
Dahlgren, Dubois (in the first reference), and Stenström [6,7] for
parallel systems and by Chen and Baer [4] for serial systems.
Blocks to be prefetched are identified by guessing the stride of
memory accesses. Once determined, prefetch can occur as far in
advance as needed. The effectiveness of such schemes depends
upon regular access to memory and so may only work for certain
programs.

Other schemes attempt to determine the behavior of ac-
cesses to a location [1,5,11,17]. In an adaptive caching scheme
described by Bennett, Carter, and Zwaenepoel, data sharing be-
havior is divided into classes. In a system based on this idea, the
history of memory accesses to a location would be used to deter-
mine its class. A coherence mechanism appropriate to the class
would then be chosen for the location. Trace driven simulations
show that classes can be detected and that performance gains are
possible.

Cox and Fowler [5] and in a similar paper Stenström, Brors-
son, and Sandberg [17], observe that a pattern of read/invalidate/
miss observed at a line might indicate that the data is migratory,
exclusively read and written over a span of time by one processor
at a time. A read by a processor to such a line might fetch an
exclusive copy (rather than a shared copy), anticipating a write

1 To appear in the proceedings of The 10th International Conference on Parallel & Distributed Computing Systems, New Orleans, Louisiana, October
1997.

2 This work is supported in part by the Louisiana Board of Regents through the Louisiana Education Quality Support Fund, contract number LEQSF
(1993-95)-RD-A-07 and by the National Science Foundation under Grant No. MIP-9410435.

310 LD R1, [R2]

314 ADD R3,R1,R4

320 MUL R5,R3,R6

324 ST [R7], R5

310

324

Addr

H
ead

Instr. Hist. Table (IHT) Line History Table (LHT)

Addr
P
trs

1000

1650

2034

2160 MD

MD

1770

SH

SH

SH

State

Executing Code

Tail

Figure 1. Relationship between code, IHT, and LHT: IHT has an entry
for the two memory access instructions in illustrated code. Each entry
points to linked list of lines last-accessed by the instruction, stored in
LHT.

Addr

1000

1650

LHT

2034

2160 MD

MD

1770

INV

SH

SH

State
P
trs

From: Cache 5

To: Mem 3

Subj: Protocol

Acknowledge

1650

From: Mem 3

To: Cache 5

Subj: Protocol

Inval. 1650

Addr

1000

1650

2034

2160 MD

MD

1770

SH

SH

SH

State
P
trs

Addr

1000

1650

2034

2160 MD

MD

1770

INV

SH

State
P
trs

From: Cache 5

To: Mem 7

Subj: Protocol

1770 spec.

invalidated.

SINV

Addr

1000

1650

2034

2160 MD

MD

1770

INV

State
P
trs

From: Cache 5

To: Mem 1

Subj: Protocol

1000 spec.

invalidated.

SINV

SINV

LHTLHT LHT

Schedule Spec.

Inval. of Instr. at

310's Tail.

Schedule Spec.

Inval. of Instr. at

310's Tail.

Time

Figure 2. Example of speculative invalidation: 1) Normal invalidation
message received from memory. 2) Line invalidated and speculative in-
validation initiated. 3) Tail of list speculatively invalidated. 4) New tail
of list speculatively invalidated, list is empty, ending these invalidations.

by the processor. Lebeck and Wood describe a scheme in which
the cache directory (located at the memory module) observes a
block’s behavior. Based on this behavior it might speculatively
invalidate the block in certain caches [11].

One shortcoming with these methods is that the behavior is
associated with a line—one line. The behavior at a line must first
be detected before any performance benefit is realized in accesses
to the line. In the scheme described here behavior is associated
with an instruction; once the behavior is detected the perfor-
mance benefit is realized in all lines accessed by the instruction.
A big improvement since the ratio of number of lines to number
of instructions can be very large.

Lilja describes a scheme in which the policy chosen for a
write instruction, write invalidate or write update, is based upon
its execution history, using software assistance [14]. It is similar
to the method described here in that the fate of a line is tied to
the instruction that last accessed it. It is however less flexible,
since only instructions that were the last to write a line could
initiate an update (write back). In the method described here,
a line is speculatively updated only if another line last-accessed
by the same instruction is updated. This could happen long after
the write executed or after some lines accessed by the write were
subsequently written by other instructions.

2 Speculative Invalidation Hardware

2.1 Hardware

Speculative actions are added to multiprocessor, cached
shared memory parallel systems; for some background see [3,13].
Speculative invalidation and updating can be implemented by
adding two tables and some control hardware to each cache and

by making minor modifications to the memory controllers. The
cache has two tables added, an instruction history table (IHT)
and a line history table (LHT). The IHT stores the head and tail
of active instructions’ linked lists, as well as other data. The LHT
stores the pointers needed to implement the linked list. A con-
troller is used to maintain the lists and to perform the speculative
actions.

Each cache line has an associated LHT entry. (The LHT
entry could be located on the same physical devices used for the
line, however there may be cost and performance benefits when
they are kept separate.) Figure 1 illustrates the relationship be-
tween the tables and executing code. The code fragment in the
left part of the figure contains two memory access instructions;
entries for the two are in the IHT in the center of the figure. The
LHT in the right of the figure holds the linked list. An IHT en-
try may also contain information used to determine if speculative
action is warranted.

Whenever a memory access instruction hits the cache, the
corresponding line’s LHT entry is read. The previous and next
pointers are used to remove the line from the list it was in when
accessed (if any). The memory accesses instruction’s IHT index
is written to the line’s LHT entry. The IHT entry for the memory
access instruction and the line pointed to by the IHT entry’s head
pointer are updated so that the accessed line is the new list head.

Speculative actions are triggered by invalidation and update
messages (sent from the memory to the cache). When an invalida-
tion message is received, the target line is invalidated as usual. In
addition, a process called list traversal is possibly started. First,
the line’s LHT entry is read and the identity of the last-accessing
instruction is determined. The IHT entry for that instruction is
read. Based on information in the IHT entry a decision is made
on whether to proceed with list traversal. If positive, the tail
pointer is read, and the line to which it points is speculatively
invalidated or updated.

A line is speculatively invalidated by sending a speculative
invalidation message to the home memory (containing data if the
line were exclusively held). The IHT’s tail pointer is updated, and
the next speculative action is scheduled. An example of specu-
lative invalidation is illustrated in Figure 2. The procedure for
speculative updates is similar, except lines are not removed from
the list and, of course, speculative update messages are sent to
memory.

The data in a line that had been speculatively invalidated
from the cache is treated no differently than if the memory had
sent an invalidation message: a subsequent access to that location
will miss the cache. A speculatively updated line is no different
than one that had been copied back: to complete a write an
exclusive copy would have to be re-obtained.

To avoid network congestion and memory hotspots the rate
of list traversal should be controlled. In the simulations, a rate
was determined statically using network topology, link widths,
and other data. For higher performance, the rate of list traversal
could be based on the current state of the network.

2.2 Performance Monitoring Hardware

The effectiveness of speculative invalidation would be re-
duced if a processor frequently accessed a block that it had spec-
ulatively invalidated but that had not been subsequently written
by another processor. Such events will be called false positives.
False positives also occur when there are speculative updates to

lines which are later written at the same processor, before being
read elsewhere.

To reduce the number of false positives a record is kept for
each memory access instruction of the effectiveness of the spec-
ulative actions using that instruction’s linked list. List traversal
would not be initiated for instructions generating too many false
positives.

The damage from false positives is also reduced by limiting
the number of lines acted upon during list traversal, avoiding
the significant performance degradation that would occur on a
long list of false positives. For the experiments described below,
the limit was twenty for invalidation, but there was no limit for
updating. List traversal resumes if the lines remain unaccessed at
the cache and an invalidation arrives for a remaining list member.

2.3 Hardware Cost

Most of the cost of the speculative hardware is in the IHT
and LHT and the controller needed at the caches. The cost will
be estimated by finding the amount of additional storage needed.

Let nIHT denote the number of entries in the IHT. Let
ns, nc, and nl denote the number of sets, the number of lines in
the cache, and the size of the lines at each processor, respectively.
Each LHT entry contains pointers to two other LHT entries. Since
there is one LHT entry for each cache line, the pointers need to be
dlog2 nce bits. (If nc is an integral power of two then the pointers
must be 1 + log2 nc bits, to code a null value.) The size of the
last-accessor field must be dlog2 nIHTe bits.

The line itself must store the data as well as a tag. The
size of the line for a byte-addressable system is given by 8nl +
A−dlog2 nse−dlog2 nle bits, where A is the number of bits in an
address. The ratio of the amount of storage for the LHT to the
amount of storage for the line is given by

2dlog2 nce+ dlog2 nIHTe
8nl +A− dlog2 nse − dlog2 nle

.

For a system in which nIHT = 1000 entries, nc = 216 bytes,
nl = 16 bytes, ns = 213 sets, and A = 32 bits, the ratio is .29.
Such a cache holds one megabyte. With smaller caches and larger
line sizes the fraction of storage used by by the LHT is lower.

An IHT entry contains a tag identifying the instruction ad-
dress, head and tail pointers, state, and performance monitoring
fields. The tag size is no larger than A; the head and tail pointers
are each dlog2 nce bits. Allowing 32 bits for state and performance
monitoring data, and using the cache parameters above, an IHT
entry would be 12 bytes. Since there are many fewer IHT entries
than cache lines the IHT storage would only be a small fraction
of total storage.

The cost of the hardware at the memory modules is in-
significant since only a single bit per entry is needed to store a
speculatively invalidated state. Based on the estimated IHT and
LHT storage requirements, adding speculative actions increases
cache storage requirements by less than 50%. The controller
needed would be no more complicated than the controller used
to maintain cache coherence; some or all of this hardware might
be shared.

3 Methodology

The effectiveness of speculative actions was tested using
execution-driven simulation. Shared-memory multiprocessor sys-
tems using a write-invalidate, limited-directory cache coherence

protocol were simulated. The experiments, using programs from
the Splash 2 shared-memory benchmark suite [18], were designed
to determine values of certain parameters (for example, time be-
tween speculative invalidations), to determine sensitivity to sys-
tem configuration variations, and to determine the performance
difference between a normal system and one using speculative
invalidation and updating.

3.1 Proteus

The simulations were performed using a modified version of
the Proteus simulator [2]. Modifications were made to simulate
the speculative scheme described here, other modifications were
made that are unrelated to the speculative hardware; that is, they
impact the reported performance of systems that do not use the
speculative hardware. For details on the changes see [10].

Proteus is an execution-driven parallel computer simulator
which simulates a network, memory system, and processors run-
ning a parallel program. The modified version of Proteus runs on
Sparc systems, and was run on Solaris 2.5.1.

The simulated system runs parallel programs written in C
and which include some parallel programming functions and oper-
ations, including shared memory operations. The C programs are
pre-processed and compiled using a host-system compiler, in this
case gcc 2.7.2.1. The compiled code (in assembly form) is aug-
mented at least every basic block with cycle-counting and shared-
memory access code. The simulated system runs user (the bench-
marks), library, and some OS code. The OS code includes a TLB
miss handler and other virtual memory management procedures,
so VM management timing is accurate.

The augmentation process inserts code for cycle counting,
simulator context switches, and shared memory accesses. The cy-
cle counting code keeps track of time on the simulated system and
initiates context switches. Time is advanced at the rate of about
one cycle for every two instructions except for load, store, and cer-
tain floating-point instructions. Load and store instructions that
might access shared memory are replaced with code that tests the
address and calls simulator procedures if shared memory is indeed
accessed. Cache hit latency is approximately one cycle, the time
to complete an access that misses is determined by network in-
terface, network, memory, and cache latencies, and the protocol
actions needed to complete the accesses. Further information can
be found in [10].

The interconnection network is simulated at the packet-
transfer level; k-ary n-cubes (n-dimensional meshes) are used for
the work reported here. Network nodes effectively consist of a
single shared infinite buffer.

The simulated system provides virtual memory, using 212-
byte pages and 64-entry, fully associative TLBs. Caches are phys-
ically mapped, color matching is used for physical page assign-
ment. Memory allocation routines can return a single contiguous
block distributed over all memory modules. Stores are nonblock-
ing but complete in program order with respect to other stores; up
to five stores per processor can be simultaneously active. Loads
do not complete in order with respect to stores, but of course can
read values to be written by pending stores, maintaining thread-
specified data dependence. The simulated memory system uses a
full-map directory similar to the one described in [3], for differ-
ences see [10]. Each processor has an associated memory module,
sharing the network interface queue with messages bound for the
processor.

(a)
0.00

0.20

0.40

0.60

0.80

1.00

bar chol fft fmm lu oc rdx wsq

S
ec

on
d

C
ac

he
 M

is
se

s

2^9 Sets 2^11 Sets 2^13 Sets 2^15 Sets

0.00

0.20

0.40

0.60

0.80

1.00

bar chol fft fmm lu oc rdx wsq (b)
0.50

0.60

0.70

0.80

0.90

1.00

1.10

bar chol fft fmm lu oc rdx wsq

T
ot

. M
is

s
La

t.
(N

or
m

.)

2^9 Sets 2^11 Sets 2^13 Sets 2^15 Sets

(c)
0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.05

bar chol fft fmm lu oc rdx wsq

E
xe

c.
 T

im
e

(N
or

m
.)

2^9 Sets 2^11 Sets 2^13 Sets 2^15 Sets

Figure 4. Effect of cache size on (a) fraction of second cache misses with (shaded) and without (outline) speculative actions, (b) total miss latency,
and (c) execution time. Bars normalized to conventional system.

Table I: Basic Configuration Parameters

Simulation Parameter Value

System Size 16 processors
Network Topology 42 = 4× 4 mesh

VM Page Size 212 bytes
TLB Capacity 64 entries
TLB Replacement LRU, fully assoc.

Cache Size 213 sets
Cache Associativity 8
Cache Line Size 16 bytes
Cache Capacity 1,048,576 bytes
Cache Hit Latency 1 cycle

Directory Size full map
Completion Buffer 5 stores
Memory Latency 10 cycles

Protocol Message Size npr = 6 bytes (plus data)
Network Interface Width 8 bytes
Network Link Width 4 bytes
Hop Latency 20 cycles (plus waiting)

0.00

0.20

0.40

0.60

0.80

1.00

1.20

bar chol fft fmm lu oc rdx wsq

M
is

se
s

(N
or

m
.)

W-M-1

R-M 1

W-RO

W-RW

R-RW

Figure 3. Normalized number of misses with (right member of pair) and
without (left member of pair) speculative invalidation. Bold indicates
second-cache misses, segments indicate type of miss (see text).

3.2 Splash 2 Suite

The Splash 2 suite consists of a representative sample of sci-
entific shared-memory parallel programs for use in testing shared
memory systems [18]. Three Splash 2 kernel programs ran for
the results reported here are Cholesky, FFT, and LU. The fourth
kernel, Radix, was used in modified form. (The modifications im-
proved the efficiency of the prefix sum used in the kernel.) Radix
is an integer sorting program, Cholesky factors matrices, FFT
performs a 1-dimensional fast-Fourier transform using a “radix-√
N , six-step” algorithm, and LU is a dense-matrix LU factoriza-

tion program. Four Splash 2 applications were also run, Barnes,
FMM, Ocean (contiguous partitions), and WaterN2. Barnes sim-
ulates particle interactions in three dimensions using the Barnes-
Hut method and FMM simulates particle interactions in two di-
mensions using the Adaptive Fast Multipole Method; both use
tree-based data structures, though of different types. Water N2

simulates forces on water molecules and Ocean simulates ocean

currents [18]. The programs were run using the base problem
sizes specified in the distribution. The programs’ comments spec-
ify where statistics gathering might start and stop; the statistics
described below are collected in those intervals.

3.3 Configurations

The experiments tested several different parallel-computer
configurations. Variations were made in network characteristics,
memory timing, and cache structure. The table gives the sim-
ulation parameters describing the basic configuration. The dif-
ferences from the basic configuration will be noted for each ex-
periment. Some parameters are explained below; see [10] for a
detailed explanation of the network- and memory-related param-
eters.

3.4 Simulated Speculative Hardware

In the implementation modeled by the experiments, specu-
lative invalidation occurs at two rates: fast, for short lists, and
slow, for long lists. After a speculative invalidation occurs the
list length is checked; if it is less than nslow then the next ac-
tion (if any) is scheduled for ta−fast cycles later. Otherwise, it is
scheduled for ta−slow cycles later. The fast rate is based on the
maximum amount of traffic a single link could carry (multiplied
by a tuning coefficient) when one cache is in the process of list
traversal and there are no other message sources. The slow rate
is based on the maximum amount of traffic a single link could
carry (multiplied by a tuning coefficient) when all caches are in
list traversal and there are no other message sources.

4 Experiments

4.1 Basic Configuration

The effectiveness of speculative actions at reducing the num-
ber of second-cache misses is illustrated in Figure 3 for the basic
configuration. There is a pair of bars, indicating misses, for each
benchmark; the bar on the left is for the conventional system;
the bar on the right is for systems using speculative actions. The
size of the bar segments indicate the number of each type of miss.
Second cache misses, outlined in bold, are labeled W-RO for a
write to a block which is shared in another cache; W-RW for a
write to a block which is exclusive in another cache; and R-RW
for a read to a block which is exclusive in another cache. Other
read and write misses are denoted R-M-1 and W-M-1, respec-
tively. The segment sizes are scaled so that the number of misses
in the conventional system is one. As can be seen, the number
of second-cache misses is reduced substantially, sometimes to less
than 10% its original value. There is a diversity of miss behavior
and reaction to speculative actions. While the number of second-
cache misses is reduced, the total number of misses remains the
same or increases only slightly, as can be seen in Figure 3.

The impact on total miss time (the sum of all miss latencies)

(a)
0.00

0.20

0.40

0.60

0.80

1.00

bar chol fft fmm lu oc rdx wsq

S
ec

on
d

C
ac

he
 M

is
se

s

16 B 32 B 64 B 128 B 256 B

0.00

0.20

0.40

0.60

0.80

1.00

bar chol fft fmm lu oc rdx wsq (b)
0.50

0.60

0.70

0.80

0.90

1.00

1.10

bar chol fft fmm lu oc rdx wsq

T
ot

. M
is

s
La

t.
(N

or
m

.)

16 B 32 B 64 B 128 B 256 B

(c)
0.80

0.85

0.90

0.95

1.00

1.05

bar chol fft fmm lu oc rdx wsq

E
xe

c.
 T

im
e

(N
or

m
.)

16 B 32 B 64 B 128 B 256 B

Figure 5. Effect of line size on (a) fraction of second cache misses with (shaded) and without (outline) speculative actions, (b) total miss latency, and
(c) execution time. Bars normalized to conventional system.

(a)
0.20

0.40

0.60

0.80

1.00

1.20

bar chol fft fmm lu oc rdx wsq

A
vg

. M
is

s
La

t.
(N

or
m

.)

1 cyc 10 cyc 20 cyc 40 cyc 80 cyc

(b)
0.00

0.20

0.40

0.60

0.80

1.00

1.20

bar chol fft fmm lu oc rdx wsq

T
ot

. M
is

s
La

t.
(N

or
m

.)

1 cyc 10 cyc 20 cyc 40 cyc 80 cyc

(c)
0.60

0.70

0.80

0.90

1.00

1.10

bar chol fft fmm lu oc rdx wsq

E
xe

c.
 T

im
e

(N
or

m
.)

1 cyc 10 cyc 20 cyc 40 cyc 80 cyc

Figure 6. Effect of network latency on (a) average miss latency, (b) total miss latency, and (c) execution time. Bars normalized to conventional system.

can be seen in Figure 4(b); (the bars for 213 sets are for the basic
configuration). Impact on miss time varies with how many second
cache misses there were and with additional congestion caused by
speculative actions. Miss time is reduced by 25% or more in four
benchmarks but less than 10% in two. The impact on execution
time can be seen in Figure 4(c). Some applications, such as FMM
and Water N2 show negligible improvement, others show 10%
or more improvement. The small improvements are due to an
increase in miss rate or a small number of second-cache misses.

4.2 System-Configuration Effects

System configuration can determine the effectiveness of
speculative actions. In systems using smaller caches lines are
more likely to be evicted, so there will be fewer lines to specu-
latively invalidate. There is a greater chance of unrelated data
sharing a line in systems with larger line sizes, possibly confound-
ing speculation. Also with larger lines, an individual action uses
more network and memory bandwidth. In systems having higher
network latency more run time is spent waiting for accesses to
complete, so reductions in miss latency have a greater impact
on performance. Speculative actions can hurt performance on
systems with bandwidth constraints in the network or memory
system.

To test the effect of cache size, experiments were performed
in which the number of sets in the cache was varied from 29

to 215. Figure 4(a) shows the number of second-cache misses
with (shaded) and without (outline) speculative actions, scaled to
the number of misses without speculative actions. Second-cache
misses are only a small fraction of total misses when caches are
small. With only a few second-cache misses to eliminate, specula-
tive actions have almost no effect, this can be seen in Figure 4(b)
and (c). As cache sizes increases the fraction of second cache
misses becomes significant, the effect of increasing the cache size
beyond a certain point is small. For most of the benchmarks, the
change in absolute run time between 215 and 217 sets was small.
The number of misses encountered by Water N2 changed little
above 29 sets. These results show that speculative actions are
not effective when the cache is small and that beyond a certain
cache size, adding speculative actions will have a greater perfor-

mance impact than a further increase in cache size.

The effect of line size on speculative actions is shown in
Figure 5. In systems using longer lines speculative actions are
less effective. The impact on absolute execution time varies with
benchmark. Kernels LU, FFT, and Cholesky run well with long
lines (due to contiguous data) while Radix suffers greatly (due
to small randomly ordered data). The others also suffer to some
extent at longer line sizes.

The results of varying network latency are plotted in Fig-
ure 6, latency is given in CPU cycles per hop. (Since CPU clocks
run faster higher than external components the numbers may ap-
pear high.) As expected, speculative actions perform better on
systems with higher latency. The effect is large, FFT goes from a
slowdown with a 1-cycle latency to a 20% drop in execution time
at 80 cycles.

The additional traffic due to speculative actions can congest
a system with limited bandwidth. To test this memory band-
width, given in cycles per access, was varied, the results are in
Figure 7. On systems with the fastest memory access latency was
a smaller fraction of execution time and so speculative actions had
less of an effect, on systems with the slowest memory speculative
actions congested the system. The best speedups were attained
at middle values. On real systems memory might be banked so
that latency would be high but so would bandwidth.

5 Conclusions

A method of speculative invalidation and updating of cache
lines was described. Using these speculative actions, the number
of second-cache misses is reduced significantly. These speculative
actions have only a minor impact on miss rate. The average time
needed to service cache misses is reduced by over 20% in some
cases. The cost of adding this hardware is approximately the
same as the cost of increasing cache size by 50%. (In systems
having an ample amount of cache, increasing cache size will have
little or no effect on performance, so that increasing cache size
by 50% would be more cost-effective in systems with undersized
caches while adding speculative actions would be the better route

(a)
0.40

0.50

0.60

0.70

0.80

0.90

1.00

bar chol fft fmm lu oc rdx wsq

A
vg

. M
is

s
La

t.
(N

or
m

.)

3 cyc 6 cyc 10 cyc 15 cyc 20 cyc

(b)
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.10

bar chol fft fmm lu oc rdx wsq

T
ot

. M
is

s
La

t.
(N

or
m

.)

3 cyc 6 cyc 10 cyc 15 cyc 20 cyc

(c)
0.70

0.75

0.80

0.85

0.90

0.95

1.00

bar chol fft fmm lu oc rdx wsq

E
xe

c.
 T

im
e

(N
or

m
.)

3 cyc 6 cyc 10 cyc 15 cyc 20 cyc

Figure 7. Effect of non-pipelined memory latency on (a) average miss latency, (b) total miss latency, and (c) execution time. Bars normalized to
conventional system.

to improved performance when caches are large.) To put the cost
in perspective, the added cost is roughly equivalent to the cost of
adding error-correcting-code memory.

The technique works best in systems with large caches and
having high network latency. Performance is low on systems using
small caches because lines are frequently evicted in such systems;
there is less benefit in speculatively invalidating a line that will
likely be evicted. In contrast, on systems using larger cache sizes,
speculative actions would not be undermined by eviction. Perfor-
mance is also lower on systems in which network latency is low
because the penalty for a cache miss is smaller, and so avoiding
second-cache misses is less worthwhile.

The technique could be used in place of, or in combination
with, prefetching and adaptive cache coherence schemes. The
information collected in the IHT and LHT might be useful for
other purposes, such as an improved line-replacement algorithm.

If future systems adopt simultaneous multithreading or
other schemes in which high cache miss rates can be tolerated
then speculative actions will be less useful. On the other hand,
there is little doubt that in future systems communication latency
with respect to clock speed will be higher, favoring speculative ac-
tions.

6 References

[1] John K. Bennett, John B. Carter, and Willy Zwaenepoel,
“Adaptive software cache management for distributed shared
memory architectures,” ACM Computer Arch. News, vol. 18,
no. 2, pp. 125–134, May 1990.

[2] Eric A. Brewer, Chrysanthos N. Dellarocas, Adrian Col-
brook, and William E. Weihl, “Proteus: a high-performance
parallel-architecture simulator,” in Proc. of the ACM SIG-
METRICS conference, May 1992.

[3] David Chaiken, Craig Fields, Kiyoshi Kurihara, and Anant
Agarwal, “Directory based cache coherence in large–scale
multiprocessors,” IEEE Computer, vol. 23, no. 6, pp. 49–59,
June 1990.

[4] Tien-Fu Chen and Jean-Loup Baer, “Effective hardware-
based data prefetching for high-performance processors,”
IEEE Trans. on Computers, vol. 44, no. 5, pp. 609-623,
May 1995.

[5] Cox, A.L., and Fowler, R.J. Adaptive cache coherency for
detecting migratory shared data.Proc. of the Intl. Symp. on
Computer Arch. May 1993, pp. 98–108.

[6] Fredrik Dahlgren, Michel Dubois, and Per Stenstroem, “Se-
quential hardware prefetching in shared-memory multipro-
cessors,” IEEE Trans. on Parallel and Distributed Systems,

vol. 6, no. 7, pp. 733-746, July 1995.
[7] Fredrik Dahlgren and Per Stenström, “Evaluation of

hardware-based stride and sequential prefetching in shared-
memory multiprocessors,” IEEE Trans. on Parallel and Dis-
tributed Systems, vol. 7, no. 4, pp. 385-398.

[8] Kourosh Gharachorloo, Anoop Gupta, and John L. Hen-
nessy, “Two techniques to enhance the performance of mem-
ory consistency models,” in Proc. of the Intl. Conference on
Parallel Processing, August 1991, vol. I, pp. 355–364.

[9] Klaiber, A.C., and Levy, H.M. An architecture for software-
controlled data prefetching.Proc. of the Intl. Symp. on Com-
puter Arch. May 1991, pp. 43–53.

[10] D.M. Koppelman, “Ver. L3.11 Proteus Changes” Depart-
ment of Electrical and Computer Engineering, Louisiana
State University, (simulator documentation),
http://www.ee.lsu.edu/koppel/proteus/
proteusl 1.html and
http://www.ee.lsu.edu/koppel/proteus.

[11] Lebeck, A.R., and Wood, D.A. Dynamic self-invalidation:
reducing coherence overhead in shared-memory multiproces-
sors.Proc. of the Intl. Symp. on Computer Arch. May 1995,
pp. 48–59.

[12] Lee, R.L., Yew, P.C., and Lawrie, D.H. Data prefetching in
shared memory multiprocessors.Proc. of the Intl. Conference
on Parallel Processing. August 1987, pp. 28–31.

[13] David J. Lilja, “Cache coherence in large–scale shared–
memory multiprocessors: issues and comparisons,” ACM
Computing Surveys, vol. 25, no. 3, pp. 303–338, Septem-
ber 1993.

[14] Lilja, D.J. Compiler assistance for directory-based cache co-
herence enforcement.Proc. of the Intl. Conference on Parallel
Processing. August 1995, Workshop, pp. 133–138.

[15] Mowry, T.C., Lam, M.S., and Gupta, A. Design and eval-
uation of a compiler algorithm for prefetching.Proc. of the
Conference on Architectural Support for Programming Lan-
guages and Operating Systems. October 1992, pp. 62–73.

[16] Stenström, “A survey of cache coherence schemes for mul-
tiprocessors,” IEEE Computer, vol. 23, no. 6, pp. 12–24,
June 1990.

[17] Stenström, P., Brorsson, M., and Sandberg, L. An adap-
tive cache coherence protocol optimized for migratory shar-
ing.Proc. of the Intl. Symp. on Computer Arch. May 1993,
20th, pp. 109–118.

[18] Woo, S.C., Ohara, M., Torrie, E., Singh, J.P., and Gupta,
A. The SPLASH-2 programs: characterization and method-
ological considerations.Proc. of the Intl. Symp. on Computer
Arch. May 1995, pp. 24–36.

-6-

