
A LOWER BOUND ON THE AVERAGE PHYSICAL LENGTH

OF EDGES IN THE PHYSICAL REALIZATION OF GRAPHS*

DAVID M. KOPPELMAN

Department of Electrical and Computer Engineering, Louisiana State University
Baton Rouge, Louisiana 70803, U.S.A.

ABSTRACT

The stereo-realization of a graph is the assignment of positions in Cartesian space to
each of its vertices such that vertex density is bounded. A bound is derived on the average
edge length in such a realization. It is similar to an earlier reported result, however the new
bound can be applied to graphs for which the earlier result is not well suited. A more precise
realization definition is also presented. The bound is applied to d-dimensional realizations
of de Bruijn graphs, yielding an edge length of Ω((1 − 2−d)rn/d/(2n)), where r is the radix
(number of distinct symbols) and n is the number of graph dimensions (number of symbol
positions). The bound is also applied to shuffle-exchange graphs; for such graphs with small
radix the edge-length bound is 2

3 lσ + 1
3 lε ' (1 − 2−d)rn/d/(2(n(2 − 1/r) − 1)), where r is the

radix, n is the number of graph dimensions, lσ is the average length of shuffle edges, and lε is
the average length of exchange edges.
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1. Introduction

A graph realization is an assignment of positional and other information to the
elements of a graph; it can be used to bound the performance of an interconnection
network based on the graph. In [1] Vitányi describes a graph realization where
processors have bounded volume; a lower bound on the average physical edge length
is derived for such graph realizations. The bound is based on the graph’s diameter,
symmetry, and path distribution. It is derived by partitioning the graph’s edges
into the orbits induced by a group of automorphisms on the graph. (Two edges
belong to the same orbit iff there is an automorphism in which one edge is the
image of the other.) An average edge length is found which applies to all edges
in an orbit. The bound is easily applied to many popular graphs such as trees,
d-dimensional toroidal meshes, and cube-connected cycles. The bound on average

* Appears in Parallel Processing Letters, vol. 6, no. 1, pp. 137-143, 1996.
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edge length using this technique is Ω(1) for a complete N -vertex binary tree and
Ω(N1/3/ log N) for the hypercube and cube-connected cycles [1].

The bounds are not easy to apply to less-symmetric graphs, in particular the
de Bruijn and shuffle-exchange graphs. Any group of automorphisms would divide
the edges in these graphs into many orbits, yielding either a trivial or unwieldy
bound.

A modified version of Vitányi’s bound, easily applied to the de Bruijn and other
graphs, will be presented here. Also presented is a more precise realization defini-
tion. The remainder of the paper is organized as follows. Preliminaries appear in
Section 2; realization is defined in Section 3. The bound is described in Section 4;
it is applied to de Bruijn and shuffle-exchange graphs in Section 5. Conclusions
appear in Section 6.

2. Preliminaries

For integers a and b, a ≤ b, define [a, b] to be the set {a, a + 1, . . . , b− 1, b}. For
integers a and b, a < b, define [a, b) to be the set {a, a + 1, . . . , b − 1}. Let r and n

be positive integers, z ∈ [0, rn), and a, b ∈ [−1, n]. Define

z(a:b) =
{
bzr−bc mod ra−b+1, if a ≥ b ≥ 0;
0, otherwise;

and z(a) = z(a:a). Let x, y ∈ [0, rn) and a, b ∈ [−1, n]. Then define xy(a:b) =
xra−b+1 + y(a:b).

Let G = (V,E) be any graph. A route, P (u, v), for u, v ∈ V is a sequence
of edges constituting a path from u to v. (The paths can possibly be cyclic.)
Notation |P (u, v)| is the number of edges in the route; P (u, v, 0), P (u, v, 1), . . . ,
P (u, v, |P (u, v)| − 1) are the edges in a non-empty route. Define

∑
e∈P (u,v) l(e) =∑|P (u,v)|−1

i=0 l(P (u, v, i)), where l is some mapping of E. A routing, denoted P , for
a graph is a collection of routes, exactly one for each vertex pair.

For positive integers r and n, the r, n de Bruijn graph, GdB = (VdB, EdB),
is defined to be an undirected graph with vertex set VdB = [0, rn) and edge set
EdB = { 〈v, v(n−2:0)a(0)〉 | v ∈ VdB, a ∈ [0, r) }. See [2] for a description of the
work upon which the graph is based, [3] for a discussion of the graph’s application
to parallel processing, and [4] for an introductory description.

Let u, v ∈ VdB be two vertices in an r, n de Bruijn graph. Then the normal

route between these vertices is defined to be the sequence of edges PdB(u, v, i) for
i ∈ [0, n) where

PdB(u, v, i) = 〈u(n−1−i:0)v(n−1:n−i), u(n−2−i:0)v(n−1:n−i−1)〉. (1)

For positive integers r and n, the r, n shuffle-exchange graph, denoted Gse =
(Vse, Ese), is defined to be an undirected graph with vertex set Vse = [0, rn) and
edge set Ese = Eseσ ∪ Eseε, where Eseσ = { 〈v, v(n−2:0)v(n−1)〉 | v ∈ Vse } and
Eseε = { 〈v, v(n−1:1)a(0)〉 | v ∈ Vse, a ∈ ([0, r) − {v(0)}) }. Edges in Eseσ are called
the shuffle edges and edges in Eseε are called the exchange edges. Note that exactly
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r shuffle edges form self loops while no exchange edges form self loops. See [5] for an
early use of this graph for parallel processing and [4] for an introductory description.

Let u, v ∈ Vse be two vertices in an r, n shuffle-exchange graph. The nor-
mal route between these vertices is defined in terms of a raw normal route, de-
noted P ′. The raw normal route is divided into n − 1 shuffle steps and n ex-

change steps. Define exchange step i of the raw normal route, P ′
seε(u, v, i), to be

〈u(n−1−i:1)v(n−1:n−i)u(n−i mod n), u(n−1−i:1)v(n−1:n−1−i)〉 if u(n−i mod n) 6= v(n−i−1)

or φ otherwise, for 0 ≤ i < n. Shuffle step i of the raw normal route is de-
fined by P ′

seσ(u, v, i) = 〈u(n−1−i:1)v(n−1:n−i−1), u(n−2−i:1)v(n−1:n−i−1)u(n−1−i)〉, for
0 ≤ i < n − 1. The normal route is constructed from P ′ by eliminating all raw-
route steps with value φ from the sequence P ′

seε(u, v, 0), P ′
seσ(u, v, 0), P ′

seε(u, v, 1),
P ′

seσ(u, v, 1), . . . , P ′
seε(u, v, n− 1) and then assigning the element in position i of the

resulting sequence to Pse(u, v, i) for all remaining elements. Note that the minimum
route length using this route is n− 1 (shuffle edges only) and the maximum length
is 2n − 1, the diameter of the graph [4].

3. Realization

Definition 1 Let < be the set of real numbers. A d-dimensional coordinate (or
coordinate when d is understood) is a d-tuple (x1, x2, . . . , xd) where xi ∈ < for
0 < i ≤ d. Symbol Cd will denote the set of all d-dimensional coordinates.
Definition 2 Let X = (x1, x2, . . . , xd) and Y = (y1, y2, . . . , yd) be two coordi-
nates. Define L(X,Y ) to be the physical (Cartesian) distance between X and Y ,
(
∑d

i=1(xi − yi)2)1/2.
The premise upon which the bound described here and in [1] is based is that a

limited number of lower-bounded-volume processors can be located in a finite space.
That premise is defined rigorously here using the concept of a bounding sphere. As
a result, the bound can be applied to processors of any shape. (Note that vertices
represent processors.)

It is meaningless to speak of physical distance without simultaneously consider-
ing the volume a vertex might occupy, with the volume perhaps being determined
by an implementation technology. A realization in which volume is considered will
be called a stereo-realization.
Definition 3 Let (V,E) be a graph. A d-dimensional stereo-realization of graph
(V,E) is a four tuple (V,E, (T, S)), where T : V → Cd is a one-to-one mapping
from vertices to coordinates and S : Cd → V ∪ {φ} is an onto mapping from
coordinates to vertices and φ. If v ∈ V , c ∈ Cd, and S(c) = v, then point c is said
to be occupied by v. Vertex v ∈ V is said to be located at T (v). Let v ∈ V ; call set
σ(v) = { c | c ∈ Cd, S(c) = v } vertex v’s space and let VOL(v) denote the volume
of v’s space.

Propagation time within processors is as important as propagation time between
processors. Therefore the distance between a vertex and any of the points in the
vertex’s space will be bounded by a constant, ρ. For simplicity, the minimum volume
of a vertex’s space will be normalized to the volume of a unit sphere.
Definition 4 A d-dimensional stereo-realization (V,E, (T, S)) is said to be normal
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within bound ρ if VOL(v) ≥ 2dd/2eπbd/2c/d!! and max{L(c, T (v)) | c ∈ σ(v)} < ρ,
for all v ∈ V , where n!! = n(n − 2)(n − 4) · · · ν (ν = 1 or ν = 2) is the double
factorial of n. For brevity, the term ρ-normal realization will be used for such a
realization.
Lemma 1 Let (V,E, (T, S)) be a ρ-normal realization. Then a sphere of radius x

will be occupied by no more than (x + ρ)d vertices.
Proof. A vertex is said to be contained in a sphere if all its space falls within the

sphere. Consider a sphere of radius x. A vertex can be located within this sphere
while some of its space lies outside the sphere. Consider a concentric sphere with
radius x + ρ. A vertex within the smaller sphere must be contained in the larger
sphere. At most (x + ρ)d vertices can be contained in the larger sphere.

4. Lower Bound

Let G = (V,E, (T, S)) be ρ-normal realization of a graph and 〈u, v〉 ∈ E. Define
L(u, v) = L(T (u), T (v)) and then define l(〈u, v〉) = L(u, v). Let P be a routing
for G and u, v ∈ V ; define l(u, v) =

∑
e∈P (u,v) l(e). (The routing, P , is implicit in

l(u, v).)
The following lemma is similar to one described in [1] (they would be identical

if the routing from a vertex to all others formed a minimum-spanning tree, if the
path from v to v were not considered, and I were eliminated):
Lemma 2 Edge lengths in ρ-normal realization (V,E, (T, S)) under routing P are
constrained by

∑
v∈V

∑
e∈P (u,v)

l(e) ≥ |V |(1 − 2−d − I)
|V |1/d

2
, (2)

for all u ∈ V , where I =
∑d−1

i=0 |V |(i/d)−12−iρd−i
(
d
i

)
.

Proof. By Lemma 1 there are at least |V |(1 − 2−d − I) vertices that are not
contained in a radius-(1

2 |V |1/d) sphere centered on u. Suppose v is a vertex not
in the sphere. Then l(u, v) ≥ L(u, v) ≥ 1

2 |V |1/d and so
∑

e∈P (u,v) l(e) ≥ 1
2 |V |1/d.

If v is a vertex not inside the sphere then l(u, v) ≥ 0. The lemma is obtained by
summing the physical length of the routes from u to all |V | vertices [1].

Those ρ-normal realizations in which I might be considered small will be called
well proportioned.

Relation (2) bounds the total route length from a vertex, but does not bound the
length of individual edges. A bound on the average edge length is obtained from (2)
using automorphisms. For example, consider a graph in which an automorphism
group can map an edge to any other. Then every edge can appear at any position in
every route. This is used to obtain an average edge length by summing (2) over the
automorphisms. A bound can also be obtained when the automorphisms partition
the edges into more than one orbit; see [1]. Here routing symmetry rather than
graph symmetry is exploited.

Let (V,E, (T, S)) be a ρ-normal realization with routing P . The total length of
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routes between all vertex pairs is constrained by

∑
u,v∈V

∑
e∈P (u,v)

l(e) ≥ |V |2(1 − 2−d − I)
|V |1/d

2
. (3)

If every edge appears in the summation the same number of times then an average
edge length can easily be obtained. For some graphs and routings two edges may be
summed a different number of times. (I.e., some edges are used more than others
in a routing.) This is true for the shuffle-exchange graph under the normal routing.
These cases are handled by partitioning the set of edges into a use partition.

Let G = (V,E) be a graph, e ∈ E, and P be a routing for the graph. Define
c(e) to be the number of times e appears in routing P . That is

c(e) =
∑

u,v∈V

∑
e′∈P (u,v)

c(e, e′),

where c(e, e′) = 1 if e = e′ and c(e, e′) = 0 otherwise.
Definition 5 Edge sets E1, E2, . . . , Et are a use partition of graph (V,E) under
routing P if E = ∪t

i=1Ei, if E1, E2, . . . , Et are disjoint, and if for all i ∈ [1, t] and
for all e1, e2 ∈ Ei, c(e1) = c(e2).

Let Ej be a set in a use partition and e ∈ Ej ; define c(Ej) = c(e).
Lemma 3 If E1, E2, . . . , Et are a use partition of graph (V,E) under route P with
ρ-normal realization (V,E, (T, S)) then∑

v,u∈V

∑
e∈P (u,v)

l(e) =
t∑

j=1

c(Ej)
∑
e∈Ej

l(e).

Proof. The right hand side is obtained by rearranging and combining terms
appearing on the left hand side using the use-partition definition.

For graph (V,E) with routing P define the average distance to be

D = |V |−2
∑

u,v∈V

|P (u, v)|.

For a ρ-normal realization of the graph define

lj =
∑
e∈Ej

l(e)/|Ej | and δj = c(Ej) |Ej | /(D |V |2),

where E1, E2, . . . , Et form a use partition. The quantity lj is the average length of
edges in set Ej and δj is called the usage of edges in set Ej .
Theorem 1 The average edge length in ρ-normal realization (V,E, (T, S)) with
routing P and use-partition E1, E2, . . . , Et is constrained by

t∑
j=1

lj ≥
t∑

j=1

δj lj ≥ (1 − 2−d − I)|V |1/d

2D
, (4)

where I =
∑d−1

i=0 |V |(i/d)−12−iρd−i
(
d
i

)
.
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Proof. Rel. (3) is obtained by summing (2) for all vertices. Applying Lemma 3 to
(3) yields the relation

∑t
j=1 c(Ej)

∑
e∈Ej

l(e) ≥ |V |2(1 − 2−d − I) 1
2 |V |1/d. Divide

each side by D |V |2, multiply the left-hand size by |Ej |
|Ej | , and substitute lj and δj to

obtain
∑t

j=1 δj lj . Since maxt
j=1 δj ≤ 1,

∑t
j=1 lj ≥ ∑t

j=1 δj lj .

5. Application

Application of the bound requires a use partition for a graph. Let GdB =
(VdB, EdB) be an r, n de Bruijn graph under the normal routing, PdB.
Lemma 4 Set EdB is a use partition and c(EdB) = nrn−1.

Proof. Define c(i, e) = { (u, v) | u, v ∈ VdB, e = PdB(u, v, i) }. By enumeration
of pairs u, v ∈ VdB for which the right-hand side of (1) is equal to e ∈ EdB it can
be seen that |c(i, e)| = rn−1 for all 0 ≤ i < n and e ∈ EdB. That is, each edge will
appear in position i in the route between rn−1 distinct vertex pairs. This is true for
all i therefore c(e) = nrn−1 for all e ∈ EdB. Thus, EdB is a use partition of EdB.
Theorem 2 The average edge length, l, in any ρ-normal realization of an r, n

de Bruijn graph (VdB, EdB, (S, T )) is constrained by

l ≥ (1 − 2−d − I)
rn/d

2n
.

For a well-proportioned 3-dimensional realization, l ' 7rn/3/(16n).
Proof. Consider routing PdB. All edges will be placed in a single use partition,

EdB. Using c(EdB) from Lemma 4 the usage of EdB is δ = nrn−1 nrn

nr2n = 1. Since all
routes are of length n, DdB = n. Substituting these into (4) yields l ≥ (1 − 2−d −
I) 1

2n |V |1/d. Substituting |V | = rn gives the bound l ≥ (1 − 2−d − I) 1
2nrn/d. For

well-proportioned 3-dimensional realizations, l ' 7rn/3

16n .
Let Gse = (Vse, Ese), Ese = Eseσ ∪ Eseε, be a shuffle-exchange graph.

Lemma 5 Eseσ and Eseε form a use partition of Gse under Pse.
Proof. Consider any shuffle edge 〈u, v〉 ∈ Eseσ. The digits in the radix-r repre-

sentation of v are the same as the digits in the radix-r representation of u, only the
order is changed. Consider any exchange edge 〈u, v〉 ∈ Eseε. The digits in v are
not the same as the digits in u, because v is obtained by changing exactly one digit
in u. Therefore Eseσ ∩ Eseε = φ. By definition, Ese = Eseσ ∪ Eseε. By enumerating
vertex pairs used in the normal route it can be seen that every edge e1 ∈ Eseσ is
used in raw step i ∈ [0, n − 2] of exactly rn vertex-pair routes. Since every shuffle
edge can be used in all the n− 1 steps that use a shuffle edge, c(Eseσ) = (n− 1)rn.
Also by enumeration, every edge in e1 ∈ Eseε is used in raw step i by exactly rn−1

vertex-pair routes. Since every exchange edge can be used in every raw step (al-
though for a given raw step it cannot be used for all vertex pairs), c(Eseε) = nrn−1.
All conditions for a use partition are thus satisfied.
Theorem 3 The average edge length of a shuffle edge, lσ, and the average edge length
of an exchange edge, lε, in any ρ-normal realization of an r, n shuffle-exchange graph
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(Vse, Ese, (S, T )) is constrained by

n − 1
n(2 − 1/r) − 1

lσ +
n(1 − 1/r)

n(2 − 1/r) − 1
lε ≥ (1 − 2−d − I)rn/d

2(n(2 − 1/r) − 1)
.

Proof. Consider routing Pse. By Lemma 5 the edges are divided into two use
partitions, Eseσ and Eseε. Quantity Dse is computed by enumerating routes by
the number of exchange edges used: Dse = 1

r2n

∑n
x=0(n + x − 1)

(
n
x

)
rn−x(r(r −

1))x = n
(
2 − 1

r

) − 1. The usages are then δσ = n−1
n(2−1/r)−1 and δε = n(1−1/r)

n(2−1/r)−1 .
Substituting these and |V | = rn into (4) yields the constraint.

The denominators in Theorem 3 can be cancelled yielding (n − 1)lσ + n(1 −
1/r)lε ≥ (1−2−d−I) 1

2rn/d, a form that some might prefer. Perhaps of special inter-
est is the binary shuffle-exchange graph. The edge constraint for a well-proportioned
3-dimensional realization of this graph when n is large is 2lσ + lε ' 7

82n/3.

6. Conclusions

The bound presented gives a constraint on average edge length for a graph re-
alization. The bound is similar to Vitányi’s but can be applied to less symmetric
graphs. The bound could also be applied to symmetric graphs in which the rout-
ing induces a manageable use partition. The bound makes use of a more precise
realization definition.
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