
A Massive Data Parallel Computational
Framework for Petascale/Exascale Hybrid

Computer Systems

Marek BLAZEWICZ a Steven R. BRANDT b,c Peter DIENER b,d

David M. KOPPELMAN e Krzysztof KUROWSKI a Frank LÖFFLER b

Erik SCHNETTER f,b,g Jian TAO b

a Applications Department, Poznań Supercomputing and Networking Center, Poland
b Center for Computation & Technology, Louisiana State University, Baton Rouge, USA

c Department of Computer Science, Louisiana State University, Baton Rouge, USA
d Department of Physics & Astronomy, Louisiana State University, Baton Rouge, USA

e Department of Electrical and Computer Engineering, Louisiana State University,
Baton Rouge, USA

f Perimeter Institute for Theoretical Physics, Waterloo, Canada
g Department of Physics, University of Guelph, Guelph, Canada

Keywords. hybrid system, stencil computations, CFD, computational framework,
large scale scientific application

Introduction

Heterogeneous systems are becoming more common on High Performance Computing
(HPC) systems. Even using tools like CUDA [1] and OpenCL [2] it is a non-trivial task
to obtain optimal performance on the GPU. Approaches to simplifying this task include
Merge [3] (a library based framework for heterogeneous multi-core systems), Zippy [4]
(a framework for parallel execution of codes on multiple GPU’s), BSGP [5] (a new pro-
gramming language for general purpose computation on the GPU) and CUDA-lite [6] (an
enhancement to CUDA that transforms code based on annotations). In addition, efforts
are underway to improve compiler tools for automatic parallelization and optimization
of affine loop nests for GPU’s [7] and for automatic translation of OpenMP parallelized
codes to CUDA [8].

In this paper we present an alternative approach: a new computational framework for
the development of massively data parallel scientific codes applications suitable for use
on such petascale/exascale hybrid systems built upon the highly scalable Cactus frame-
work [9,10] As the first non-trivial demonstration of its usefulness, we successfully de-
veloped a new 3D CFD code that achieves improved performance.

1. Cactus Computational Framework

The Cactus framework [9,10] was designed and developed to enhance programming pro-
ductivity in large-scale science collaborations. The design of Cactus allows scientists and
engineers to develop independent components for Cactus without worrying about porta-
bility issues on computing systems. The common infrastructure provided by Cactus also
enables developing scientific codes that work across different disciplines. This approach
emphasizes code re-usability, and greatly simplifies constructing sound interfaces and
well-tested and well-supported software. As the name Cactus suggests, the Cactus frame-
work consists of a central core called flesh, which provides infrastructure and interfaces
for modular components called thorns.

Building upon the flesh, thorns can provide implementations for computational con-
cepts such as parallelization, mesh refinement, I/O, check-pointing, web servers, and so
forth. The Cactus Computational Toolkit (CCTK) is a collection of thorns which pro-
vide basic computational capabilities. Application thorns make use of the CCTK via the
Cactus flesh API. Cactus is well suited for domain discretizations via regular, block-
structured grids as are common e.g. for higher order finite differences. The Carpet AMR
library [11,12] implements the recursive block-structured AMR algorithm by Berger and
Oliger [13], and provides support for multi-block (or multi-patch) domain discretiza-
tions. A set of explicit time integration schemes such as Runge-Kutta methods are pro-
vided by a Method of Lines time integrator. Overall, the Cactus framework hides the
detailed implementations of Carpet and other utility thorns from application developers.

1.1. MPI-Based Data Parallelism in Cactus

The Cactus framework adopts the idea of data parallelism in its design and implemen-
tation. In Cactus, the computational grid is decomposed into multiple components that
are distributed between processes, and the same set of operations are applied to each.
The communication component of Cactus uses the Message Passing Interface (MPI) to
exchange data between processes. In Cactus, it is the task of a special driver component
to set up storage for variables, partition the grid between MPI processes, and manage
inter-process communication. Unlike physical boundaries where the boundary data can
be set or calculated from boundary conditions, data at inter-process boundaries need to
be copied from other processes where the neighboring grid components are located. This
is implemented via a ghost region at the inter-process boundaries that is automatically
set up by the driver. The necessary size of a ghost region depends on the numerical algo-
rithms used and can be selected as parameters at run-time.

1.2. Parallelization on CPU-GPU Hybrid Systems

The data parallelism in Cactus matches well with the features of CUDA [14] and
OpenCL [15] in supporting programming on hybrid computer systems. On the computa-
tional framework level, there is not much difference between CUDA and OpenCL when
targeting NVIDIA Fermi-class GPU’s. In this work we only focus on the paralleliza-
tion on the CUDA architecture, and will present a computational framework based on
OpenCL in a later publication.

Based upon the CUDA architecture, we build an MPI-CUDA based computational
framework in Cactus 1. It enables a simple, semi-automatic, yet efficient implementation

and execution of CUDA-enabled applications. Auto-tuning enables efficient data distri-
bution between nodes, effectively hiding additional cost introduced by GPU-host and
host-host interconnections.The computational overhead in such a generic framework is
greatly reduced by overlapping data transfers and computation with the asynchronous
data transfers and concurrent copy and execution supported in CUDA. With the help
from such a computational framework, application developers can then spend more time
optimizing the numerical kernel itself, implementing more efficient algorithms in these
kernels, and (most importantly) advancing the science content in their code.

This system has been tested and benchmarked on a 3D CFD implementation (see
section 4) based on a finite difference discretization of Navier-Stokes equations.

MPI_Send

MPI_Recv

MPI_Send

MPI_Recv

MPI_Send

MPI_Recv

Node 1 Node 2 Node N

Boundary
Conditions

Boundary
Conditions

cudaMemCpy cudaMemCpy cudaMemCpy

CPU CPU CPU

�GPU �GPU �GPU

Figure 1. The Cactus computational framework manages the domain decomposition and communication
among the split domains via MPI. Computations are performed primarily on GPU’s. The data transfers between
CPU’s as well as to and from the GPU’s are concurrent with the computation.

2. GPGPU Programming in Cactus

Achieving efficient execution on a GPU often requires careful analysis of the application
followed by extensive testing and tuning. For many important problems, such as linear
algebra routines, this work has been done and packaged into libraries for convenient use
by others [16].

Iterative grid techniques are widely used, and seem like a good fit for the high float-
ing point density of GPU’s. But because each investigator may run a different grid kernel
a simple library routine would not achieve wide use. GPU implementations of iterative
grid algorithms must deal with the problem of ghost zone exchange made more tedious
by GPU memory access constraints, among other factors. On conventional cluster sys-
tems iterative grid application programmers do not need to consider such issues when
using a framework like Cactus. Cactus manages data communication between a cluster’s
nodes, including ghost zone exchange, so that application code need only operate on that
data. The problems related to ghost zone interchange between CUDA blocks is similar in
many ways to ghost zone interchange between processors in a cluster CPU configuration.

In this work the Cactus framework has been extended to cover GPU execution via
an architecture neutral programming abstraction to highly optimize finite difference op-
erations in a multithreaded computing environment (see list 1).

Figure 2. The workflow chart of a CaCUDA-based application. The upper box shows the generation of the
CaCUDA kernel headers at the code compilation stage. The lower box shows how the variables are evolved to
the next time step.

3. CaCUDA Kernel Abstraction

The task of simplifying the generation of CUDA code for a finite differencing code is not
a straightforward one. Shared arrays with appropriate stencil sizes have to be carefully
managed, and data needed by the stencil has to be streamed in while calculations proceed.
It is possible to abstract away much of the difficult work into boiler plate code, but doing
so requires some extra machinery. We design and implement a programming abstraction
in the Cactus framework to enable automatic generation from a set of highly optimized
templates to simplify code construction. The workflow chart of a typical CaCUDA-based
application can be found in figure 2.

There are three major components in our CaCUDA Kernel abstraction.

1. CaCUDA Kernel Descriptor is used to declare the variables that will be needed
in the GPGPU computation, and identify a few relevant properties.

2. CaCUDA Templates are a set of templates which are highly optimized for partic-
ular types of computational tasks and optimization strategies.

3. CaCUDA Code Generator is used to parse the descriptors and automatically gen-
erate CUDA-based macros. The code generator is based on Piraha[17], which
implements a type of parsing expression grammar[18]. Due to the page limit, we
do not list the templates and the sample code generated by CaCUDA. More about
the CaCUDA project can be found at the CaCUDA project site [19].

Listing 1: A sample kernel definition in Cactus

CCTK_CUDA_KERNEL UPDATE_VELOCITY
TYPE=3DBLOCK
STENCIL="1,1,1,1,1,1"
TILE="16,16,16"

{
CCTK_CUDA_KERNEL_VARIABLE CACHED=YES INTENT=SEPARATEINOUT
{
vx, vy, vz

} "VELOCITY"
CCTK_CUDA_KERNEL_VARIABLE CACHED=YES INTENT=IN
{
p

} "PRESSURE"
CCTK_CUDA_KERNEL_PARAMETER
{
density

} "DENSITY"
}

The above kernel abstraction can be integrated in a straightforward manner as a thorn
(module), CaCUDA in Cactus without touching the flesh (core infrastructure). The kernel
descriptor in this abstraction is similar in both format and functionality to those Cactus
Configuration Language (CCL) files, which are used to declare global data structures,
runtime parameters, and the way various C or Fortran subroutines interact through the
schedule tree. The abstractions already used by Cactus are: param.ccl, configuration.ccl,
schedule.ccl, and interface.ccl. To this set we add an additional declarative file called
cacuda.ccl. The Cactus Framework already has a mechanism, implemented through the
configuration.ccl file, by which discovery of additional preprocessing code can be en-
abled prior to the compilation of C/Fortran code.

4. CFD Implementation

Computational Fluid Dynamics (CFD) is one of the branches of fluid mechanics which
uses numerical methods and algorithms to solve and analyze fluid flows. It is success-
fully used in various fields of science and engineering such as weather forecasting, aero-
dynamic optimization of body shapes (e.g. planes, cars, ships), gas reservoir uncertainty
analysis. Unfortunately accurate CFD simulations need great computational power. It is
very important to adapt existing algorithms to new hybrid architectures and execute them
in a massively parallel manner.

4.1. Background and Governing Equations

The CFD numerical method is governed by Navier-Stokes incompressible equations
which are derived from Newton’s second law (conservation of momentum) and conser-
vation of mass (incompressibility). The Navier-Stokes equations are

Figure 3. The figure to the left shows the quantitative comparison of midsection centerline velocity with those
by Ghia etc. [22]. The one to the right shows the contours of the X component of the velocity field along Y
axis.

∂u
∂t

+ (u · ∇)u = −∇φ+ ν∇2u + f (1)

∇ · u = 0 (2)

where u is the velocity field, ν is the the kinematic viscosity, f is the body force, φ is
the modified pressure (pressure over density). The presented equations need to be further
discretized in order to perform proper simulation. In this process we have followed [20]
and [21]. The equations are discretized using a finite-difference method. The computa-
tional domain is distributed onto a regular rectangular and staggered grid. The computa-
tions are performed in the stencil pattern. This implies that calculations are performed in
close neighborhood of each grid’s cell.

4.2. Code Validation and Verification

A homogeneous distribution of computations for the lid-driven cavity problem with a
Reynolds number of 100 was used to benchmark the overall performance of the frame-
work and verify the numerical implementation. We show the quantitative comparison of
midsection centerline velocity with those by Ghia etc. [22] in figure 3.

While these results come from a terascale machine, there is no logical barrier to
continued scaling, and we plan to continue scaling studies as resources become available.

4.3. Performance and Scalability

We carried out performance and scaling tests on a 6 node GPU cluster at Cyfronet. Each
node had 2 Tesla M2050 GPU’s, two Intel Xeon X5670 processors running at 2.93GHz,
and an infiniband interconnect. The CFD code was measured for both the standalone
code and the CaCUDA framework-based code. The performance results of one node
were 43.5 and 58 GFlop/s for the standalone simulation and the simulation implemented
within CaCUDA respectively. The scalability results of the 3D CFD code that makes use
of the CaCUDA framework as well as the standalone version are shown in figure 4.

 0

 2

 4

 6

 8

 10

 12

 0 1 2 3 4 5 6 7 8 9 10 11 12

S
p

e
e

d
-u

p

Number of GPU’s

Linear standalone simulation scaling
Standalone simulation speedup

CaCUDA simulaiton speedup

Figure 4. This plot compares the speed-up of the CFD code built with CaCUDA to the standalone, handwritten
implementation. Speed-ups are computed relative to the performance of the standalone code on a single node
using a single GPU.

5. Conclusions

In this paper an implementation of a new generic capability for computing on hybrid
CPU/GPU architectures in the Cactus computational framework has been presented. The
capability to handle the data exchange between GPU and CPU address space and de-
ploying the computations in the hybrid environment was implemented as a new thorn
“CaCUDA”. Moreover the application remarkably facilitates the implementation process
by generating the templates of all declared kernel functions. Due to the flexibility and
extensibility of the Cactus framework no changes to the Cactus flesh were necessary,
guaranteeing that existing features and user implemented thorns are not affected by this
addition.

As a test case application of these new framework’s features an incompressible CFD
code has been implemented to test the overall performance and scalability. The results
proving its usability have been presented.

Our current effort is focused on minimizing the costs of the data exchange between
GPU and CPU and optimizing the boundary exchange. Further integration in this area
may improve performance and scalability.

Acknowledgments

This work is supported by the Cybertools (http://cybertools .loni.org) project (NSF award
701491), the NG-CHC project (NSF award 1010640) through the Louisiana Board of
Regents , and the NSF award PIF-0904015 (CIGR). This work used the computer re-
sources provided by LSU/LONI. This research was supported in part by PL-Grid In-
frastructure. This work is also supported by the UCoMS project under award number
MNiSW(Polish Ministry of Science and Higher Education) Nr 469 1 N - USA/2009 in
close collaboration with U.S. research institutions involved in the U.S. Department of
Energy (DOE) funded grant under award number DE-FG02-04ER46136 and the Board

of Regents, State of Louisiana, under contract no. DOE/LEQSF(2004-07). The authors
want to thank our colleagues at both CCT and PSNC for great ideas and discussions.
The authors want to thank Soon-Heum Ko from the National Supercomputing Centre at
Linköping in Sweden for helping validating the CFD code.

References

[1] NVIDIA Corporation 2011 NVIDIA CUDA C Programming Guide NVIDIA Corporation
[2] Munshi A (ed) 2011 The OpenCL Specification Version: 1.1 (The Khronos Group) URL http://www.

khronos.org/registry/cl/specs/opencl-1.1.pdf
[3] Linderman M D, Collins J D, Wang H and Meng T H 2008 SIGPLAN Not. 43(3) 287–296 ISSN 0362-

1340
[4] Fan Z, Qiu F and Kaufman A E 2008 Computer Graphics Forum 27 341–350 ISSN 1467-8659
[5] Hou Q, Zhou K and Guo B 2008 ACM Trans. Graph. 27(3) 19:1–19:12 ISSN 0730-0301
[6] Ueng S Z, Lathara M, Baghsorkhi S and Hwu W m 2008 Languages and Compilers for Parallel Com-

puting (Lecture Notes in Computer Science vol 5335) ed Amaral J (Springer Berlin / Heidelberg) pp
1–15 10.1007/978-3-540-89740-8_1 URL http://dx.doi.org/10.1007/978-3-540-89740-8_1

[7] Baskaran M M, Bondhugula U, Krishnamoorthy S, Ramanujam J, Rountev A and Sadayappan P 2008
Proceedings of the 22nd annual international conference on Supercomputing ICS ’08 (New York, NY,
USA: ACM) pp 225–234 ISBN 978-1-60558-158-3 URL http://doi.acm.org/10.1145/1375527.1375562

[8] Lee S, Min S J and Eigenmann R 2009 SIGPLAN Not. 44(4) 101–110 ISSN 0362-1340
[9] Goodale T, Allen G, Lanfermann G, Massó J, Radke T, Seidel E and Shalf J 2003 High Performance

Computing for Computational Science - VECPAR 2002, 5th International Conference, Porto, Portugal,
June 26-28, 2002 (Berlin: Springer) pp 197–227

[10] Cactus Framework URL http://www.cactuscode.org
[11] Schnetter E, Hawley S H and Hawke I 2004 Class. Quantum Grav. 21 1465–1488 gr-qc/0310042
[12] Adaptive Mesh Refinement with Carpet URL http://www.carpetcode.org/
[13] Berger M J and Oliger J 1984 J. Comput. Phys. 53 484–512
[14] NVIDIA CUDA (Compute Unified Device Architecture) URL http://www.nvidia.com/object/cuda_

home_new.html
[15] OpenCL (Open Computing Language) URL http://www.khronos.org/opencl/
[16] Volkov V and Demmel J W 2008 Proceedings of the 2008 ACM/IEEE conference on Supercomputing

SC ’08 (Piscataway, NJ, USA: IEEE Press) pp 31:1–31:11 ISBN 978-1-4244-2835-9 URL http://portal.
acm.org/citation.cfm?id=1413370.1413402

[17] S R Brandt G A 2011 2010 11th ACM/IEEE International Conference on Grid Computing
[18] Ford B 2004 Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of Program-

ming Languages
[19] CaCUDA MPI + CUDA Programming Framework URL http://code.google.com/p/cacuda/
[20] Hirt C and Nichols B 1981 Journal of Computational Physics
[21] Torrey M D, Cloutman L D, Mjolsness R C and CWHir 1985 NASA-VOF2D: A Computer Program

Incompressible Flows with Free Surfaces Tech. rep. Los Alamos National Laboratory
[22] Ghia U, Ghia K N and Shin C T 1982 Journal of Computational Physics 48 387 – 411 ISSN 0021-9991

http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://dx.doi.org/10.1007/978-3-540-89740-8_1
http://doi.acm.org/10.1145/1375527.1375562
http://www.cactuscode.org
http://www.carpetcode.org/
http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html
http://www.khronos.org/opencl/
http://portal.acm.org/citation.cfm?id=1413370.1413402
http://portal.acm.org/citation.cfm?id=1413370.1413402
http://code.google.com/p/cacuda/

