
Name

GPU Programming

EE 4702-1

Midterm Examination

Friday, 28 October 2016 14:30–15:20 CDT

Alias

Problem 1 (20 pts)

Problem 2 (30 pts)

Problem 3 (15 pts)

Problem 4 (35 pts)

Exam Total (100 pts)

Good Luck!

http://www.ece.lsu.edu/koppel/gpup/

Problem 1: [20 pts] Appearing below is a figure with labeled vertices. In the code below pa, pb, . . . are
initialized to the coordinates of the corresponding vertices. Two arrays are declared, coords_wrong and
coords.

a b

c

de

fg

void World::render_p1(pCoor p1, pCoor p2, pCoor p3) {

pCoor pa(2,4,0);

pCoor pb(7,4,0);

pCoor pc(1,3,0);

pCoor pd(5,2,0);

pCoor pe(1.8,2.4,0);

pCoor pf(5,0.8,0);

pCoor pg(1,0.8,0);

pCoor coords_wrong[] = { pa, pb, pc, pd, pe, pf, pg };

pCoor coords[] = { } ; // Fill In

glMatrixMode(GL_MODELVIEW);

glPushMatrix();

pMatrix m = ; // Fill In

glMultTransposeMatrixf(m);

glBegin(GL_TRIANGLE_STRIP);

for (int i=0; i<coords.size(); i++) glVertex3fv(coords[i]);

glEnd(); glPopMatrix(); }

(a) Initialize array coords so that the figure is rendered properly.

Put pa . . . pg into the coords initialization above in the correct order.

(b) Complete the code for the modelview matrix so that the whole figure is moved such that vertex g is at
coordinate p1. (Note: the problem below also solves this problem.)

Assign the correct value for m in the code above and make any other necessary changes.

(c) Set the modelview matrix so that the figure is rendered such that vertex g is at coordinate p1, vertex
c is at p2, and all points are in the plane formed by p1, p2, and p3. This will move and rotate the figure,
but won’t change its shape. The matrix constructors pMatrix_Rows rot1(v1,v2,v3) and pMatrix_Cols

rot2(v1,v2,v3) may come in handy. Note: In the original version of the exam b was to be moved to p3.

Assign m to move the entire figure so that g is at p1, c is at p2, and b is at p3.

2

Problem 2: [30 pts] Illustrated below are two possible outputs of a geometry shader processing input
primitive abc. The geometry shader code shown below, when completed, renders the figure on the left (this
page’s problem) or right (next page’s problem).

a b

c

d
a b

c

layout (triangle_strip, max_vertices = 3) out; // Fix.

void gs_main_1() {

vec3 pt_sum = vec3(0); vec3 n_sum = vec3(0);

for (int i=0; i<3; i++) { pt_sum += In[i].vertex_e.xyz; n_sum += In[i].normal_e; }

vec4 center_e = vec4(pt_sum/3, 1);

vec3 center_norm_e = n_sum/3;

for (int i=0; i<=3; i++) {

int idx = i%3;

vertex_e = center_e; normal_e = center_norm_e;

gl_Position = In[idx].gl_Position;

EmitVertex();

normal_e = In[idx].normal_e; vertex_e = In[idx].vertex_e;

gl_Position = In[idx].gl_Position;

EmitVertex(); }

EndPrimitive(); }

(a) Fix the layout declaration and modify the code so that gl_Position is assigned a correct value for the
center point (d in the diagram). Assume that center_e is already correct. Hint: Don’t just look at the figure

for the layout declaration fix..

Fix the layout declaration. Assign gl Position correctly for the center point.

(b) Suppose that the goal is to split abc into three triangles that each have 1

3
the fragments that abc would

have had. Does the code above (assuming gl_Position is set correctly) achieve that goal? If not, briefly
explain how to modify the code so that there will be three triangles with 1

3
the vertices each.

Are fragments equally split? If no, explain how to fix.

3

Problem 2, continued:

a b

c

d
a b

c

layout (triangle_strip, max_vertices = 3) out; // Fix.

void gs_main_1() {

vec3 pt_sum = vec3(0); vec3 n_sum = vec3(0);

for (int i=0; i<3; i++) { pt_sum += In[i].vertex_e.xyz; n_sum += In[i].normal_e; }

vec4 center_e = vec4(pt_sum/3, 1);

vec3 center_norm_e = n_sum/3;

for (int i=0; i<=3; i++) {

int idx = i%3;

vertex_e = center_e; normal_e = center_norm_e;

gl_Position = In[idx].gl_Position;

EmitVertex();

normal_e = In[idx].normal_e; vertex_e = In[idx].vertex_e;

gl_Position = In[idx].gl_Position;

EmitVertex(); }

EndPrimitive(); }

(c) Modify the geometry shader so that it splits the triangle into the shape on the right, which is like the
original triangle with a triangle-shaped hole in the center. The rendered primitives should only cover the
area shown in gray. The exact area of the hole is not important, as long as it’s not zero.

Modify shader to render hole as shown in the shape on the right.

4

Problem 3: [15 pts] The incomplete code below is supposed to test whether pairs of balls interpenetrate,
meaning that there is a volume of space that both balls occupy, and if so apply a separation force. The
separation force works like an ideal spring pushing apart the balls. Note: in the original exam the phrase

defining interpenetration read “they occupy the same space”.

for (int i=0; i<chain_length; i++) for (int j=i+1; j<chain_length; j++)

{

Ball* const ball_i = &balls[i];

Ball* const ball_j = &balls[j];

pCoor pos_i = ball_i->position;

pCoor pos_j = ball_j->position;

float rad_i = ball_i->radius;

float rad_j = ball_j->radius;

bool interpenetrating = ; // Fill in.

if (! interpenetrating) continue;

ball_i->force += ; // Fill in.

ball_j->force += ; // Fill in.

}

(a) Write code to determine whether the two balls are interpenetrating, and assign the result to interpen-

etrating.

Set interpenetrating to true if balls are intersecting.

(b) Write code to add on a separation forces to the balls. Use sep_spring_constant for the spring constant.

Write code to add the separation force to balls’ force members. Don’t forget that force is a vector
quantity.

5

Problem 4: [35 pts] Answer each question below.

(a) Convert homogeneous coordinate







1
2
3
4






into an ordinary Cartesian coordinate.

Cartesian coordinate:

(b) Explain why gl_Vertex, the object-space vertex coordinate vertex shader input, is only in the compati-
bility profile (meaning that it’s not really needed) but gl_Position, the output of the vertex and geometry
shader stages is in the core profile (meaning that it is really needed).

Input gl Vertex is not really needed because:

Output gl Position is really needed because:

(c) The modelview matrix is predefined as a uniform variable. What would be the disadvantage of making
it a vertex shader input?

Disadvantage of making modelview a vertex shader input.

6

(d) The code below updates a buffer object whenever its old contents becomes outdated. Two lines have
been accidentally commented out. What are the consequences of each.

// if (gpu_buffer_stale) // LINE A, ACCIDENTALLY Commented out.

{

// if (!gpu_buffer) // LINE B, ACCIDENTALLY Commented out.

glGenBuffers(1,&gpu_buffer);

glBindBuffer(GL_ARRAY_BUFFER, gpu_buffer);

glBufferData

(GL_ARRAY_BUFFER, coords_size*sizeof(float),

coords, GL_STATIC_DRAW);

glBindBuffer(GL_ARRAY_BUFFER, 0);

gpu_buffer_stale = false;

}

Consequences of LINE A commented out, but LINE B not commented out, in particular on performance
and stability.

Consequences of LINE B commented out, but LINE A not commented out, in particular on performance
and stability..

(e) What are the typical operations performed in a fragment shader? What must the fragment shader do?

Typical operations for fragment shader.

Mandatory operation for fragment shader.

7

