EE 4702-1, GPU Programming

When / Where

- Here (225 Tureaud Hall), MWF 14:30-15:20 Fall 2016
- http://www.ece.lsu.edu/koppel/gpup/

Offered By David M. Koppelman

- Room 345 ERAD
- Office Hours: Monday-Friday 15:30-16:30

Prerequisites by topic:

- C++.
GPU Definition

GPU: Graphics Processing Unit

- Runs 3D graphics in place of CPU...

 ... because it's much better at it.

- Also runs scientific-style computation in place of CPU.

GPU is Main Component of Video Cards

Major Companies and Brands

- NVIDIA
- ATI (Compaq/HP)
This Course

Focus is on GPU programming

- *Shader* programming with *OpenGL Shader Language (OGSL)*.
- *GPGPU* programming with *CUDA*.

Also Some 3D Graphics, Game Physics

- Will cover enough graphics, OpenGL, and CUDA to do cool stuff.

Game Physics Term Project

Past Student Project Screenshots:
Balloon Demo

Simulation of a balloon.

GPU always runs 3D graphics.

Code can switch between CPU-only and CPU/GPU physics.

Term project can be an extension of this code.

 FPS: 59.95 XF 1 GPU.GL 1.429 ms (0.6%) GPU.CU 0.000 ms (0.0%) CPU 0.24 ms (1.4%) Steps 3 Physics Computation: CUDA 1 Pass ('a' to change) + 0 cpu timestep / frame ('x' to change)
Eye location: [19.5, 8.0, -35.2] Eye direction: [-0.41, -0.18, +0.89]
Centroid 13.8, 2.9, -22.3] Vel [-0.0, -3.6, -1.0] Gas Amt 5766.31 Volume 0.98 Pressure 11.2
Weight (Surf+Gas-Displ Air=W) (9.80 + 11.47 - 1.02 = 20.24)
Oversample 2.2
VAR Gas Amount = 5766.31396 (TAB or ** to change, +/- to adjust)
System Overview

Quick look at how the GPU fits into the larger system...
System Overview: Hardware

Typical Hardware

• On Computer motherboard: CPU, CPU Memory

• On Video Card GPU, GPU Memory

• Connection between CPU/GPU via Bus, e.g., PCI Express (PCIe).

• Connection from video card to monitor.
System Overview: Frame Buffer

Frame Buffer

- Area of memory continuously converted to a video signal.
- Simple mapping from memory address to pixel coordinate.

Older Systems

- Frame buffer in CPU memory.
- Application programs wrote frame buffer directly.

Typical Current Systems

- Frame buffer in GPU memory.
- Frame buffer written by GPU hardware (typical)...
 ... at end of long chain of events initiated by application.
Frame Buffer Contents

- Position in FB corresponds to particular pixel on display.
- In illustration, first FB element is upper-left pixel.
- A common FB element size is 32 bits.
- Frame buffer format varies with video mode and of course system.
Simple Frame Buffer Code Example

Consider Code

- frame_buffer[10][20] = 0;

For Simple Code Example Assume

- The frame buffer is in CPU memory.
- Array frame_buffer points to the frame buffer location.
- Writing a “1” to the array makes a pixel white.
- Writing a “0” to the array makes a pixel black.
Simple Frame Buffer Example

// Make screen all white. (Assume 1 is white.)

//
for (int x = 0; x < width; x++)
 for (int y = 0; y < height; y++)
 frame_buffer[x][y] = 1;

// Draw a black diagonal line.
//
for (int x = 0; x < height; x++)
 frame_buffer[x][x] = 0;

Display
Black Line
GPU Rationale

Code on prior slide looked simple.
How much more complex would balloon code be?
Alot, of course!
That's half of the motivation for a GPU:

- Graphics (3D animated, especially) requires alot of computation.
- CPU is less suited for that kind of computation.
System Overview: Code Organization

Simplified View of Code on Typical System

Who Wrote Code?

- User. (Call it the Ap.)
- Vendor of GPU. (Call it the driver.)

Where Does It Run?

- CPU
- GPU

All Four Possible:

- User/CPU, User/GPU, Vendor/CPU, Vendor/GPU
System Overview: Software

Just For Today, Oversimplify to Two Kinds of Software

- **Application Program** (Ap for short*)
 - Written by ap. programmer.
 - E.g., Balloon Demo
 - Most of Ap runs on CPU.
 - Part of Ap may also run on GPU.

- **GPU Driver** (Driver or Dr for short)
 - Written by GPU manufacturer.
 - E.g., NVIDIA 185.18.14
 - Driver code runs on both CPU and GPU.
 - Most work done by driver code that runs on GPU.

Don't confuse Ap with App.
System Overview: Running of Application

Typical Execution

• Application, running on CPU, ready to emit next frame.
• App. calls driver on CPU...
 ...driver on CPU starts more driver code on GPU...
 ...application resumes on CPU (while GPU driver code still running).
• Process above repeated many times for a frame.
• Driver code ultimately will write frame buffer.

Important Points

• CPU and GPU can run code at same time.
System Overview: Execution Activities

Example Below

- Ap calls driver three times.
- First two times, driver does all work, mostly on GPU.
- Third time that ap calls driver, driver starts some ap code on GPU.

![Diagram showing execution activities on CPU and GPU over time.](Diagram)
Course Coverage

Topics Needed For Term Project (a dynamic simulation)

Topics

• Rudiments of Animation by Dynamic Simulation
• Term Project
• 3D Graphics basics: coordinates, transforms, primitives, colors, textures.
• Data movement and staging, efficiency.
• Coding with GPU shader model, CPU/GPU load balancing.
• Coding with CUDA, GPU physics.
Graphics Equipment

For assignments, use equipment in Workstation Lab

Workstation Lab

- Live Status Updates: http://www.ece.lsu.edu/koppel/gpup/sys-status.html
- Room 126 EE Building
- Several kinds of computers.

Graphics Workstations

- Mix of recent high-end graphics GPUs.
- Some machines have scientific-computing-grade GPUs.