
LSU EE 4702­1 Homework 6 Solution Due: 16 November 2016

The solution has been checked into the repo. For a syntax highlighted version of the shader code see
http://www.ece.lsu.edu/koppel/gpup/2016/hw06-shdr-links-sol.cc.html and for the CPU code
see http://www.ece.lsu.edu/koppel/gpup/2016/hw06-sol.cc.html.

Problem 0: If necessary, follow the instructions on the
http://www.ece.lsu.edu/koppel/gpup/proc.html page for account setup and programming home-
work work flow. For this assignment only edit files hw06-shdr-links.cc and hw06.cc. Compile
and run the homework code unmodified. It should initially show Scene 3, a spikey ball. The vaguely
umbrella-shaped object hanging in space from prior assignments but with bristles or something on
the vertical tail of balls is in Scene 2 and Scene 1 shows a tree (the kind that grows outdoors).

Pressing v will cycle through three different sets of shaders. The shader set that is being used
is shown in the penultimate line of green text. Shader set PLAIN is a conventional set of shaders,
and is there for comparison purposes. Shader set SET 1 is comprised of vertex shader vs_main_1,
geometry shader gs_main_1, and fragment shader fs_main, all in file hw06-shdr-links.cc, and
is used for Problem 1. Shader set SET 2 is comprised of vertex shader vs_main_2, geometry
shader gs_main_2, and fragment shader fs_main, also in file hw06-shdr-links.cc, and is used for
Problem 2.

The plain set of shaders should be slow, while the other sets show the links in a crude manner.
Options that affect performance are: turning shadows on and off o and turning mirroring on and
off r. (Pressing O will show shadow volumes.) Note that the links still don’t cast shadows.

Press digits 1 through 2 to initialize dif-
ferent scenes, the program starts with scene
2. Scene 1 shows a balls connected in a rect-
angular spiral. Promptly report any prob-

lems.

Use key h to toggle between the first
(head) ball being locked in place and free.
Use key t to do the same for the last (tail)
ball.

Initially the arrow keys, PageUp, and
PageDown can be used to move around the
scene. Press (lower-case) b and then use the
arrow and page keys to move the first ball
around. Press l to move the light around
and e to move the eye (which is what the
arrow keys do when the program starts).

When using the arrow and other keys to move the eye, light, or ball using Shift will move
by a 5× greater amount and using Ctrl will move by one 1

5
the amount than the motion without

either modifier.
Look at the comments in the file hw06.cc for documentation on other keys.

A goal of Homework 3 was to reduce the amount of communication between the CPU and
GPU by using buffer objects, especially for almost straight links. In this assignment two methods
will be used to improve performance: computing the surface of the curved link in the GPU, and
using an instanced draw to reduce the number of rendering passes.

1

http://www.ece.lsu.edu/koppel/gpup/
http://www.ece.lsu.edu/koppel/gpup/2016/hw06-shdr-links-sol.cc.html
http://www.ece.lsu.edu/koppel/gpup/2016/hw06-sol.cc.html
http://www.ece.lsu.edu/koppel/gpup/proc.html

See the OpenGL Shading language documentation linked to the references page,
http://www.ece.lsu.edu/koppel/gpup/ref.html, for syntax and library functions that can be
used in shader code.

Problem 1: The code in vs_main_1 and gs_main_1 are used to crudely render a link with an
instanced draw. Examine the code in vs_main_1 and render_link_2_render. Built-in variable
gl_InstanceID indicates which link is being rendered, its value can range from 0 to one minus
the number of links (or instances). The number of instances is determined by the last argument
to glDrawArraysInstanced. The built-in vertex shader variable gl_VertexID indicates the vertex
number being rendered, its range of values is determined by the third argument to glDrawAr-

raysInstanced.
Note that in the rendering pass set up in render_link_2_render no vertex coordinates nor any

other vertex shader inputs are sent to the vertex shader. The shader must rely on gl_InstanceID

and gl_VertexID to find its inputs.
Notice that vs_main_1 reads link endpoint coordinates from buffer objects pos1 and pos2, and

using a scaled version of gl_VertexID, computes a point partway between the endpoints, vertex_o.
That coordinate is transformed and sent to the geometry shader for constructing triangles.

Since it renders a straight link there is no reason to use more than two vertices per link. (The
curved link will be rendered using vs_main_2 an gs_main_2.)

(a) Modify vs_main_1, gs_main_1, and render_link_2_render so that the complete straight link
is rendered using only two vertices per instance without changing the primitive at the input to the
geometry shader (a line strip).

• Split work between the vertex shader and the geometry shader to void duplication of effort.

• Make sure that changes to render link 2 render don’t affect vs main 2.

See the code checked into the repo for details. In the original code the vertex shader computed a point partway
between pos1 and pos2 based on t, which varied from 0 to 1. Since there are only two vertices now t would be either
0 or 1 and there’s no point in computing it. Instead, of the vertex ID is 0 pos1 is used, otherwise pos2 is used. The
vertex shader appears below. The geometry shader is modified to adjust the width of the links. See the code in the repo
or at the link above for details.

void vs_main_1() {

iid = gl_InstanceID;

vec3 vertex_1 = pos1[iid].xyz;

vec3 vertex_2 = pos2[iid].xyz;

vec4 vertex_o = vec4(gl_VertexID == 0 ? vertex_1 : vertex_2, 1);

gl_Position = gl_ModelViewProjectionMatrix * vertex_o;

vertex_e = gl_ModelViewMatrix * vertex_o;

}

Problem 2: The code in vs_main_2 and gs_main_2 which also crudely render a link, are place-
holders for code rendering the curved link.

(a) Modify vs_main_2 and gs_main_2 so that they render the curved link based on the data copied
into buffer objects by routines render_link_2_gather and render_link_2_render. Base your
code on the code in render_link_1. Be sure that any changes made for the prior problem don’t
interfere with this one.

• Split work between the vertex shader and the geometry shader to void duplication of effort.

2

http://www.ece.lsu.edu/koppel/gpup/ref.html

• Write your routine for a link with a maximum of 20 sides.

See the code for details. In the solution the vertex shader computes a point on the curve (the cylinder axis) and
vectors orthogonal to the cylinder axis. These are sent to the geometry shader which draws the cylinder.

Problem 3: Estimate the amount of data sent from CPU to GPU for each link for the plain and
set 1 and set 2 shaders. (The set 1 and set 2 shaders should send the same amount of data.) Do
this by examining the code in render_link_2_gather and render_link_2_render.

The plain links are rendered in render link 1. As can be seen by the glEnableClientState calls, each
vertex in the link consists of a coordinate (GL VERTEX ARRAY, 16B), a normal (12B), and a texture coordinate (8B).
The number of vertices is 2gs, where g is the number of segments and s is the number of sides (defined in the code). So
the total amount of data per link is (16B+12B+8B)sg = 36sgB. For the default values of g = 15 and s = 20
that’s 10800B per link. (The color would add just 12 more bytes.)

The code in render link 2 render sends over 7 buffer objects (for pos1, pos2, v1, v2, b1 ydir, b2 ydir,
and misc). Each buffer object holds an array of vec4s. (A vec4 is 16B.) There is one array element per link, so
the total amount of buffer object data per link is 7 × 16 = 112B. The call to glDrawArraysInstanced, which
initiates the rendering of many links, does not send any per-vertex data because no client arrays were set up. It would need
to send over the type of primitive (a line strip), the number of vertices per instance, and the number of instances. That
might take 12 bytes for the entire rendering pass. Finally, in render link 2 render we see that several uniforms are
sent over, such as the colors. The total uniform data is 12 floats and 3 integers, which total to (12 + 3)× 4 = 60B.
So if n is the number of links to be rendered, the amount of data per link would be 112B + 12B+60B

n
.

Obviously 112B per link (for large n) is much lower than 10800B per link required by the plain shader. Much
less data is needed because the shaders compute points on the link given only data about its endpoints.

3

