
math1 math1Mathematics for 3D Graphics

Topics

Points, Vectors, Vertices, Coordinates

Dot Products, Cross Products

Lines, Planes, Intercepts

References

Many texts cover the linear algebra used for 3D graphics . . .

. . . the texts below are good references, Akenine-Möller is more relevant to the class.

Appendix A in T. Akenine-Möller, E. Haines, N. Hoffman, “Real-Time Rendering,” Third
Edition, A. K. Peters Ltd.

Appendix A in Foley, van Dam, Feiner, Huges, “Computer Graphics: Principles and Prac-
tice,” Second Edition, Addison Wesley.
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math2 math2Points and Vectors

Point:

Indivisible location in space.

P1

P2

V

P2-P1

P1P2
E.g., P1 =

[
1
2
3

]
, P2 =

[
4
5
6

]

Vector:

Difference between two points.

E.g., V = P2 − P1 =
−−−→
P1P2 =

[
4 − 1
5 − 2
6 − 3

]
=

[
3
3
3

]
.

Equivalently: P2 = P1 + V .

Don’t confuse points and vectors!

math2 EE 4702-1 Lecture Transparency. Formatted 13:20, 28 August 2015 from set-1-math. math2



math3 math3

Point-Related Terminology

Will define several terms related to points.

At times they may be used interchangeably.

Point:

A location in space.

Coordinate:

A representation of location.

Vertex:

Term may mean point, coordinate, or part of graphical object.

As used in class, vertex is a less formal term.

It might refer to a point, its coordinate, and other info like color.
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Coordinate:

A representation of where a point is located.

Familiar representations:

3D Cartesian P = (x, y, z).

2D Polar P = (r, θ).

In class we will use 3D homogeneous coordinates.
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math5 math5Homogeneous Coordinates

Homogeneous Coordinate:

A coordinate representation for points in 3D space consisting of four components. . .

. . . each component is a real number. . .

. . . and the last component is non-zero.

Representation: P =




x
y
z
w


, where w 6= 0.

P refers to same point as Cartesian coordinate (x/w, y/w, z/w).

To save paper sometimes written as (x, y, z, w).
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math6 math6Homogeneous Coordinates

Each point can be described by many homogeneous coordinates . . .

. . . for example, (10, 20, 30) =




10
20
30
1


 =




5
10
15
0.5


 =




20
40
60
2


 =




10w
20w
30w
w


 =. . .

. . . these are all equivalent so long as w 6= 0.

Column matrix




x
y
z
0


 could not be a homogeneous coordinate . . .

. . . but it could be a vector.
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math7 math7Homogeneous Coordinates

Why not just Cartesian coordinates like (x, y, z)?

The w simplifies certain computations.

Confused?

Then for a little while pretend that




x
y
z
1


 is just (x, y, z).
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Homogenized Homogeneous Coordinate

A homogeneous coordinate is homogenized by dividing each element by the last.

For example, the homogenization of




x
y
z
w


 is




x/w
y/w
z/w
1




Homogenization is also known as perspective divide.
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math9 math9Vector Arithmetic

Vector Arithmetic

Points just sit there, it’s vectors that do all the work.

In other words, most operations defined on vectors.

Point/Vector Sum

The result of adding a point to a vector is a point.

Consider point with homogenized coordinate P = (x, y, z, 1) and vector V = (i, j, k).

The sum P + V is the point with coordinate




x
y
z
1


 +




i
j
k


 =




x + i
y + j
z + k

1




This follows directly from the vector definition.
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Scalar/Vector Multiplication

The result of multiplying scalar a with a vector is a vector. . .

. . . that is a times longer but points in the same or opposite direction. . .

. . . if a 6= 0.

Let a denote a scalar real number and V a vector.

The scalar vector product is aV = a




x
y
z


 =




ax
ay
az


.
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Vector/Vector Addition

The result of adding two vectors is another vector.

Let V1 =




x1

y1

z1


 and V2 =




x2

y2

z2


 denote two vectors.

The vector sum, denoted U + V , is




x1 + x2

y1 + y2

z1 + z2




Vector subtraction could be defined similarly. . .

. . . but doesn’t need to be because we can use scalar/vector multiplication: V1 − V2 =
V1 + (−1 × V2).
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Vector Addition Properties

Vector addition is associative:

U + (V + W ) = (U + V ) + W.

Vector addition is commutative:

U + V = V + U.
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math13 math13Vector Magnitude, Normalization

Vector Magnitude

The magnitude of a vector is its length, a scalar.

The magnitude of V =




x
y
z


 denoted ‖V ‖, is

√
x2 + y2 + z2.

The magnitude is also called the length and the norm.

Vector V is called a unit vector if ‖V ‖ = 1.

A vector is normalized by dividing each of its components by its length.

The notation V̂ indicates V/‖V ‖, the normalized version of V .
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math14 math14Dot Product

The Vector Dot Product

The dot product of two vectors is a scalar.

Roughly, it indicates how much they point in the same direction.

Consider vectors V1 =




x1

y1

z1


 and V2 =




x2

y2

z2


.

The dot product of V1 and V2, denoted V1 · V2, is x1x2 + y1y2 + z1z2.
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What a Dot Product Does

Let

V be some arbitrary vector and

d̂ be a unit vector.

Then V · d̂. . .

. . . measures the length of the vector V . . .

. . . in the direction of d̂.

V

d

V  d
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math16 math16Dot Product Properties

Let U , V , and W be vectors.

Let a be a scalar.

Miscellaneous Dot Product Properties

(U + V ) · W = U · W + V · W

(aU) · V = a(U · V )

U · V = V · U

abs(U · U) = ‖U‖2
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math17 math17Dot Product Properties

Orthogonality

The more casual term is perpendicular.

Vectors U and V are called orthogonal iff U · V = 0.

This is an important property for finding intercepts.

math17 EE 4702-1 Lecture Transparency. Formatted 13:20, 28 August 2015 from set-1-math. math17



math18 math18Dot Product Properties

Angle

Let U and V be two vectors.

Then U · V = ‖U‖‖V ‖ cosφ. . .

. . . where φ is the smallest angle between the two vectors.
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math19 math19Cross Product

Cross Product

The cross product of two vectors results in a vector orthogonal to both.

The cross product of vectors V1 and V2, denoted V1 × V2, is

V1 × V2 =




x1

y1

z1


 ×




x2

y2

z2


 =




y1z2 − z1y2

z1x2 − x1z2

x1y2 − y1x2


 .
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math20 math20Cross Product Properties

Cross Product Properties

Let U and V be two vectors and let W = U × V .

Then both U and V are orthogonal to W .

‖U × V ‖ = ‖U‖‖V ‖ sinφ.

U × V = −V × U .

(aU + bV ) × W = a(U × W ) + b(V × W ).

If U and V define a parallelogram, its area is ‖U × V ‖. . .

. . . if they define a triangle its area is 1
2
‖U × V ‖.
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Line Definition

A line will be defined in terms of a point and a non-zero vector.

Line:

A set of points generated from a given point, P1, and vector, v: {S |P1 + tv, ∀t ∈ ℜ}.

One can imagine “drawing” the line by varying the parameter t.

Illustration of defining a line in terms of two points:

P1

P2

V= P1P2

P1
P2

P1+tv

t=1t=0.5 t=1.29

math21 EE 4702-1 Lecture Transparency. Formatted 13:20, 28 August 2015 from set-1-math. math21



math22 math22

Plane Definition

Point P and vector −→n define a plane in which a point S is on the plane iff
−→
PS · −→n = 0.

The vector −→n if referred to as a normal.
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Plane/Line Intercept

Consider the plain defined by point P and vector −→n , and the line defined by point L and
vector −→v ; let S denote the point at which the line intercepts the plane (if any).

Since S is on the line, S = L + t−→v .

Since S is on the plane,
−→
SP · −→n = 0

Substituting for S and solving for t:

−−−−−−−→
(L + t−→v )P · −→n = 0

(P − L − t−→v ) · −→n = 0

(
−→
LP − t−→v ) · −→n = 0

t =

−→
LP · −→n
−→v · −→n

Use this expression for t to find S

S = L +

−→
LP · −→n
−→v · −→n

−→v
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math24 math24Sample Problem

Problem: A light model specifies that in a scene with a light of brightness b (scalar) at
location L (coordinate), and a point P on a surface with normal n̂, the lighted color,
c, of P (a scalar) will be the dot product of the surface normal with the direction to
the light divided by the distance to the light.

Restate this as a formula.

Estimate the number of floating point operations in a streamlined computation.

Solution:

Formula: c = bP̂L · n̂ 1

‖
−→
PL‖

.
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Transformation:

A mapping (conversion) from one coordinate set to another (e.g., from feet to meters) or to a
new location in an existing coordinate set.

Particular Transformations to be Covered

Translation: Moving things around.

Scale: Change size.

Rotation: Rotate around some axis.

Projection: Moving to a surface.

Transform by multiplying 4 × 4 matrix with coordinate.

Pnew = MtransformPold.
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math26 math26Transforms

Scale Transform

S(s) =




s 0 0 0
0 s 0 0
0 0 s 0
0 0 0 1


.

S(s, t, u) =




s 0 0 0
0 t 0 0
0 0 u 0
0 0 0 1


.

S(s) stretches an object s times along each axis.

S(s, t, u) stretches an object s times along the x-axis, t times along the y-axis, and u times
along the z-axis.

Scaling centered on the origin.
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math27 math27Transforms

Rotation Transformations

Rx(θ) rotates around x axis by θ; likewise for Ry and Rz.

Rx(θ) =




1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1


.

Ry(θ) =




cos θ 0 sin θ 0
0 1 0 0

− sin θ 0 cos θ 0
0 0 0 1


.

Rz(θ) =




cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 1 0
0 0 0 1


.
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math28 math28Transforms

Translation Transform

T (s, t, u) =




1 0 0 s
0 1 0 t
0 0 1 u
0 0 0 1


.

Moves point s units along x axis, etc.
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math29 math29Transforms and Matrix Arithmetic

Miscellaneous Matrix Multiplication Math

Let M and N denote arbitrary 4 × 4 matrices.

Identity Matrix

I =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


.

IM = MI = M .
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math30 math30Transforms and Matrix Arithmetic

Matrix Inverse

Matrix A is an inverse of M iff AM = MA = I.

Will use M−1 to denote inverse.

Not every matrix has an inverse.

Computing inverse of an arbitrary matrix expensive . . .

. . . but inverse of some matrices are easy to compute . . .

. . . for example, T (x, y, z)−1 = T (−x,−y,−z).

Matrix Multiplication Rules

Is associative: (LM)N = L(MN).

Is not commutative: MN 6= NM for arbitrary M and N .

(MN)−1 = N−1M−1. (Note change in order.)
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math31 math31Projection Transformations

Projection Transform:

A transform that maps a coordinate to a space with fewer dimensions.

A projection transform maps a 3D coord. from our virtual world (such as P1) . . .

. . . to a 2D location on our monitor (such as S1).

E
P1

P2

P3

User's

Monitor

User's Eye

Object in

Virtual World

S2

S1 S3

User's View Side View

S1

P1,P2,P3 in 3D CoordinatesS1,S2,S3 in 2D Coordinates

S1 = TprojectionP1
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Projection Types

Vague definitions on this page.

Perspective Projection

Points appear to be in “correct” location,. . .

. . . as though monitor were just a window into the simulated world.

This projection used when realism is important.

Orthographic Projection

A projection without perspective foreshortening.

This projection used when a real ruler will be used to measure distances.
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math33 math33Perspective Projection Derivation

Lets put user and user’s monitor in world coordinate space:

E
P1

P2

P3S2

S1 S3

User's View Side View

S1

P1,P2,P3 in 3D CoordinatesS1,S2,S3 in 2D Coordinates

Projection Plane

ProjectorProjection of P1

Q
n

Location of user’s eye: E.

A point on the user’s monitor: Q.

Normal to user’s monitor pointing
away from user: n̂.

Goal:

Find S1, point where line from E to P1 intercepts monitor (plane Q, n̂).

Line from E to P called the projector.

The user’s monitor is in the projection plane.

The point S is called the projection of point P on the projection plane.

math33 EE 4702-1 Lecture Transparency. Formatted 13:20, 28 August 2015 from set-1-math. math33



math34 math34

E
P1

P2

P3S2

S1 S3

User's View Side View

S1

P1,P2,P3 in 3D CoordinatesS1,S2,S3 in 2D Coordinates

Projection Plane

ProjectorProjection of P1

Q
n

Solution:

Projector equation: S = E + t
−−→
EP .

Projection plane equation:
−→
QS · n = 0.

Find point S that’s on projector and projection plane:

−−−−−−−−−→
Q(E + t

−−→
EP ) · n = 0

(E + t
−−→
EP − Q) · n = 0

−−→
QE · n + t

−−→
EP · n = 0

t =

−−→
EQ · n
−−→
EP · n

S = E +

−−→
EQ · n
−−→
EP · n

−−→
EP

Note:
−−→
EQ · n is distance from user to plane in direction n . . .

. . . and
−−→
EP · n is distance from user to point in direction n.
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math35 math35Perspective Projection Derivation

To simplify projection:

Fix E = (0, 0, 0): Put user at origin.

Fix n = (0, 0, 1): Make “monitor” parallel to xy plane.

Before: S = E +

−−→
EQ · n
−−→
EP · n

−−→
EP

After: S =
qz

pz

P,

where qz is the z component of Q, and pz defined similarly.

The key operation in perspective projection is dividing out by z (given our geometry).
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math36 math36Simple Perspective Projection Transformation

Simple Projection Transform 1

Eye at origin, projection surface at (x, y, qz), normal is (0, 0, 1).

Fqz
=




qz 0 0 0
0 qz 0 0
0 0 qz 0
0 0 1 0




Applying the projection to coordinate (x, y, z, 1):

Fqz




x
y
z
1


 =




qzx
qzy
qzz
z


 =




qz

z
x

qz

z
y

qzz
z

1


 =




qz

z
x

qz

z
y

qz

1




This maps the z coordinate to the constant qz . . .

. . . meaning that the position along the z axis has been lost.

But we’ll need the z position to determine visibility of overlapping objects.
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math37 math37Simple Perspective Projection Transformation

Simple Projection Transform, Preserving z

Eye at origin, projection surface at (x, y, qz), normal is (0, 0, 1).

Fqz
=




qz 0 0 0
0 qz 0 0
0 0 0 qz

0 0 1 0




Applying the projection to coordinate (x, y, z, 1):

Fqz




x
y
z
1


 =




qzx
qzy
qz

z


 =




qz

z
x

qz

z
y

qz

z

1




This maps z coordinate to qz/z, . . .

. . . which though a reciprocal, will still be useful.
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math38 math38View Volume, Frustum

View-Volume Related Definitions

View Volume:

Parts of the scene which should be visible to the user.

Frustum:

A shape constructed by slicing off the top of a square-base pyramid with a plane parallel to
the base.
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Frustum View Volume Motivation

Consider the simple projection transformation:

Shape of view volume consists of two pyramids . . .

. . . one pyramid in front, the other in back, . . .

. . . and both points on eye.

Some points are behind the user. . .

. . . and we don’t want these to be visible (because they would be unnatural).

Some points in view volume are so far from the user. . .

. . . that they would be invisible.

For example, points might form a triangle that covers 1% of a pixel.

These points waste computing power.
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Frustum View Volume

View volume in shape of frustum with smaller square on projection plane.

The smaller square of frustum defines a near plane.

The larger square defines a far plane.

Variables describing a frustum view volume:

n: Distance from eye to near plane.

f : Distance from eye to far plane.

Coordinates of lower-left corner of (l, b,−n).

Coordinates of upper-right corner of (r, t,−n).
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Frustum Perspective Transform

Given six values: l, r, t, b, n, f (left, right, top, bottom, near, far).

Eye at origin, projection surface at (x, y, n), normal is (0, 0,−1).

Viewer screen is rectangle from (l, b,−n) to (r, t,−n).

Points with z > −t and z < −f are not of interest.

Fl,r,t,b,n,f =




2n
r−l

0 r+l
r−l

0

0 2n
t−b

t+b
t−b

0

0 0 − f+n
f−n

−2 fn
f−n

0 0 −1 0
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