
LSU EE 4702­1 Homework 4 Due: 11 November 2015

Problem 0: Follow the instruction on the
http://www.ece.lsu.edu/koppel/gpup/proc.html

page for account setup and programming home-
work work flow. Compile and run the homework
code unmodified. It should start with an 8-arm
gyroscope. Press the + and - keys to change
the number of armds. Press digits 1 through 3

to initialize different scenes, the program starts
with scene 3.

Pressing ’v’ cycles between shaders.
The code in this package includes the fric-

tion model asked for in Homework 2. The links
however are unbreakable and there’s no skin.
Also, shadows are deactivated by default to
make the solution to this assignment easier.

Use the arrow keys, PageUp, and PageDown to move around the scene. Use key h to toggle
between the first (head) ball being locked in place and free. Use key t to do the same for the last
(tail) ball. Press (lower-case) b and then use the arrow and page keys to move the first ball around.
Press l to move the light around and e to move the eye.

Note: There is nothing to turn in for this first problem.

Problem 1: The geometry shader gs_main_simple in file hw04-shdr.cc passes triangles through
unmodified. We know that when rendering spheres and cylinders (at least the cylinders that we
use for links) a triangle that’s not facing the user will be behind one that is facing the user. It
makes sense to discard such triangles early.

(a) Modify the geometry shader so that it does not emit triangles based on whether they are facing
the user and the value of uniform variable tri_cull. If tri_cull is zero always emit the triangle.
If it is 1, emit the triangle only if the triangle front is facing the user. If tri_cull is 2 emit the
triangle only if the back is facing the user. Base this on the triangle coordinates, not the normals.
The value of tri_cull can be changed by pressing c.

(b) Estimate the amount of work saved. Use the following symbols: Let cv, cg, and cf be the
amount of work done by an invocation of the vertex, geometry, and fragment shaders respectively.
For example, if we rendered one triangle covering 22 pixels the total work would be 3cv + cg +22cf

units. For your answer let nt denote the number of triangles, and make reasonable choices for other
quantities.

(c) Try to determine actual values for cv, cg, and cf by running your code. Pause the simulation to
make sure the physics isn’t hogging CPU. The number of vertices is shown on the green text near
the top, the total number is at the end of the line. Triangle strips are used for both the balls and
the links. Pressing the + and - keys when setup 3 is visible will change the number of arms on the
gyroscope, use this to vary the number of balls and links.

Problem 2: The instance shader code rendering links shows all links the same color.

1

http://www.ece.lsu.edu/koppel/gpup/
http://www.ece.lsu.edu/koppel/gpup/proc.html


(a) Modify the shaders in hw04-shdr-links.cc so that that the fragment shader obtains the color
using a value based on glVertex_ID rather than reading the color itself from on of its inputs. Only
the vertex shader has access to glVertex_ID, define shader inputs and outputs as needed to send
its value to the fragment shader.

Modify other shaders in this file consistently to remove the old code passing color data through
the pipeline.

Note: The original version of the problem was to use pre-defined fragment shader variable

glVertex_ID. As a student pointed out, there is no such variable in the fragment shader.

Problem 3: Modify gs_main_simple so that it can emit a second triangle that looks like it is
being peeled off a moving sphere by the rushing air. The second triangle should be the same shape
as the original triangle and should share one edge with the original triangle. See the illustration at
the beginning of this assignment. The choice of shared edge and the angle of the triangle should
be based in some way on the velocity of the ball.

2


