
LSU EE 4702­1 Homework 5 SolutionDue: ≈ 12 November 2014

The following assignment is based on the code package for Homework 4. The questions are
asking about the code provided for the assignment, not about code written as part of the solution.
In other words, you can answer these questions without having yet solved Homework 4.

The solution discussion refers to Homework 4 code. Parts are of the code are reproduced at the end of the solution.
For HTML versions visit https://www.ece.lsu.edu/koppel/gpup/2014/hw04.cc.html for the CPU code
and https://www.ece.lsu.edu/koppel/gpup/2014/hw04-shdr.cc.html for the shader code.

Problem 1: Compare the amount of data sent from CPU to GPU in Methods 0 (triangle strip,
vertex contains coordinates) and 1 (triangle strip, simple geometry shader, vertex contains indices)
from the Homework 4 code. (Note that a solution to Homework 4 does not change the amount of
data sent from CPU to GPU.) Note: An earlier version of the problem asked about Methods 1 and

2. The amount of data sent by 1 and 2 would be the same.

Let n denote the number of balls (chain_length) and s the number of segments (opt_segments).
Determine the amount of data, in bytes, sent to the GPU per frame for Method 0 (routine ren-

der_spiral1) and Method 1 (render_spiral2).

In the discussion below we’ll ignore data sent for uniform variables and OpenGL commands. Uniform data includes
explicitly declared uniforms, such as opt segments, and pre-defined uniforms such as gl ModelViewMatrix. Com-
mand data (which was not talked about much in class) includes whatever needs to be sent from CPU to GPU to set up
a rendering pass, such as indicating the number vertices to expect. The amount of uniform and command data can be
ignored because there is not much of it (though misusing uniforms and commands can slow things down). We’ll also ignore
texture data, since that’s just sent once.

Method 0 renders using render spiral1. By inspection of the code in render spiral1 we learn that with
each vertex we are sending a texture coordinate, glTexCoord2f, a normal, glNormal3fv, and the vertex coordinate,
glVertex3fv. Each of these is a vector of floats, a two-element vector for texture coordinates and three-element vectors
for the normal and vertex coordinate. The total size per vertex is 2 + 3 + 3 = 8 floats or 8× 4 = 32B.

The i loop iterates chain length-1 or n− 1 times, the t loop iterates opt segments or s times (see the
code), and a t loop iteration sends 2 vertices, and so the total number of vertices sent per frame is (n − 1)s2. The

amount of data is therefore (n− 1)s2× 32B = 64(n− 1)sB .
Method 1 renders using render spiral2 and the programmable shaders vs main, gs main simple, and

fs main. The vertices are specified using glDrawArrays rather than glBegin. To find the amount of data, we
need to tally the amount of data sent directly into the rendering pipeline (as we did for render spiral1) and the
amount of non-input data read by the shaders. The non-input data is from buffer object balls bo (CPU name), which
is bound to balls pos in the shader code.

To find the data sent through the rendering pipeline we need to look at the client arrays that are enabled. Client
arrays are enabled, of course, using glEnableClientState. For render spiral2 only one array is enabled,
GL VERTEX ARRAY. This array is bound to buffer object indices bo. The glVertexPointer command tells
us that the size of a vertex coordinate is 3*sizeof(int) or 12 bytes. The number of vertices sent is, as before,
(n− 1)s2.

But these vertices are coming from a buffer object, and inspection of the code indicates that the buffer object is only
updated when opt segments changes. We expect that buffer object data is sent from the CPU to GPU each time it is
updated on the CPU. Since opt segments only changes in response to user input we can assume that the buffer object
is rarely updated (at least rare with respect to frame update). The size of the indices buffer object is (n−1)s2×12B,
but because it is rarely transferred we will not include it in our tally of CPU to GPU data.

1

https://www.ece.lsu.edu/koppel/gpup/
https://www.ece.lsu.edu/koppel/gpup/2014/hw04.cc.html
https://www.ece.lsu.edu/koppel/gpup/2014/hw04-shdr.cc.html

As mentioned earlier, the vertex shader is reading the balls pos buffer object. As we can see from the code, that
buffer object is updated each time we call render spiral2. (It’s updated because the balls move.) The buffer object
is an array of pCoor variables (which are arranged in memory identically to vec4 variables). The size of an element is
4× 4B = 16B and the total size of the buffer object is 16nB.

The total amount of data sent from CPU to GPU for render spiral2 is therefore only 16nB per frame .
(Remember that we are ignoring uniform data, which for large n would not make much of a difference.)

Problem 2: Consider the amount work to compute vertex coordinates and normals done by
render_spiral1 and by the vertex shader vs_main. The vertex shader is actually computing
things multiple times that the code in render_spiral1 computes just once. Identify such redundant
computation. Hint: It happens in two different ways, one way results in things computed twice,

another way results in things computed s times.

For the factor of two duplication by vs main look at the t loop in render spiral1. Notice that it emits two
vertices. Both of these vertices are computed from the same value of radial and the normal for these vertices are
computed from the same value of tangial. In contrast, the vertex shader vs main is called once for each vertex. Each
time it is computing radial and tangial, so it is computing those values twice as many times as render spiral1.

For the factor of s duplication look at the code at the top of the i loop body in render spiral1. Notice that
values for va and vb are computed by render spiral1 once and then used in each of the s iterations of the t loop.
But in the render spiral2 version the vertex shader computes va and vb for each vertex. So vs main is computing
these values 2s times for frequently than it needs to.

Problem 3: Explain how some of the problems above could be avoided if the CPU specified
vertices using line strips and the geometry shader used lines as inputs. Of course, the geometry
shader’s output would be triangles. Each point on the line would correspond to a p in the t loop
in the render_spiral1 routine.

First, consider the operation of render spiral2:

2:I2 2:V2U2 V1U1

V2U2

V3U3

Vertex

Shader
...I6I5I4I3

balls_pos Buffer object.

V1

V2

V3

U1

U2

U3

U1

V3

U3

V1

U1

V3

Geometry

Shader

Integer indices, I,

converted to vertex

coordinates, V and U.

OpenGL considers this one

vertex, but our geom shader

treats it as two vertices.indices
Buffer object.

2:

1:

3:

0

2

4

1

3

5

U3

U5

V5

V4

V2

Vertex

Number

Vertex

Coordinate

The buffer object is supplying indices for all of the vertices on one spiral, including the inner edge (even-numbered in
illustration) and outer edge (odd numbered). The vertex shader computes the corresponding upper spiral coordinate, U ,
but as far as OpenGL is concerned the output of the vertex shader is still just one vertex, to be collected in to triangles

2

and passed to the geometry shader, which emits the upper and lower triangles, and the edge triangles. That’s Homework
4.

In the solution to this problem we will only send the inner-rim vertices (even-numbered) to the vertex shader,
organized as line strips:

2:I2 2:V2U2V3U3

Vertex

Shader

0

2

4

1

3

5

...I10I8I6I4

balls_posBuffer object.

V2

V3

V4

U2

U3

U4

U2

V4

U4

V2

U2

V4

Geometry

Shader

OpenGL considers this one

vertex, but our geom shader

treats it as four vertices.indices
Buffer object.

2:V2U2V3U3

4:V4U4V5U5

Only indices for

even-numbered

vertices sent.

Input to geom shader

is type line, so it only

sees pairs of "vertices".

V3

V4

V5

U3

U4

U5

U3

V5

U5

V3

U3

V5

Geom shader uses

pair of "vertices" to

emit eight triangles.

U3

U5

V5

V4

V2

Vertex

Number

Vertex

Coordinate

The vertex shader will generate coordinates for the outer-rim vertices along with the corresponding upper vertices. So
here the vertex shader output is four vertices (but still considered one vertex by OpenGL). The duplication of computation
is avoided by having the vertex shader compute the inner and outer vertex coordinates together.

Our geometry shader just needs two of these 4-vertex vertices to construct two triangles each on the upper and lower
spiral and two triangles each on the inner and outer edge. Line strips rather than triangle strips are being used because
the geometry shader only needs two of our vertices.

On the CPU render spiral3 would be very similar to render spiral2 except for the following changes:
The number of vertices sent, num elts, would be half the amount. That is, rather than sending a vertex for the inner
and outer part of the spiral, a vertex would only be sent for the inner part of the spiral.

3

// CPU RENDER SPIRAL ROUTINES, FROM FILE hw04.cc

void

World::render_spiral1()

{

glDisable(GL_COLOR_MATERIAL);

glMaterialfv(GL_FRONT,GL_AMBIENT_AND_DIFFUSE,color_lsu_spirit_purple);

glMaterialfv(GL_BACK,GL_AMBIENT_AND_DIFFUSE,color_lsu_spirit_gold);

glActiveTexture(GL_TEXTURE0);

glEnable(GL_TEXTURE_2D);

glBindTexture(GL_TEXTURE_2D,texid_syl);

float theta = 0;

const float spiral_radius = 0.5;

const float delta_t = 1.0 / opt_segments;

const float omega = 10;

glBegin(GL_TRIANGLE_STRIP);

for (int i=1; i<chain_length; i++)

{

Ball *const ball1 = &balls[i-1];

Ball *const ball2 = &balls[i];

pCoor pos1 = ball1->position;

pCoor pos2 = ball2->position;

//

// Render a spiral slide from position of ball1 to ball2.

//

pVect v12 = pos2 - pos1;

// Find a vector that’s orthogonal to v12.

//

pNorm ax = v12.x == 0 ? pVect(0,v12.z,-v12.y) : pVect(v12.y,-v12.x,0);

pNorm ay = cross(v12,ax);

pVect vx = ax * spiral_radius;

pVect vy = ay * spiral_radius;

for (float t=0; t<0.999; t += delta_t)

{

pCoor p = pos1 + t * v12;

theta += delta_t * omega;

// Compute a vector from the spiral axis to a point on the spiral.

//

pVect radial = vx * cos(theta) + vy * sin(theta);

// Find a vector in the "direction" of the spiral motion as

// if t were time.

4

//

pVect tangial = -omega * vx * sin(theta) + omega * vy * cos(theta);

//

// Note: expression above is derivative of radial w.r.t. t.

pCoor p_outer = p + radial;

const float inner_frac = 0.5;

pCoor p_inner = p + inner_frac * radial;

pVect tang = v12 + tangial;

pVect tang_inner = v12 + inner_frac * tangial;

// Compute a vector pointing up.

//

pNorm norm = cross(radial,tang);

pNorm norm_inner = cross(radial,tang_inner);

const float du = 0.5 / chain_length;

const float u = float(i) * du;

glTexCoord2f(t,u+du);

glNormal3fv(norm_inner);

glVertex3fv(p_inner);

glTexCoord2f(t,u);

glNormal3fv(norm);

glVertex3fv(p_outer);

}

}

glEnd();

vs_fixed->use();

glEnable(GL_COLOR_MATERIAL);

}

void

World::render_spiral2()

{

glDisable(GL_COLOR_MATERIAL);

glMaterialfv(GL_FRONT,GL_DIFFUSE,color_lsu_spirit_gold);

glMaterialfv(GL_FRONT,GL_AMBIENT,color_gray);

glMaterialfv(GL_BACK,GL_DIFFUSE,color_lsu_spirit_purple);

glActiveTexture(GL_TEXTURE0);

glEnable(GL_TEXTURE_2D);

glBindTexture(GL_TEXTURE_2D,texid_syl);

if (!balls_bo) glGenBuffers(1, &balls_bo);

glBindBuffer(GL_ARRAY_BUFFER, balls_bo);

for (int i=0; i<chain_length; i++) balls_pos[i] = balls[i].position;

5

glBufferData

(GL_ARRAY_BUFFER,chain_length*sizeof(balls_pos[0]),

balls_pos, GL_DYNAMIC_DRAW);

glBindBuffer(GL_ARRAY_BUFFER, 0);

const int num_elts = (chain_length - 1) * opt_segments * 2;

if (!indices_bo) glGenBuffers(1, &indices_bo);

if (indices_segments != opt_segments)

{

indices_segments = opt_segments;

struct ivec3 { int i, j, k; ivec3(){}; ivec3(int ip, int jp, int kp):i(ip),j(jp),k(kp){}};

ivec3* const indices = new ivec3[num_elts];

ivec3 *ip = indices;

for (int i=1; i<chain_length; i++)

for (int t=0; t<opt_segments; t++)

for (int inner=0; inner<2; inner++)

*ip++ = ivec3(i,t,inner);

glBindBuffer(GL_ARRAY_BUFFER, indices_bo);

glBufferData

(GL_ARRAY_BUFFER,

num_elts * sizeof(indices[0]),

indices,

GL_STATIC_DRAW);

delete indices;

}

if (opt_vtx_method == 1)

vs_geo_simple->use();

else

vs_geo_sol->use();

glColor3fv(color_powder_blue);

glBindBufferBase(GL_SHADER_STORAGE_BUFFER,1,balls_bo);

glUniform1i(1,opt_segments);

glUniform1i(2,chain_length);

glUniform2i(3,opt_debug_x,opt_debug_y);

glUniform1f(4,opt_debug_float);

glBindBuffer(GL_ARRAY_BUFFER, indices_bo);

glVertexPointer(3,GL_INT,3*sizeof(int),0);

glEnableClientState(GL_VERTEX_ARRAY);

glBindBuffer(GL_ARRAY_BUFFER, 0);

glDrawArrays(GL_TRIANGLE_STRIP, 0, num_elts);

glDisableClientState(GL_VERTEX_ARRAY);

vs_fixed->use();

glEnable(GL_COLOR_MATERIAL);

}

6

