
LSU EE 4702­1 Homework 4 Due: 7 November 2014

The solution code is in the repo in file name hw04-shdr-sol.cc. If you pull and make you can

run the solution by executing hw04sol. An html version is available at

https://www.ece.lsu.edu/koppel/gpup/2014/hw04-shdr-sol.cc.html. Note that the git ver-

sion is always the most up to date.

Problem 0: Follow the class account instructions for obtain-
ing the assignment, substitute hw04 where needed. This home-
work code is based on Homework 2/3, and the physics simula-
tion is identical. Like those assignments it renders a spiral. The
spiral can be rendered three ways, the m switches between them.
Method 0 uses render routine render_spiral1 on the CPU side
and fixed functionality in the GPU. Method 1 and 2 use routine
render_spiral2 on the CPU side and programmable shaders on
the GPU side.

Routine render_spiral2, rather than sending actual ver-
tex coordinates to the GPU, sends indices. The x component
of a vertex “coordinate” is the ball number (the value of i in
render_spiral1), the y component is the relative position be-
tween ball i-1 and ball i, ranging from 0 to opt_segments-1,
and the z component indicates whether the vertex is on the inner
or outer edge of the spiral. The code in vertex shader vs_main in
file hw04-shdr.cc uses these values to compute the actual vertex
coordinate and normal, and to compute the texture coordinates.

Notice that the indices sent by render_spiral2 are not affected by the position of the balls.
Therefore indices can be put in a buffer object and sent just once. (They do need to be re-sent
if opt_segments changes.) The ball positions do need to be sent each frame, but that’s much
less data. The code in render_spiral2 always uses vertex shader vs_main and fragment shader
fs_main, but can activate either of two geometry shaders, gs_main_simple (for Method 1) and
gs_main_solution (for Method 2). Geometry shader gs_main_simple makes no changes to the
triangles it receives, and it should not be modified. Geometry shader gs_main_solution is initially
the same as gs_main_simple but should be modified in one of the problems below.

The level of detail used for the spiral is controlled by variable opt_segments. Its value can
be modified by first pressing the TAB key until “Number of segments per spiral” appears, and then
pressing + and - to adjust its value. Check out and compile the code, and make sure that it runs
correctly. For this assignment only modify file hw04-shdr.cc.

Problem 1: Notice that with Method 1 and 2 pale blue is used
for both sides of the spiral. In this problem modify the fragment
shader, fs_main, so the spiral appears like the one on the image
to the right. Details are given in the subproblems. Changes to
the fragment shader affect Methods 1 and 2, but not zero.

(a) Modify the fragment shader so that the front surface is gold
and has the texture applied and so that the back surface is pur-
ple. Do this without using the color attribute (fragment shader
input), instead rely on the material properties that are set in
render_spiral2. Note that these material properties are uniform
variables.

1

https://www.ece.lsu.edu/koppel/gpup/
https://www.ece.lsu.edu/koppel/gpup/2014/hw04-shdr-sol.cc.html


For the names of the predefined material property uniforms
available in the fragment shader see Section 7.4.1 in the OpenGL
Shading Language spec version 4.5. To determine whether a frag-
ment is from the front or the back of a primitive see Section 7.1 in
the spec.

(b) The surface of the spiral shows a draft this homework assignment handout, using black for the
text and yellow for the background. Modify the fragment shader so that there is no spiral wherever
the texture is black (or a dark color). In other words, modify it so that you can see through the
spiral wherever the texture is black.

To determine if a texel is dark add up the red, green, and blue components and check if the sum
is less than .05. If a texel is dark, then prevent the corresponding fragment from being written. To
see how to prevent a fragment from being written see Section 6.4 in the OpenGL Shading Language
spec version 4.5. (This section describes jump-like statements in the shading language.)

Problem 2: The spiral’s appearance is a little unnatural because it is two-dimensional. Modify
the shaders (except gs_main_simple) and surrounding code so that when Method 2 is active the
spiral has some thickness. (See the illustration at the beginning of this assignment.)

Use geometry shader gs_main_solution to render multiple triangles as follows. Let V1, V2,
and V3 denote the vertices of a triangle at the input to the geometry shader. The geometry shader
should emit V1V2V3 (as it already does) and also U1U2U3 where Ui = Vi + ~d and ~d is a vector of
length 0.1 pointing from ball i−1 to i (the balls that the spiral segment is between). The geometry
shader should also emit triangles for an inner and outer edge which joins the two spirals. The edge
should be the gray color set in render_spiral2. See the illustration.

The solution to this problem will require modifying all three shaders, and modifying the
shaders’ interface blocks (such as Data_to_GS). No changes should be necessary in file hw04.cc.
It’s okay to modify this file to help in debugging your code, but the solution itself should only be in
hw04-shdr.cc. If you believe otherwise, please contact the instructor. Divide work appropriately
between the vertex shader and geometry shader.

Here are some things to watch out for:

• Be sure to adjust the maximum number of vertices specified for the geometry shader output.
If this number is too low execution will end with an error.

• When you modify an interface block (such as Data to GS) be sure to modify the other
interface block with the same name (one is a shader output, the other is a shader input).

Here are some debugging tips:

• Check for shader code compilation errors when your program starts. The errors are sent to
stdout and should appear in the shell or in gdb, depending on how you started the program.

• If execution ends with an OpenGL error, you can get a more detailed error message by
turning on OpenGL debugging. To do this change false to true in
popengl helper.ogl debug set(false); near the end of hw04.cc.

• Three UI-controlled variables are available for debugging. They are debug bool.x, de-

bug bool.y, and debug float. The Booleans can be toggled with d and D. The float can be
adjusted by pressing Tab until “Debug Float” appears and then press + and - to adjust the
value.

2


