Mathematics for 3D Graphics

Topics

Points, Vectors, Vertices, Coordinates

Dot Products, Cross Products

Lines, Planes, Intercepts

References

Many texts cover the linear algebra used for 3D graphics . . .
. . . the texts below are good references, Akenine-Möller is more relevant to the class.

Points and Vectors

Point:
Indivisible location in space.

\[E.g., \ P_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \ P_2 = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix} \]

Vector:
Difference between two points.

\[E.g., \ V = P_2 - P_1 = \overrightarrow{P_1P_2} = \begin{bmatrix} 4 - 1 \\ 5 - 2 \\ 6 - 3 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \\ 3 \end{bmatrix}. \]

Equivalently: \(P_2 = P_1 + V \).

Don’t confuse points and vectors!
Point-Related Terminology

Will define several terms related to points.

At times they may be used interchangeably.

Point:
A location in space.

Coordinate:
A representation of location.

Vertex:
Term may mean point, coordinate, or part of graphical object.

As used in class, vertex is a less formal term.

It might refer to a point, its coordinate, and other info like color.
Coordinate:
A representation of where a point is located.

Familiar representations:

3D Cartesian $P = (x, y, z)$.

2D Polar $P = (r, \theta)$.

In class we will use 3D homogeneous coordinates.
Homogeneous Coordinates

Homogeneous Coordinate:
A coordinate representation for points in 3D space consisting of four components...
... each component is a real number...
... and the last component is non-zero.

Representation: \(P = \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \), where \(w \neq 0 \).

\(P \) refers to the same point as Cartesian coordinate \((x/w, y/w, z/w)\).

To save paper sometimes written as \((x, y, z, w)\).
Homogeneous Coordinates

Each point can be described by many homogeneous coordinates . . .

\[
\begin{pmatrix}
10 \\
20 \\
30 \\
1
\end{pmatrix}
= \begin{pmatrix}
5 \\
10 \\
15 \\
0.5
\end{pmatrix}
= \begin{pmatrix}
20 \\
40 \\
60 \\
2
\end{pmatrix}
= \begin{pmatrix}
10w \\
20w \\
30w \\
w
\end{pmatrix}
= . . .
\]

. . . these are all equivalent so long as \(w \neq 0 \).

Column matrix
\[
\begin{bmatrix}
x \\
y \\
z \\
0
\end{bmatrix}
\]
could not be a homogeneous coordinate . . .

. . . but it could be a vector.
Homogeneous Coordinates

Why not just Cartesian coordinates like \((x, y, z)\)?

The \(w\) simplifies certain computations.

Confused?

Then for a little while pretend that \[
\begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
\]
is just \((x, y, z)\).
Homogenized Homogeneous Coordinate

A homogeneous coordinate is *homogenized* by dividing each element by the last.

For example, the homogenization of

\[
\begin{bmatrix}
 x \\
 y \\
 z \\
 w
\end{bmatrix}
\]

is

\[
\begin{bmatrix}
 x/w \\
 y/w \\
 z/w \\
 1
\end{bmatrix}
\]

Homogenization is also known as *perspective divide.*
Vector Arithmetic

Points just sit there, it’s vectors that do all the work.

In other words, most operations defined on vectors.

Point/Vector Sum

The result of adding a point to a vector is a point.

Consider point with homogenized coordinate $P = (x, y, z, 1)$ and vector $V = (i, j, k)$.

The sum $P + V$ is the point with coordinate

$$
\begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
+
\begin{bmatrix}
i \\
j \\
k
\end{bmatrix}
=
\begin{bmatrix}
x + i \\
y + j \\
z + k \\
1
\end{bmatrix}
$$

This follows directly from the vector definition.
Scalar/Vector Multiplication

The result of multiplying scalar a with a vector is a vector...
... that is a times longer but points in the same or opposite direction...
... if $a \neq 0$.

Let a denote a scalar real number and V a vector.

The **scalar vector product** is
$$ aV = a \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} ax \\ ay \\ az \end{bmatrix}.$$
Vector/Vector Addition

The result of adding two vectors is another vector.

Let $V_1 = \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix}$ and $V_2 = \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix}$ denote two vectors.

The vector sum, denoted $U + V$, is $\begin{bmatrix} x_1 + x_2 \\ y_1 + y_2 \\ z_1 + z_2 \end{bmatrix}$

Vector subtraction could be defined similarly...

... but doesn’t need to be because we can use scalar/vector multiplication: $V_1 - V_2 = V_1 + (-1 \times V_2)$.
Vector Addition Properties

Vector addition is associative:

\[U + (V + W) = (U + V) + W. \]

Vector addition is commutative:

\[U + V = V + U. \]
Vector Magnitude, Normalization

Vector Magnitude

The magnitude of a vector is its length, a scalar.

The magnitude of \(V = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \) denoted \(\|V\| \), is \(\sqrt{x^2 + y^2 + z^2} \).

The magnitude is also called the length and the norm.

Vector \(V \) is called a unit vector if \(\|V\| = 1 \).

A vector is normalized by dividing each of its components by its length.

The notation \(\hat{V} \) indicates \(V/\|V\| \), the normalized version of \(V \).
Dot Product

The Vector Dot Product

The dot product of two vectors is a scalar.

Roughly, it indicates how much they point in the same direction.

Consider vectors $V_1 = \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix}$ and $V_2 = \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix}$.

The dot product of V_1 and V_2, denoted $V_1 \cdot V_2$, is $x_1 x_2 + y_1 y_2 + z_1 z_2$.
Dot Product Properties

Let U, V, and W be vectors.

Let a be a scalar.

Miscellaneous Dot Product Properties

\[(U + V) \cdot W = U \cdot W + V \cdot W\]

\[(aU) \cdot V = a(U \cdot V)\]

\[U \cdot V = V \cdot U\]

\[\text{abs}(U \cdot U) = \|U\|^2\]
Dot Product Properties

Orthogonality

The more casual term is perpendicular.

Vectors U and V are called orthogonal iff $U \cdot V = 0$.

This is an important property for finding intercepts.
Dot Product Properties

Angle

Let U and V be two vectors.

Then $U \cdot V = \|U\|\|V\| \cos \phi$. . .

... where ϕ is the smallest angle between the two vectors.
The cross product of two vectors results in a vector orthogonal to both.

The cross product of vectors V_1 and V_2, denoted $V_1 \times V_2$, is

$$V_1 \times V_2 = \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix} \times \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix} = \begin{bmatrix} y_1 z_2 - z_1 y_2 \\ z_1 x_2 - x_1 z_2 \\ x_1 y_2 - y_1 x_2 \end{bmatrix}.$$
Cross Product Properties

Let \(U \) and \(V \) be two vectors and let \(W = U \times V \).

Then both \(U \) and \(V \) are orthogonal to \(W \).

\[\|U \times V\| = \|U\|\|V\| \sin \phi. \]

\[U \times V = -V \times U. \]

\[(aU + bV) \times W = a(U \times W) + b(V \times W). \]

If \(U \) and \(V \) define a parallelogram, its area is \(\|U \times V\| \ldots \)

\ldots if they define a triangle its area is \(\frac{1}{2} \|U \times V\| \).
Line Definition

A line will be defined in terms of a point and a non-zero vector.

Line:
A set of points generated from a given point, \(L \), and vector, \(v \): \(\{ S \mid L + tv, \forall t \in \mathbb{R} \} \).

One can imagine “drawing” the line by varying the parameter \(t \).
Plane Definition

Point P and vector \vec{n} define a *plane* in which a point S is on the plane iff $\overrightarrow{PS} \cdot \vec{n} = 0$.

The vector \vec{n} if referred to as a *normal*.

Plane/Line Intercept

Consider the plane defined by point P and vector \vec{n}, and the line defined by point L and vector \vec{v}; let S denote the point at which the line intercepts the plane (if any).

Since S is on the line, \[S = L + t \vec{v}. \]

Since S is on the plane, \[\vec{SP} \cdot \vec{n} = 0 \]

Substituting for S and solving for t:

\[
\begin{align*}
(\overrightarrow{L} + t \vec{v}) \cdot \vec{n} &= 0 \\
(P - L - t \vec{v}) \cdot \vec{n} &= 0 \\
(\overrightarrow{LP} - t \vec{v}) \cdot \vec{n} &= 0 \\
t &= \frac{\overrightarrow{LP} \cdot \vec{n}}{\vec{v} \cdot \vec{n}}
\end{align*}
\]

Use this expression for t to find S,

\[S = L + \frac{\overrightarrow{LP} \cdot \vec{n}}{\vec{v} \cdot \vec{n}} \vec{v} \]
Sample Problem

Problem: A light model specifies that in a scene with a light of brightness b (scalar) at location L (coordinate), and a point P on a surface with normal \hat{n}, the lighted color, c, of P (a scalar) will be the dot product of the surface normal with the direction to the light divided by the distance to the light.

Restate this as a formula.

Estimate the number of floating point operations in a streamlined computation.

Solution:

Formula: $c = b\frac{\vec{PL} \cdot \hat{n}}{\|\vec{PL}\|} \cdot \frac{1}{\|\vec{PL}\|}$.
Transforms

Transformation:
A mapping (conversion) from one coordinate set to another (*e.g.*, from feet to meters) or to a new location in an existing coordinate set.

Particular Transformations to be Covered

- **Translation:** Moving things around.
- **Scale:** Change size.
- **Rotation:** Rotate around some axis.
- **Projection:** Moving to a surface.

Transform by multiplying 4×4 matrix with coordinate.

$$P_{\text{new}} = M_{\text{transform}} P_{\text{old}}.$$
Transforms

Scale Transform

\[
S(s) = \begin{pmatrix}
s & 0 & 0 & 0 \\
0 & s & 0 & 0 \\
0 & 0 & s & 0 \\
0 & 0 & 0 & 1 \\
\end{pmatrix}.
\]

\[
S(s, t, u) = \begin{pmatrix}
s & 0 & 0 & 0 \\
0 & t & 0 & 0 \\
0 & 0 & u & 0 \\
0 & 0 & 0 & 1 \\
\end{pmatrix}.
\]

\(S(s)\) stretches an object \(s\) times along each axis.

\(S(s, t, u)\) stretches an object \(s\) times along the \(x\)-axis, \(t\) times along the \(y\)-axis, and \(u\) times along the \(z\)-axis.

Scaling centered on the origin.
Transforms

Rotation Transformations

\(R_x(\theta) \) rotates around \(x \) axis by \(\theta \); likewise for \(R_y \) and \(R_z \).

\[
R_x(\theta) = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & \cos \theta & -\sin \theta & 0 \\
0 & \sin \theta & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}.
\]

\[
R_y(\theta) = \begin{pmatrix}
\cos \theta & 0 & \sin \theta & 0 \\
0 & 1 & 0 & 0 \\
-\sin \theta & 0 & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}.
\]

\[
R_z(\theta) = \begin{pmatrix}
\cos \theta & -\sin \theta & 0 & 0 \\
\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}.
\]
Transforms

Translation Transform

\[T(s, t, u) = \begin{pmatrix} 1 & 0 & 0 & s \\ 0 & 1 & 0 & t \\ 0 & 0 & 1 & u \\ 0 & 0 & 0 & 1 \end{pmatrix}. \]

Moves point \(s \) units along \(x \) axis, etc.
Transforms and Matrix Arithmetic

Miscellaneous Matrix Multiplication Math

Let M and N denote arbitrary 4×4 matrices.

Identity Matrix

\[I = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}. \]

\[IM = MI = M. \]
Matrix Inverse

Matrix A is an inverse of M iff $AM = MA = I$.

Will use M^{-1} to denote inverse.

Not every matrix has an inverse.

Computing inverse of an arbitrary matrix expensive . . .

. . . but inverse of some matrices are easy to compute . . .

. . . for example, $T(x, y, z)^{-1} = T(-x, -y, -z)$.

Matrix Multiplication Rules

Is associative: $(LM)N = L(MN)$.

Is not commutative: $MN \neq NM$ for arbitrary M and N.

$(MN)^{-1} = N^{-1}M^{-1}$. (Note change in order.)
Projection Transformations

Projection Transform:
A transform that maps a coordinate to a space with fewer dimensions.

> A projection transform will map a 3D coordinate from our physical or graphical model . . .
> . . . to a 2D location on our monitor (or a window).

Projection Types

Vague definitions on this page.

Perspective Projection

Points appear to be in “correct” location, . . .
> . . . as though monitor were just a window into the simulated world.

This projection used when realism is important.

Orthographic Projection

A projection without perspective foreshortening.

This projection used when a real ruler will be used to measure distances.
Perspective Projection Derivation

Let's put user and user’s monitor in world coordinate space:

Location of user’s eye: \(E \).

A point on the user’s monitor: \(Q \).

Normal to user’s monitor pointing away from user: \(n \).

Goal:

Find \(S \), point where line from \(E \) to \(P \) intercepts monitor (plane \(Q, n \)).

Line from \(E \) to \(P \) called the \textit{projector}.

The user’s monitor is in the \textit{projection plane}.

The point \(S \) is called the \textit{projection} of point \(P \) on the projection plane.
Solution:

Projector equation: \(S = E + t\overrightarrow{EP} \).

Projection plane equation: \(\overrightarrow{QS} \cdot n = 0 \).

Find point \(S \) that’s on projector and projection plane:

\[
\overrightarrow{Q(E + t\overrightarrow{EP})} \cdot n = 0
\]
\[
(E + t\overrightarrow{EP} - Q) \cdot n = 0
\]
\[
\overrightarrow{QE} \cdot n + t\overrightarrow{EP} \cdot n = 0
\]
\[
t = \frac{\overrightarrow{EQ} \cdot n}{\overrightarrow{EP} \cdot n}
\]
\[
S = E + \frac{\overrightarrow{EQ} \cdot n}{\overrightarrow{EP} \cdot n} \overrightarrow{EP}
\]

Note: \(\overrightarrow{EQ} \cdot n \) is distance from user to plane in direction \(n \) . . .
. . . and \(\overrightarrow{EP} \cdot n \) is distance from user to point in direction \(n \).
Perspective Projection Derivation

To simplify projection:

Fix $E = (0, 0, 0)$: Put user at origin.

Fix $n = (0, 0, -1)$: Make “monitor” parallel to xy plane.

Result:

\[S = E + \frac{\vec{EQ} \cdot n}{\vec{EP} \cdot n} \vec{EP} \]

\[S = \frac{q_z}{p_z} P, \]

where q_z is the z component of Q, and p_z defined similarly.

The key operation in perspective projection is dividing out by z (given our geometry).
Simple Projection Transform

Eye at origin, projection surface at \((x, y, -q_z)\), normal is \((0, 0, -1)\).

\[
F_{q_z} = \begin{pmatrix}
q_z & 0 & 0 & 0 \\
0 & q_z & 0 & 0 \\
0 & 0 & 0 & q_z \\
0 & 0 & -1 & 0
\end{pmatrix}
\]

Note:
\[
F_{q_z} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} q_z x \\ q_z y \\ q_z z \\ -z \end{bmatrix} = \begin{bmatrix} \frac{q_z}{-z} x \\ \frac{q_z}{-z} y \\ \frac{q_z}{-z} z \\ 1 \end{bmatrix}
\]

This maps \(z\) coordinates to \(q_z/z\), which will be useful.
View Volume, Frustum

View-Volume Related Definitions

View Volume:
Parts of the scene which should be visible to the user.

Frustum:
A shape constructed by slicing off the top of a square-base pyramid with a plane parallel to the base.
Frustum View Volume Motivation

Consider the simple projection transformation:

Shape of view volume consists of two pyramids . . .
. . . one pyramid in front, the other in back, . . .
. . . and both points on eye.

Some points are behind the user . . .
. . . and we don’t want these to be visible (because they would be unnatural).

Some points in view volume are so far from the user . . .
. . . that they would be invisible.

For example, points might form a triangle that covers 1% of a pixel.

These points waste computing power.
Frustum View Volume

View volume in shape of frustum with smaller square on projection plane.

The smaller square of frustum defines a near plane.

The larger square defines a far plane.

Variables describing a frustum view volume:

- n: Distance from eye to near plane.
- f: Distance from eye to far plane.

Coordinates of lower-left corner of $(l, b, -n)$.

Coordinates of upper-right corner of $(r, t, -n)$.
Frustum Perspective Transform

Given six values: \(l, r, t, b, n, f \) (left, right, top, bottom, near, far).

Eye at origin, projection surface at \((x, y, n)\), normal is \((0, 0, -1)\).

Viewer screen is rectangle from \((l, b, -n)\) to \((r, t, -n)\).

Points with \(z > -t \) and \(z < -f \) are not of interest.

\[
F_{l,r,t,b,n,f} = \begin{pmatrix}
\frac{2n}{r-l} & 0 & \frac{r+l}{r-l} & 0 \\
0 & \frac{2n}{t-b} & \frac{t+b}{t-b} & 0 \\
0 & 0 & -\frac{f+n}{f-n} & -2\frac{fn}{f-n} \\
0 & 0 & -1 & 0
\end{pmatrix}
\]