
LSU EE 4702­1 Homework 5 Solution Due: 30 November 2012

Follow the Programming Homework Work Flow instructions on the procedures page, substituting

hw5 for hw1. Also, update the include directory.

Use http://www.ece.lsu.edu/gp/refs/CUDA_C_Programming_Guide.pdf, the NVIDIA CUDA

Compute Unified Device Architecture Programming Guide, as a reference. The code in this assign-

ment requires OpenGL 4.3 and CUDA, which should be installed on snow, ice, and frost.

See hw5-sol-cuda.cu in the repository for the solution, search for “Problem 1” or “Problem 2”. The code is
also available at http://www.ece.lsu.edu/koppel/gpup/2012/hw5-sol-cuda.cu.html

Problem 0: Follow the class procedures
for homework but substitute hw05 for the
assignment. Compile and run the code. It
should display our familiar helix, but this
time it’s a simulated spring, and it should
be drooping under gravity, see the illustra-
tion to the right. The physics can be per-
formed by both CPU and GPU, by default
it runs on the CPU, pressing ’a’ will toggle
it.

The CPU code can prevent interpenetration, this option is initially off, it can be toggled by
pressing ’i’. The option was turned off when the image above was captured, notice that the bottom
loops of the spring interpenetrate. The code for interpenetration can be found in time_step_cpu,
it uses a brute-force approach, comparing every segment of the helix to every other, making it very
slow. The goal of this assignment is not to use a clever broad-phase collision detection scheme to
avoid O(n2) comparisons, but instead use the GPU to do the calculations faster. (In “real life” one
might use both broad-scale collision detection and a GPU to do calculations.)

Problem 1: The routine time_step_cpu contains the CPU interpenetration code, clearly identi-
fied by comments. For this problem put the interpenetration code in CUDA kernel time_step, in
file hw5-cuda.cu. The time_step kernel is launched in a configuration with one thread per helix
segment. Each thread should test “its” segment against other segments. A correct solution will be
faster than the CPU, but should still be slow.

See hw5-sol-cuda.cu in the repository for the solution, search for “Problem 1”.

Problem 2: By GPU parallelism standards, the number of threads launched for the time_step

routine is not large. In the default configuration there are 160 segments, just five warps. That will
underutilize any GPU.

For this problem, add a new kernel to perform the interpenetration test. The new kernel should
be launched with more threads than segments, taking advantage of more parallelism. Modify
the existing time_step kernel so that it does not modify helix_position (but it still updates
helix_velocity and the other two state variables). The new kernel should compute forces based
on interpenetration tests, use that to update velocity, and then update the position.

A good solution of this problem requires the use of shared memory, atomic operations, and
synchronization. That will be covered next week.

See hw5-sol-cuda.cu in the repository for the solution, search for “Problem 2”.
A new kernel time_step_intersect is added. This kernel is launched with one block per helix segment (the

time_step kernel is launched with one thread per helix segment). Each block compares one segment, call it the a

1

http://www.ece.lsu.edu/koppel/gpup/
http://www.ece.lsu.edu/gp/refs/CUDA_C_Programming_Guide.pdf
http://www.ece.lsu.edu/koppel/gpup/2012/hw5-sol-cuda.cu.html


segment, against most of the others, call them the b segments. The index of the a segment is set to blockIdx.x and
the index of the first b segment to look at is set to threadIdx.x. Each block uses a shared variable to hold the force,
threadIdx.x is responsible for initializing it. When a thread detects an intersection it updates force using an atomic
add, which is convenient but slow. This is acceptable because even when the helix is compressed each segment will be
in contact with about four others, much less than the 80 × 6 = 480 segments that need to be examined (excluding
near-neighbors).

After the loop threadIdx.x 0 will use the force to update velocity.
Two small changes were made to “help” the compiler optimize. The distance between the segments in the CPU code

was found using a pNorm object, which needs to compute a square root in order to normalize. This object also provides
the distance between the objects squared. It is the distance squared which is used to detect intersection, and if there is no
intersection there is no need to perform a square root (which is used for finding the force). The NVIDIA compiler seemed
to be computing the square root before the branch which usually makes sense for a GPU since that would help if even only
one thread per warp would need it. But in our case the square root was only rarely needed. So, the tweak is to compute
the distance squared separately.

The second tweak was moving the neighbor branch, the one that checks min_idx_dist, next to the distance
check. That forces the GPU to load helix_position even when its not needed (which is rarely). Perhaps because
there is no gap in the pattern of accesses performance is better.

2


