Topics
Points, Vectors, Vertices, Coordinates
Dot Products, Cross Products
Lines, Planes, Intercepts

References

Many texts cover the linear algebra used for 3D graphics ...
... the texts below are good references, Akenine-Möller is more relevant to the class.
Appendix A in T. Akenine-Möller, E. Haines, N. Hoffman, "Real-Time Rendering," Third Edition, A. K. Peters Ltd.

Appendix A in Foley, van Dam, Feiner, Huges, "Computer Graphics: Principles and Practice," Second Edition, Addison Wesley.

Point:
Indivisible location in space.
E.g., $P_{1}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right], P_{2}=\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right]$

Vector:
Difference between two points.
E.g., $V=P_{2}-P_{1}=P_{1} P_{2}=\left[\begin{array}{l}4-1 \\ 5-2 \\ 6-3\end{array}\right]=\left[\begin{array}{l}3 \\ 3 \\ 3\end{array}\right]$.

Equivalently: $P_{2}=P_{1}+V$.

Don't confuse points and vectors!

Point-Related Terminology

Will define several terms related to points.
At times they may be used interchangeably.

Point:
A location in space.
Coordinate:
A representation of location.

Vertex:

Term may mean point, coordinate, or part of graphical object.
As used in class, vertex is a less formal term.
It might refer to a point, its coordinate, and other info like color.

Coordinate:
A representation of where a point is located.
Familiar representations:
3D Cartesian $P=(x, y, z)$.
2D Polar $P=(r, \theta)$.

In class we will use 3D homogeneous coordinates.

Homogeneous Coordinate:
A coordinate representation for points in 3D space consisting of four components...
... each component is a real number...
\ldots and the last component is non-zero.
Representation: $P=\left[\begin{array}{c}x \\ y \\ z \\ w\end{array}\right]$, where $w \neq 0$.
P refers to same point as Cartesian coordinate $(x / w, y / w, z / w)$.
To save paper sometimes written as (x, y, z, w).

Each point can be described by many homogeneous coordinates ...
\ldots for example, $(10,20,30)=\left[\begin{array}{c}10 \\ 20 \\ 30 \\ 1\end{array}\right]=\left[\begin{array}{c}5 \\ 10 \\ 15 \\ 0.5\end{array}\right]=\left[\begin{array}{c}20 \\ 40 \\ 60 \\ 2\end{array}\right]=\left[\begin{array}{c}10 w \\ 20 w \\ 30 w \\ w\end{array}\right]=\ldots$
\ldots these are all equivalent so long as $w \neq 0$.
Column matrix $\left[\begin{array}{c}x \\ y \\ z \\ 0\end{array}\right]$ could not be a homogeneous coordinate ...
... but it could be a vector.

Why not just Cartesian coordinates like (x, y, z) ?
The w simplifies certain computations.

Confused?
Then for a little while pretend that $\left[\begin{array}{l}x \\ y \\ z \\ 1\end{array}\right]$ is just (x, y, z).

Homogenized Homogeneous Coordinate
A homogeneous coordinate is homogenized by dividing each element by the last.
For example, the homogenization of $\left[\begin{array}{c}x \\ y \\ z \\ w\end{array}\right]$ is $\left[\begin{array}{c}x / w \\ y / w \\ z / w \\ 1\end{array}\right]$
Homogenization is also known as perspective divide.

Vector Arithmetic
Points just sit there, it's vectors that do all the work.
In other words, most operations defined on vectors.

Point/Vector Sum
The result of adding a point to a vector is a point.
Consider point with homogenized coordinate $P=(x, y, z, 1)$ and vector $V=(i, j, k)$.
The sum $P+V$ is the point with coordinate $\left[\begin{array}{l}x \\ y \\ z \\ 1\end{array}\right]+\left[\begin{array}{l}i \\ j \\ k\end{array}\right]=\left[\begin{array}{c}x+i \\ y+j \\ z+k \\ 1\end{array}\right]$
This follows directly from the vector definition.

Scalar/Vector Multiplication
The result of multiplying scalar a with a vector is a vector...
\ldots that is a times longer but points in the same or opposite direction...
\ldots if $a \neq 0$.
Let a denote a scalar real number and V a vector.
The scalar vector product is $\quad a V=a\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}a x \\ a y \\ a z\end{array}\right]$.

Vector/Vector Addition
The result of adding two vectors is another vector.
Let $V_{1}=\left[\begin{array}{l}x_{1} \\ y_{1} \\ z_{1}\end{array}\right]$ and $V_{2}=\left[\begin{array}{l}x_{2} \\ y_{2} \\ z_{2}\end{array}\right]$ denote two vectors.
The vector sum, denoted $U+V$, is $\left[\begin{array}{l}x_{1}+x_{2} \\ y_{1}+y_{2} \\ z_{1}+z_{2}\end{array}\right]$
Vector subtraction could be defined similarly...
... but doesn't need to be because we can use scalar/vector multiplication: $V_{1}-V_{2}=V_{1}+\left(-1 \times V_{2}\right)$.

Vector Addition Properties
Vector addition is associative:

$$
U+(V+W)=(U+V)+W
$$

Vector addition is commutative:

$$
U+V=V+U
$$

Vector Magnitude
The magnitude of a vector is its length, a scalar.
The magnitude of $V=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ denoted $\|V\|$, is $\sqrt{x^{2}+y^{2}+z^{2}}$.
The magnitude is also called the length and the norm.

Vector V is called a unit vector if $\|V\|=1$.
A vector is normalized by dividing each of its components by its length.
The notation \hat{V} indicates $V /\|V\|$, the normalized version of V.

The Vector Dot Product

The dot product of two vectors is a scalar.
Roughly, it indicates how much they point in the same direction.
Consider vectors $V_{1}=\left[\begin{array}{l}x_{1} \\ y_{1} \\ z_{1}\end{array}\right]$ and $V_{2}=\left[\begin{array}{l}x_{2} \\ y_{2} \\ z_{2}\end{array}\right]$.
The dot product of V_{1} and V_{2}, denoted $V_{1} \cdot V_{2}$, is $\quad x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}$.

Let U, V, and W be vectors.
Let a be a scalar.
Miscellaneous Dot Product Properties

$$
\begin{aligned}
& (U+V) \cdot W=U \cdot W+V \cdot W \\
& (a U) \cdot V=a(U \cdot V) \\
& U \cdot V=V \cdot U
\end{aligned}
$$

Orthogonality

The more casual term is perpendicular.
Vectors U and V are called orthogonal iff $U \cdot V=0$.
This is an important property for finding intercepts.

Angle
Let U and V be two vectors.
Then $U \cdot V=\|U\|\|V\| \cos \phi \ldots$
\ldots where ϕ is the smallest angle between the two vectors.

Cross Product

The cross product of two vectors results in a vector orthogonal to both.
The cross product of vectors V_{1} and V_{2}, denoted $V_{1} \times V_{2}$, is
$V_{1} \times V_{2}=\left[\begin{array}{l}x_{1} \\ y_{1} \\ z_{1}\end{array}\right] \times\left[\begin{array}{l}x_{2} \\ y_{2} \\ z_{2}\end{array}\right]=\left[\begin{array}{l}y_{1} z_{2}-z_{1} y_{2} \\ z_{1} x_{2}-x_{1} z_{2} \\ x_{1} y_{2}-y_{1} x_{2}\end{array}\right]$.

Cross Product Properties

Let U and V be two vectors and let $W=U \times V$.
Then both U and V are orthogonal to W.
$\|U \times V\|=\|U\|\|V\| \sin \phi$.
$U \times V=-V \times U$.
$(a U+b V) \times W=a(U \times W)+b(V \times W)$.

Lines, planes, and intercepts covered on the blackboard.

Transformation:
A mapping (conversion) from one coordinate set to another (e.g., from feet to meters) or to a new location in an existing coordinate set.

Particular Transformations to be Covered

Translation: Moving things around.
Scale: Change size.
Rotation: Rotate around some axis.
Projection: Moving to a surface.

Transform by multiplying 4×4 matrix with coordinate.

$$
P_{\text {new }}=M_{\text {transform }} P_{\text {old }}
$$

Scale Transform
$S(s, t, u)=\left(\begin{array}{cccc}s & 0 & 0 & 0 \\ 0 & t & 0 & 0 \\ 0 & 0 & u & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$.
$S(s, t, u)$ stretches an object s times along the x-axis, t times along the y-axis, and u times along the z-axis.

Scaling centered on the origin.

Rotation Transformations
$R_{x}(\theta)$ rotates around x axis by θ; likewise for R_{y} and R_{z}.

$$
\begin{aligned}
& R_{x}(\theta)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \theta & -\sin \theta & 0 \\
0 & \sin \theta & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right) . \\
& R_{y}(\theta)=\left(\begin{array}{cccc}
\cos \theta & 0 & \sin \theta & 0 \\
0 & 1 & 0 & 0 \\
-\sin \theta & 0 & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right) . \\
& R_{z}(\theta)=\left(\begin{array}{cccc}
\cos \theta & -\sin \theta & 0 & 0 \\
\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) .
\end{aligned}
$$

Translation Transform
$T(s, t, u)=\left(\begin{array}{cccc}1 & 0 & 0 & s \\ 0 & 1 & 0 & t \\ 0 & 0 & 1 & u \\ 0 & 0 & 0 & 1\end{array}\right)$.
Moves point s units along x axis, etc.

Miscellaneous Matrix Multiplication Math
Let M and N denote arbitrary 4×4 matrices.
Identity Matrix

$$
\begin{aligned}
& I=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) . \\
& I M=M I=M
\end{aligned}
$$

Matrix Inverse
Matrix A is an inverse of M iff $A M=M A=I$.
Will use M^{-1} to denote inverse.
Not every matrix has an inverse.
Computing inverse of an arbitrary matrix expensive ...
... but inverse of some matrices are easy to compute ...
\ldots for example, $T(x, y, z)^{-1}=T(-x,-y,-z)$.

Matrix Multiplication Rules

Is associative: $(L M) N=L(M N)$.
Is not commutative: $M N \neq N M$ for arbitrary M and N.
$(M N)^{-1}=N^{-1} M^{-1}$. (Note change in order.)

Projection Transform:
A transform that maps a coordinate to a space with fewer dimensions.
A projection transform will map a $3 D$ coordinate from our physical or graphical model to a $2 D$ location on our monitor (or a window).

Projection Types

Vague definitions on this page.

Perspective Projection

Points appear to be in "correct" location,...
... as though monitor were just a window into the simulated world.
This projection used when realism is important.

Orthographic Projection

A projection without perspective foreshortening.
This projection used when a real ruler will be used to measure distances.

Given

A graphical (or physical) model.

Lets put user and user's monitor in graphical model:
Location of user's eye: E.
A point on the user's monitor: Q.
Normal to user's monitor pointing away from user: n.

Goal:

Find S, point where line from E to P intercepts monitor (plane Q, n).
Line from E to P called the projector.
The user's monitor is in the projection plane.
The point S is called the projection of point P on the projection plane.

Solution:
Projector equation: $S=E+t \overrightarrow{E P}$.
Projection plane equation: $\overrightarrow{Q S} \cdot n=0$.
Find point S that's on projector and projection plane:

$$
\begin{gathered}
\overrightarrow{Q(E+t \overrightarrow{E P})} \cdot n=0 \\
(E+t \overrightarrow{E P}-Q) \cdot n=0 \\
\overrightarrow{Q E} \cdot n+t \overrightarrow{E P} \cdot n=0 \\
t=\frac{\overrightarrow{E Q} \cdot n}{\overrightarrow{E P} \cdot n} \\
S=E+\frac{\overrightarrow{E Q} \cdot n}{\overrightarrow{E P} \cdot n} \overrightarrow{E P}
\end{gathered}
$$

Note: $\overrightarrow{E Q} \cdot n$ is distance from user to plane in direction $n \ldots$
\ldots and $\overrightarrow{E P} \cdot n$ is distance from user to point in direction n.

To simplify projection:
Fix $E=(0,0,0)$: Put user at origin.
Fix $n=(0,0,-1)$: Make "monitor" parallel to $x y$ plane.
Result:

$$
\begin{gathered}
S=E+\frac{\overrightarrow{E Q} \cdot n}{\overrightarrow{E P} \cdot n} \overrightarrow{E P} \\
S=\frac{q_{z}}{p_{z}} P
\end{gathered}
$$

The key operation in perspective projection is dividing out by z (given our geometry).

