

DA-05536-001_v04 | September 2012

Application Note

cuobjdump

www.nvidia.com

cuobjdump DA-05536-001_v04 | ii

DOCUMENT CHANGE HISTORY

DA-05536-001_v04

Version Date Authors Description of Change

-- August 25, 2010 CUDA Limited release.

01 October 15, 2010 CUDA Added Instruction set for Fermi GPUs.

02 January 13, 2011 CUDA Updated format for valid destination and
source locations for GT200 and the Fermi
instruction sets.

03 January 21, 2011 CUDA Updated Overview section and added list of
supported binary formats by platform.

04 September 13, 2012 CUDA Updated supported options.

Added Instruction set for Kepler GPUs.

www.nvidia.com

cuobjdump DA-05536-001_v04 | iii

TABLE OF CONTENTS

cuobjdump .. 4

Overview ... 4

Supported Options .. 5

GT200 Instruction Set .. 6

Fermi Instruction Set ... 9

Kepler Instruction Set ... 13

www.nvidia.com

cuobjdump DA-05536-001_v04 | 4

cuobjdump

OVERVIEW

NVIDIA® CUDATM provides cuobjdump, a tool similar to the Linux command-line tool

objdump. It extracts information from CUDA object files created by the NVIDIA®

CUDATM compiler nvcc and presents them in human readable format. CUDA binaries

generated by the NVIDIA® CUDATM compiler nvcc are referred to as cubins. The

cuobjdump tool displays the assembly instructions for a particular kernel, making it

useful for optimization and debugging by advanced users.

Table 1 contains a list of supported binary formats by platform.

Table 1. Supported Formats by Platform

 Linux Windows Mac

Executable Binary Yes Yes No

Non-executable cubin Binary Yes Yes Yes

This document contains a description of the various options supported by cuobjdump,

and instruction sets supported on the GT200, Fermi and Kepler GPUs.

cuobjdump

www.nvidia.com

cuobjdump DA-05536-001_v04 | 5

SUPPORTED OPTIONS

Table 2 contains the supported options to cuobjdump, along with a description of what

each option does. Each option has a long name and a short name, which can be used

interchangeably.

Table 2. Supported cuobjdump Options

Option(long) Option(short) Description

--all-fatbin -all Dump all fatbin sections. By default will only
dump contents of executable fatbin (if exists),
else relocatable fatbin if no executable fatbin.

--dump-cubin -cubin Dump cubin for all listed device functions.

--dump-elf -elf Dump ELF Object sections.

--dump-elf-symbols -symbols Dump ELF symbol names.

--dump-function-
names

-fnam Dump names of device functions. This option is
implied if options --dump-sass, --dump-cubin or --
dump-ptx are also given.

--dump-ptx -ptx Dump PTX for all listed device functions.

--dump-sass -sass Dump assembly for all listed device functions.

--file <filename>,... -f Specify names of source files whose fat binary
structures must be dumped. Source files may be
specified by the full path by which they were
compiled using nvcc, or file name only (omitting
the directory part), of file base name only
(omitting directory and the '.cu' file extension).

--function <function
name>,...

-fun Specify names of device functions whose fat binary
structures must be dumped.

--help -h Print this help information on this tool.

--options-file <file>,... -optf Include command line options from specified file.

--sort-functions -sort Sort functions when dumping sass.

--version -V Print version information on this tool.

cuobjdump

www.nvidia.com

cuobjdump DA-05536-001_v04 | 6

GT200 INSTRUCTION SET

When the -sass option is used on cubins containing code for Compute 1.x devices, the

following instructions are output by cuobjdump in the following format:

(instruction) (destination) (source1), (source2)…

Valid destination and source locations include:

 RX for registers

 AX for address registers

 SRX for special system-controlled registers

 CX for condition registers

 global14 r[X] for global memory referenced by an address in a register

 g[X] for shared memory

 c[X] for constant memory

 local[X] for local memory

Table 3 lists valid instructions for the GT200 GPUs.

Table 3. GT200 Instruction Set

Opcode Description

A2R Move address register to data register

ADA Add immediate to address register

BAR CTA-wide barrier synchronization

BRA Conditional branch

BRK Conditional break from a loop

BRX Fetch an address from constant memory and branch to it

C2R Conditional code to data register

CAL Unconditional subroutine call

COS Cosine

DADD Double-precision floating point addition

DFMA Double-precision floating point fused multiply-add

DMAX Double-precision floating point maximum

DMIN Double-precision floating point minimum

DMUL Double-precision floating point multiply

DSET Double-precision floating point conditional set

EX2 Exponential base two function

F2F Copy floating-point value with conversion to a different
floating-point type

F2I Copy floating-point value with conversion to integer

cuobjdump

www.nvidia.com

cuobjdump DA-05536-001_v04 | 7

Opcode Description

FADD/FADD32/FADD32I Single-precision floating point addition

FCMP Single-precision floating point compare

FMAD/FMAD32/ FMAD32I Single-precision floating point multiply-add

FMAX Single-precision floating point maximum

FMIN Single-precision floating point minimum

FMUL/FMUL32/FMUL32I Single-precision floating point multiply

FSET Single-precision floating point conditional set

G2R Move from shared memory to register. A .LCK suffix
indicates that the bank is locked until a R2G.UNL has
been performed; this is used to implement shared
memory atomics.

GATOM.IADD/EXCH/
CAS/IMIN/IMAX/INC/
DEC/ IAND/IOR/IXOR

Global memory atomic operations; performs both an
atomic operation and returns the original value

GLD Load from global memory

GRED.IADD/IMIN/IMAX/
INC/DEC/IAND/IOR/ IXOR

Global memory reduction operations; performs only an
atomic operation with no return value

GST Store to global memory

I2F Copy integer value to floating-point with conversion

I2I Copy integer value to integer with conversion

IADD/IADD32/IADD32I Integer addition

IMAD/ IMAD32/IMAD32I Integer multiply-add

IMAX Integer maximum

IMIN Integer minimum

IMUL/IMUL32/IMUL32I Integer multiply

ISAD/ISAD32 Sum of absolute difference

ISET Integer conditional set

LG2 Floating point logarithm base 2

LLD Load from local memory

LST Store to local memory

LOP Logical operation (AND/OR/XOR)

MOV/MOV32 Move source to destination

MVC Move from constant memory to destination

MVI Move immediate to destination

NOP No operation

R2A Move register to address register

R2C Move data register to conditional code

R2G Store to shared memory. When used with the .UNL
suffix, releases a previously held lock on that shared
memory bank

RCP Single-precision floating point reciprocal

cuobjdump

www.nvidia.com

cuobjdump DA-05536-001_v04 | 8

Opcode Description

RET Conditional return from subroutine

RRO Range reduction operator

RSQ Reciprocal square root

S2R Move special register to register

SHL Shift left

SHR Shift right

SIN Sine

SSY Set synchronization point; used before potentially
divergent instructions

TEX/TEX32 Texture fetch

VOTE Warp-vote primitive

cuobjdump

www.nvidia.com

cuobjdump DA-05536-001_v04 | 9

FERMI INSTRUCTION SET

When the -sass option is used on cubins containing code for Compute 2.x devices, the

following instructions are output by cuobjdump in the following format:

(instruction) (destination) (source1), (source2)…

Valid destination and source locations include:

 RX for registers

 SRX for special system-controlled registers

 PX for condition registers

 c[X] for constant memory

Table 4 lists valid instructions for the Fermi GPUs.

Table 4. Fermi Instruction Set

Opcode Description

Floating Point Instructions

FFMA FP32 Fused Multiply Add

FADD FP32 Add

FCMP FP32 Compare

FMUL FP32 Multiply

FMNMX FP32 Minimum/Maximum

FSWZ FP32 Swizzle

FSET FP32 Set

FSETP FP32 Set Predicate

RRO FP Range Reduction Operator

MUFU FP Multi-Function Operator

DFMA FP64 Fused Multiply Add

DADD FP64 Add

DMUL FP64 Multiply

DMNMX FP64 Minimum/Maximum

DSET FP64 Set

DSETP FP64 Set Predicate

Integer Instructions

IMAD Integer Multiply Add

cuobjdump

www.nvidia.com

cuobjdump DA-05536-001_v04 | 10

Opcode Description

IMUL Integer Multiply

IADD Integer Add

ISCADD Integer Scaled Add

ISAD Integer Sum Of Abs Diff

IMNMX Integer Minimum/Maximum

BFE Integer Bit Field Extract

BFI Integer Bit Field Insert

SHR Integer Shift Right

SHL Integer Shift Left

LOP Integer Logic Op

FLO Integer Find Leading One

ISET Integer Set

ISETP Integer Set Predicate

ICMP Integer Compare and Select

POPC Population Count

Conversion Instructions

Opcode Description

F2F Float to Float

F2I Float to Integer

I2F Integer to Float

I2I Integer to Integer

Movement Instructions

Opcode Description

MOV Move

SEL Conditional Select/Move

PRMT Permute

Predicate/CC Instructions

Opcode Description

P2R Predicate to Register

R2P Register to Predicate

CSET CC Set

cuobjdump

www.nvidia.com

cuobjdump DA-05536-001_v04 | 11

Opcode Description

CSETP CC Set Predicate

PSET Predicate Set

PSETP Predicate Set Predicate

Texture Instructions

TEX Texture Fetch

TLD Texture Load

TLD4 Texture Load 4 Texels

TXQ Texture Query

Compute Load/Store Instructions

LDC Load from Constant

LD Load from Memory

LDU Load Uniform

LDL Load from Local Memory

LDS Load from Shared Memory

LDLK Load and Lock

LDSLK Load from Shared Memory and Lock

LD_LDU LD_LDU is a combination of a generic load LD with a load uniform
LDU

LDS_LDU LDS_LDU is combination of a Shared window load LDS with a load
uniform LDU.

ST Store to Memory

STL Store to Local Memory

STUL Store and Unlock

STS Store to Shared Memory

STSUL Store to Shared Memory and Unlock

ATOM Atomic Memory Operation

RED Atomic Memory Reduction Operation

CCTL Cache Control

CCTLL Cache Control (Local)

MEMBAR Memory Barrier

Surface Memory Instructions

SULD Surface Load

SULEA Surface Load Effective Address

cuobjdump

www.nvidia.com

cuobjdump DA-05536-001_v04 | 12

Opcode Description

SUST Surface Store

SURED Surface Reduction

SUQ Surface Query

Control Instructions

BRA Branch to Relative Address

BRX Branch to Relative Indexed Address

JMP Jump to Absolute Address

JMX Jump to Absolute Indexed Address

CAL Call to Relative Address

JCAL Call to Absolute Address

RET Return from Call

BRK Break from Loop

CONT Continue in Loop

LONGJMP Long Jump

SSY Set Sync Relative Address

PBK Pre-Break Relative Address

PCNT Pre-Continue Relative Address

PRET Pre-Return Relative Address

PLONGJMP Pre-Long-Jump Relative Address

BPT Breakpoint/Trap

EXIT Exit Program

Miscellaneous Instructions

NOP No Operation

S2R Special Register to Register

B2R Barrier to Register

LEPC Load Effective PC

BAR Barrier Synchronization

VOTE Query condition across threads

cuobjdump

www.nvidia.com

cuobjdump DA-05536-001_v04 | 13

KEPLER INSTRUCTION SET

When the -sass option is used on cubins containing code for Compute 3.x devices, the

following instructions are output by cuobjdump in the following format:

(instruction) (destination) (source1), (source2)…

Valid destination and source locations include:

 RX for registers

 SRX for special system-controlled registers

 PX for condition registers

 c[X] for constant memory

Table 5 lists valid instructions for the Kepler GPUs.

Table 5. Kepler Instruction Set

Opcode Description

Floating Point Instructions

FFMA FP32 Fused Multiply Add

FADD FP32 Add

FCMP FP32 Compare

FMUL FP32 Multiply

FMNMX FP32 Minimum/Maximum

FSWZ FP32 Swizzle

FSET FP32 Set

FSETP FP32 Set Predicate

FCHK FP32 Division Test

RRO FP Range Reduction Operator

MUFU FP Multi-Function Operator

DFMA FP64 Fused Multiply Add

DADD FP64 Add

DMUL FP64 Multiply

DMNMX FP64 Minimum/Maximum

DSET FP64 Set

DSETP FP64 Set Predicate

Integer Instructions

cuobjdump

www.nvidia.com

cuobjdump DA-05536-001_v04 | 14

Opcode Description

IMAD Integer Multiply Add

IMADSP Integer Extract Multiply Add

IMUL Integer Multiply

IADD Integer Add

ISCADD Integer Scaled Add

ISAD Integer Sum Of Abs Diff

IMNMX Integer Minimum/Maximum

BFE Integer Bit Field Extract

BFI Integer Bit Field Insert

SHR Integer Shift Right

SHL Integer Shift Left

SHF Integer Funnel Shift

LOP Integer Logic Op

FLO Integer Find Leading One

ISET Integer Set

ISETP Integer Set Predicate

ICMP Integer Compare and Select

POPC Population Count

Conversion Instructions

Opcode Description

F2F Float to Float

F2I Float to Integer

I2F Integer to Float

I2I Integer to Integer

Movement Instructions

Opcode Description

MOV Move

SEL Conditional Select/Move

PRMT Permute

SHFL Warp Shuffle

Predicate/CC Instructions

cuobjdump

www.nvidia.com

cuobjdump DA-05536-001_v04 | 15

Opcode Description

Opcode Description

P2R Predicate to Register

R2P Register to Predicate

CSET CC Set

CSETP CC Set Predicate

PSET Predicate Set

PSETP Predicate Set Predicate

Texture Instructions

TEX Texture Fetch

TLD Texture Load

TLD4 Texture Load 4 Texels

TXQ Texture Query

Compute Load/Store Instructions

LDC Load from Constant

LD Load from Memory

LDG Non-coherent Global Memory Load

LDL Load from Local Memory

LDS Load from Shared Memory

LDSLK Load from Shared Memory and Lock

ST Store to Memory

STL Store to Local Memory

STS Store to Shared Memory

STSCUL Store to Shared Memory Conditionally and Unlock

ATOM Atomic Memory Operation

RED Atomic Memory Reduction Operation

CCTL Cache Control

CCTLL Cache Control (Local)

MEMBAR Memory Barrier

Surface Memory Instructions

SUCLAMP Surface Clamp

SUBFM Surface Bit Field Merge

SUEAU Surface Effective Address

cuobjdump

www.nvidia.com

cuobjdump DA-05536-001_v04 | 16

Opcode Description

SULDGA Surface Load Generic Address

SUSTGA Surface Store Generic Address

Control Instructions

BRA Branch to Relative Address

BRX Branch to Relative Indexed Address

JMP Jump to Absolute Address

JMX Jump to Absolute Indexed Address

CAL Call to Relative Address

JCAL Call to Absolute Address

RET Return from Call

BRK Break from Loop

CONT Continue in Loop

SSY Set Sync Relative Address

PBK Pre-Break Relative Address

PCNT Pre-Continue Relative Address

PRET Pre-Return Relative Address

BPT Breakpoint/Trap

EXIT Exit Program

Miscellaneous Instructions

NOP No Operation

S2R Special Register to Register

B2R Barrier to Register

BAR Barrier Synchronization

VOTE Query condition across threads

www.nvidia.com

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER
DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO
WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR
A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication of otherwise under
any patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to change
without notice. This publication supersedes and replaces all other information previously supplied. NVIDIA
Corporation products are not authorized as critical components in life support devices or systems without
express written approval of NVIDIA Corporation.

OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Trademarks

NVIDIA, the NVIDIA logo, and CUDA are trademarks and/or registered trademarks of NVIDIA Corporation in the
U.S. and other countries. Other company and product names may be trademarks of the respective companies
with which they are associated.

Copyright

© 2012, 2011, 2010 NVIDIA Corporation. All rights reserved.

