
2

When Prefetching Works, When It Doesn’t, and Why

JAEKYU LEE, HYESOON KIM, and RICHARD VUDUC,
Georgia Institute of Technology

In emerging and future high-end processor systems, tolerating increasing cache miss latency and properly
managing memory bandwidth will be critical to achieving high performance. Prefetching, in both hardware
and software, is among our most important available techniques for doing so; yet, we claim that prefetching
is perhaps also the least well-understood.

Thus, the goal of this study is to develop a novel, foundational understanding of both the benefits and
limitations of hardware and software prefetching. Our study includes: source code-level analysis, to help in
understanding the practical strengths and weaknesses of compiler- and software-based prefetching; a study
of the synergistic and antagonistic effects between software and hardware prefetching; and an evaluation
of hardware prefetching training policies in the presence of software prefetching requests. We use both
simulation and measurement on real systems. We find, for instance, that although there are many opportu-
nities for compilers to prefetch much more aggressively than they currently do, there is also a tangible risk
of interference with training existing hardware prefetching mechanisms. Taken together, our observations
suggest new research directions for cooperative hardware/software prefetching.

Categories and Subject Descriptors: B.3.2 [Memory Structures]: Design Styles—Cache memories;
B.3.3 [Memory Structures]: Performance Analysis and Design Aids—Simulation; D.3.4 [Programming
Languages]: Processors—Optimization

General Terms: Experimentation, Performance

Additional Key Words and Phrases: Prefetching, cache

ACM Reference Format:
Lee, J., Kim, H., and Vuduc, R. 2012. When prefetching works, when it doesn’t, and why. ACM Trans.
Archit. Code Optim. 9, 1, Article 2 (March 2012), 29 pages.
DOI = 10.1145/2133382.2133384 http://doi.acm.org/10.1145/2133382.2133384

1. INTRODUCTION

Although a variety of software and hardware prefetching mechanisms for tolerating
cache miss latency exist [Callahan et al. 1991; Perez et al. 2004; Vanderwiel and
Lilja 2000], only relatively simple software prefetching algorithms have appeared in
state-of-the-art compilers like icc [ICC] and gcc [GCC-4.0]. Therefore, performance-
aware programmers often have to insert prefetching intrinsics manually [Intel
2011]. Unfortunately, this state of affairs is problematic for two reasons. First, there
are few rigorous guidelines on how best to insert prefetch intrinsics. Secondly, the

We gratefully acknowledge the support of the National Science Foundation (NSF) CCF-0903447, NSF/SRC
task 1981, NSF CAREER award 0953100, NSF CAREER award 1139083; the U.S. Department of Energy
grant DESC0004915; Sandia National Laboratories; the Defense Advanced Research Projects Agency; Intel
Corporation; Microsoft Research; and NVIDIA. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect those of NSF, SRC, DOE,
DARPA, Microsoft, Intel, or NVIDIA.
Author’s address: H. Kim; email: hyesoon@cc.gatech.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permission may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701, USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2012 ACM 1544-3566/2012/03-ART2 $10.00

DOI 10.1145/2133382.2133384 http://doi.acm.org/10.1145/2133382.2133384

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 1, Article 2, Publication date: March 2012.

2:2 J. Lee et al.

Fig. 1. Summary of the software and hardware prefetching and their interactions. Benchmarks are
sorted in decreasing order of the speedup of the best software+hardware prefetching (i.e., the best among
SW, SW+GHB, and SW+STR) over the best performing hardware prefetching (i.e., the best among Base, GHB,
and STR).

complexity of the interaction between software and hardware prefetching is not well
understood. In this study, we try to shed light on these issues. Our goal is to provide
guidelines for inserting prefetch intrinsics in the presence of a hardware prefetcher
and, more importantly, to identify promising new directions for automated cooperative
software/hardware prefetching schemes.

We summarize the complex interactions among software and hardware prefetching
schemes in Figure 1.1 Specifically, we show execution time (left y-axis) of the SPEC
CPU 2006 benchmarks (x-axis) under a variety of software and hardware prefetch-
ing schemes. For each benchmark, we evaluate three binaries and three different
simulated hardware prefetching schemes. All execution times are normalized to the
execution time of the corresponding baseline binaries (Base2) that have only compiler-
inserted software prefetchers without any hardware prefetching.3 The GHB and STR
bars (without the SW label) correspond to the baseline binaries running on two hard-
ware configurations: a GHB hardware prefetcher [Nesbit and Smith 2004; Nesbit et al.
2004] and a stream-based prefetcher [Tendler et al. 2002], respectively. Lastly, the
“SW+...” binaries include both compiler-inserted prefetches as well as our own manu-
ally inserted explicit software prefetch intrinsics. Observe first that baseline binaries
do not provide any performance benefits over SW, because the compiler only conserva-
tively inserts software prefetch instructions.

To see the net effects and interactions among the prefetching schemes, we addi-
tionally calculate the speedup of the best software+hardware prefetching scheme (i.e.,
the best among SW, SW+GHB, and SW+STR) over the best performing hardware prefetching
(i.e., the best among Base, GHB, and STR). These speedups are shown as labeled horizon-
tal dashes in Figure 1 (scale shown on the right y-axis). Based on these speedups, we
group the benchmarks into three categories: positive, neutral, and negative. The milc,
GemsFDTD, mcf, lbm, libquantum, and gcc benchmarks show performance improvements
from software prefetching in excess of 5% (positive). By contrast, the sphinx3 and
leslie3d benchmarks degrade performance more than 5% by using software prefetch-
ing (negative). We consider the remaining four benchmarks to exhibit neutral behav-
ior. We can clearly see that the interactions among software and hardware prefetching
yield a variety of benchmark-dependent performance behaviors. The goal of our study
is to explore this interaction.

1Here, we quickly preview these interactions, which Section 4 describes in greater detail.
2The performance result of the baseline binaries are presented in Table V.
3We use icc compilers as default, but we also present the results with gcc compilers in Section 5.3.

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 1, Article 2, Publication date: March 2012.

When Prefetching Works, When It Doesn’t, and Why 2:3

Although others have studied the benefits and limitations of hardware and soft-
ware prefetching [Emma et al. 2005; Perez et al. 2004; Vanderwiel and Lilja
2000], we are not aware of any study that explains why some benchmarks show
positive/neutral/negative interactions from combined software and hardware prefetch-
ing with concrete examples from real benchmarks. We seek to provide such insights
in this article by analyzing the source code, data structures, and algorithms used in
applications. In particular, we seek answers to the following questions.

(1) What are the limitations and overheads of software prefetching?
(2) What are the limitations and overheads of hardware prefetching?
(3) When is it beneficial to use software and/or hardware prefetching?

Among our numerous findings, we show that when software prefetching targets
short array streams, irregular memory address patterns, and L1 cache miss reduction,
there is an overall positive impact with code examples. This observation is consistent
with previous software prefetching work such as Intel’s optimization guidelines [Intel
2011]. However, in this article we demonstrate these observations with actual code
examples and empirical data. Furthermore, we also observe that software prefetching
can interfere with the training of the hardware prefetcher, resulting in strong negative
effects, especially when using software prefetch instructions for a part of streams.

Our study aims to provide a deeper understanding of the interactions between soft-
ware and hardware prefetching, focusing on schemes currently available in real sys-
tems, rather than proposing new schemes or evaluating various hardware/software
prefetchers independently. Hence, our hardware prefetching schemes are limited to
stream and stride prefetchers, since as far as we know these are the only two imple-
mented commercially today. Similarly, the software prefetching schemes we consider
use prefetch intrinsics on top of gcc or icc compiler-inserted prefetching. Furthermore,
we also use both real systems (Intel’s Core 2 [Intel 2007] and Nehalem [Intel 2009])
and simulations for our study. Simulations are used for more sophisticated experi-
ments and real systems are used to confirm our findings. Although there are some
discrepancies between simulations and real machines, most benchmarks show similar
trends, especially for interactions between software and hardware prefetching.

2. BACKGROUND ON SOFTWARE AND HARDWARE PREFETCHING

Table I summarizes common data structures, their corresponding data access patterns,
and the hardware/software prefetching mechanisms previously proposed for each. The
Hardware pref. column suggests possible hardware prefetching mechanisms that are
suitable for the respective data structures.4 The Software pref. column includes pos-
sible software prefetching mechanisms. In this study, we insert prefetch intrinsics not
only for regular structures but also for some irregular data structures, such as Re-
cursive Data Structures (RDS). As Table I indicates, array and some RDS data struc-
ture accesses can be easily predicted, and thereby prefetched, by software. However,
data structures like hashing are much harder to prefetch effectively. Thus, several
hardware and software prefetching mechanisms have been proposed to predict future
cache miss addresses of complex data structures. Note that, in this article, we refer to
unit-stride cache-line accesses as streams and access stride distances greater than two
cache lines as strided. In our evaluation, we use stream prefetcher, GHB prefetcher,
and content-based prefetcher as hardware-based prefetching mechanisms.

4Note that there are other hardware prefetchers that aim generic data structures such as dead-block-based
prefetching [Lai et al. 2001].

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 1, Article 2, Publication date: March 2012.

2:4 J. Lee et al.

Table I. Data Structures and Corresponding Prefetching

(a is the element to be prefetched, D is prefetch distance)
Structure Code Pattern Size of a Index Hardware pref. Software pref.

Array a[i] Stream < cache block direct stream [Jouppi 1990] a[i+D]

Array a[i], a[i][const] Stride > cache block direct
stride [Baer and Chen 1991]

a[i+D][j]GHB [Nesbit and Smith 2004]

Array a[b[i]] irregular < cache block indirect

content-directed (CDP) [Cooksey et al. 2002]

a[b[i+D]]
markov [Joseph and Grunwald 1997]

pointer cache [Collins et al. 2002]
jump pointer [Roth and Sohi 1999]

RDS a = a→next
stride [Wu 2002]

indirect
CDP, markov a→next→next,

irregular pointer cache, jump pointer Luk-Mowry [Luk and Mowry 1996]

Hash b[f(i)]→a irregular indirect
helper threads, Group Prefetching [Chen et al. 2007],

pre-computation [Collins et al. 2001] SPAID [Lipasti et al. 1995]
[Luk 2001; Zilles and Sohi 2001] Push-pull [Yang et al. 2004]

no structure complex code regular/irregular helper threads, pre-computation

Table II. Different Prefetch Hints in Intrinsic

Hint
Cache Insertion

Remarks
L1 L2 L3

MM HINT T0 (T0) O O O Temporal data with respect to all level caches
MM HINT T1 (T1) X O O Temporal data with respect to first level cache

MM HINT T2 (T2) X X O Temporal data with respect to second level cache
MM HINT NTA (NTA) O X X Non-temporal data with respect to all level caches

Table III. Prefetch Classifications

Classification Accuracy Timeliness

Timely accurate best prefetching
Late accurate demand request arrives before prefetched block is serviced

Early accurate demand request arrives after the block is evicted from a cache
Redundant dc accurate the same cache block is in data cache

Redundant mshr accurate the same cache block is in MSHR5

Incorrect inaccurate block is never used even after the block is evicted from a cache

2.1 Software Prefetch Intrinsics

When manually inserting prefetch requests, we use software prefetch intrinsics that
are part of the x86 SSE SIMD extensions [Intel 2008, 2011]. An example of such an
instrinsic for x86 systems is mm prefetch(char *ptr, int hint), which requires the pro-
grammer to specify both a prefetch address as well as a prefetch usage hint. Table II
shows the possible hints. One intrinsic is roughly translated to two instructions for di-
rect address prefetches or four instructions for indirect memory addresses. Section 2.4
explains this translation in detail.

2.2 Prefetch Classification

We classify prefetch requests into the six categories listed in Table III. Figure 2 illus-
trates this classification on a timeline. For example, if a demand access occurs after its
corresponding prefetch request but before it is inserted into the cache, we classify the
prefetch as “late.”

2.3 Software Prefetch Distance

Prefetching is useful only if prefetch requests are sent early enough to fully hide mem-
ory latency. The memory address of the cache block to be prefetched in an array data

5Miss Status Holding Register [Kroft 1981].

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 1, Article 2, Publication date: March 2012.

When Prefetching Works, When It Doesn’t, and Why 2:5

Fig. 2. Prefetch timeliness.

Fig. 3. Assembly code of software prefetch intrinsic.

structure is calculated by adding a constant value D to the array index. This value
D is called the prefetch distance. We define prefetch distance as the distance ahead
of which a prefetch should be requested on a memory address. The prefetch distance
D for an array data structure a in Table I can be calculated as follows [Mowry et al.
1992]:

D ≥
⌈

l
s

⌉
(1)

where l is the prefetch latency and s is the length of the shortest path through the loop
body. The average memory latency could vary at runtime and the average execution
time of one loop iteration can also vary, so the prefetch distance should be chosen in
such a way that it is large enough to hide the latency. However, if it is too large,
prefetched data could evict useful cache blocks, and the elements in the beginning
of the array may not be prefetched, leading to less coverage and more cache misses.
Hence the prefetch distance has a significant effect on the overall performance of the
prefetcher. We discuss the effect of software prefetch distance in greater detail in
Section 5.1.3.

2.4 Direct and Indirect Memory Indexing

There are two types of memory indexing, namely, direct and indirect. Typically, direct
memory indexing can be easily prefetched by hardware since the memory addresses
show regular stream/stride behavior, but indirect memory indexing requires special
hardware prefetching mechanisms. On the contrary, indirect indexing is relatively
simpler to compute in software. Thus, we expect software prefetching to be more effec-
tive than hardware prefetching for the indirect indexing case.

Even though the address calculation is trivial in software, indirect prefetch requests
still have a higher overhead than direct memory access. Figure 3 shows a simplified
version of x86 instructions for direct/indirect prefetch requests for a[i]/a[b[i]]. In the
case of direct memory indexing, only one prefetch load instruction, PREFETCH, is
required other than memory index calculation. For indirect memory accesses, however,
two loads are required. The first load is usually a regular load because the subsequent
instruction is dependent on the first load instruction. Hence, prefetching an indirect
memory index usually has a higher overhead than that of direct memory index. Note
that the first load instruction can be prefetched. In that case, we need two levels of
prefetch streams.

3. POSITIVE AND NEGATIVE IMPACTS OF SOFTWARE PREFETCHING

In this section, we summarize the positive and negative impacts of software prefetch-
ing compared to hardware prefetching, as well as both the synergistic and antagonistic
effects between the two.

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 1, Article 2, Publication date: March 2012.

2:6 J. Lee et al.

3.1 Benefits of Software Prefetching over Hardware Prefetching

3.1.1 Large Number of Streams (Limited Hardware Resources). The number of streams in
the stream prefetcher is limited by hardware resources, such as stream detectors and
book-keeping mechanisms. For instance, Intel Pentium-M and Core 2 can issue 8 and
16 stream prefetches, respectively [Intel 2004, 2007]. Unfortunately, in some bench-
marks, the number of streams exceeds the hardware’s capacity, especially in the case
of scientific computing workloads that have multiple streams. For example, lbm, a
stencil-based computation, a 3D grid data structure and loop references all 27 near-
est neighbors for each grid point (b [i][j][k] = (a[i][j][k] + a[i][j][k + 1] + a[i][j][k − 1] +
a[i][j− 1][k] + a[i][j+ 1][k] + ...)/27). Software prefetching can insert prefetch requests
independently for each stream in lbm, whereas it is difficult for hardware prefetchers
that are typically easily confused when there are too many streams.

3.1.2 Short Streams. Hardware prefetchers require training time to detect the direc-
tion and distance of a stream or stride. Even aggressive hardware prefetchers require
at least two cache misses to detect the direction of stream. If the length of stream is
extremely short, there will not be enough cache misses to train a hardware prefetcher
and load useful cache blocks. For example, milc exhibits short stream behavior. In
particular, it operates on many 3x3 matrices using 16 bytes per element, so the total
size of the matrix is 144 bytes, or just three cache blocks.6 Therefore, these streams are
too short to train the hardware prefetchers. Although there is a new hardware-based
prefetching specifically for short streams [Hur and Lin 2006, 2009], no commercial
systems presently use it.

3.1.3 Irregular Memory Access. As shown in Table I, we can typically prefetch various
kinds of irregular data structures by inserting appropriate prefetch intrinsics, in con-
trast to hardware prefetchers, which usually require very complex structures. An RDS
example from our benchmark suite is the mcf benchmark.

3.1.4 Cache Locality Hint. Hardware prefetchers in today’s high-performance proces-
sors such as Nehalem [Intel 2009] and Barcelona [AMD] place the data in the lower-
level cache of the requesting core, whereas most software prefetched data is placed
directly into the L1 cache. Lower-level (L2 or L3) prefetching block insertion greatly
reduces the higher level (L1) cache pollution, but L2 to L1 latency can degrade perfor-
mance significantly. In the software prefetching mechanism, there is greater flexibility
of placing data in the right cache level. In particular, there is a prefetch hint (Table II)
associated with every prefetch request. Current hardware prefetchers either have to
apply the same cache insertion policy or they require complex hardware mechanisms
to differentiate between the individual prefetches to place data in a smart manner.

3.1.5 Loop Bounds. We can determine loop bounds in array data structures in soft-
ware with little or no effort. Several methods prevent generating prefetch requests
out of array bounds in software such as loop unrolling, software pipelining, and using
branch instructions [Chen and Baer 1994; Vanderwiel and Lilja 2000]. The same is
not possible in hardware, especially when the hardware prefetcher is aggressive (large
prefetch distance and high prefetch degree). However, overly aggressive prefetch-
ing results in early or incorrect prefetch requests, in addition to consuming memory
bandwidth.

6The cache block size is 64B in our all evaluations.

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 1, Article 2, Publication date: March 2012.

When Prefetching Works, When It Doesn’t, and Why 2:7

Fig. 4. Instruction count increase.

3.2 Negative Impacts of Software Prefetching

(1) Increased Instruction Count. Unlike hardware prefetching, software prefetch in-
structions consume fetch and execution bandwidth and machine resources, as
Figure 4 suggests. For example, the number of instructions in bwaves increases
by more than 100% due to software prefetches.

(2) Static Insertion. The programmer or the compiler determines the data to be
prefetched and the corresponding prefetch distance. The decision to prefetch and
choice of these parameters are made statically, and therefore cannot adapt to
runtime behavioral changes such as varying memory latency, effective cache size,
and bandwidth, especially in heterogeneous architectures. Adaptivity is important
because it is well-known that the pattern of memory addresses can exhibit phase
behavior [Zhang et al. 2006]. In hardware, prefetch distance and prefetching de-
gree are usually fixed as well, although there are some recently proposed feedback-
driven adaptive hardware prefetching mechanisms [Ebrahimi et al. 2009; Srinath
et al. 2007]. In software, adaptive mechanisms are largely nonexistent.

(3) Code Structure Change. When the number of instructions in a loop is extremely
small, it can be challenging to insert software prefetching instructions to provide
timely prefetching requests because there are not enough computations between
prefetching instructions and demand requests. Therefore, code structure changes,
such as loop splitting, are required. For some cases, because of excessive increases
in the number of instructions, inserting software prefetching becomes difficult.

3.3 Synergistic Effects when Using Software and Hardware Prefetching Together

(1) Handling Multiple Streams. Using software and hardware prefetching together
can help cover more data streams. For example, a hardware prefetcher might cover
regular streams and software prefetching can cover irregular streams.

(2) Positive Training. Software prefetch requests can actually help train the hardware
prefetcher. If a block prefetched by a software prefetcher is late, then a trained
hardware prefetcher can improve prefetch timeliness.

3.4 Antagonistic Effects when Using Software and Hardware Prefetching Together

(1) Negative Training. Software prefetch requests can slow down the hardware
prefetcher training. If prefetched blocks by software prefetching hide a part of
one or more streams, the hardware prefetcher will not be trained properly. Also,
software prefetch instructions can trigger overly aggressive hardware prefetches,
which results in early requests. Section 5.2.1 shows negative training examples in
milc and libquantum.

(2) Harmful Software Prefetching. Hardware prefetchers generally have a lower accu-
racy than software prefetchers. When software prefetch requests are incorrect or

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 1, Article 2, Publication date: March 2012.

2:8 J. Lee et al.

early, the increased stress on cache and memory bandwidth can further reduce the
effectiveness of hardware prefetching.

4. EXPERIMENTAL METHODOLOGY

Given the preceding background on the anticipated effects of and interactions between
hardware and software prefetching, the goal of our study is to quantitatively explore
these interactions. Our experimental setup is as follows.

4.1 Prefetch Intrinsic Insertion Algorithm

We are interested in the maximum potential of software prefetching. To assess the
potential, we insert additional software prefetch intrinsics based on the following
methodology.

First, we profile each application to identify prefetch candidates. A prefetch can-
didate is any load whose L1 misses per thousand instructions (MPKI) exceeds 0.05.7
Then, for each candidate, we insert a software prefetch. To make our choice of prefetch
distance systematic, we compute it as

Distance =
K × L × IPCbench

Wloop
, (2)

where K is a constant factor, L is an average memory latency, IPCbench is the profiled
average IPC of each benchmark, and Wloop is the average instruction count in one loop
iteration. We use K = 4 and L = 300 for all benchmarks. Importantly, we determine
IPCbench and Wloop from the profile data, so that the choice of distance is effectively
profile-driven. The sensitivity of performance to the prefetch distance is presented in
Section 5.1.3. The default prefetch hint is T0 and the remaining hints are evaluated in
Section 5.1.5.

The preceding scheme applies to regular loads. For loads on complex data struc-
tures, such as RDS, hash, C++ overloaded operators, and short functions without any
loops, we do not use these prefetch intrinsics.

4.2 Simulation Methodology

We use MacSim8, a trace-driven and cycle-level simulator, to evaluate software and
hardware prefetching effects. We faithfully model all components in the memory sys-
tem. Table IV shows the processor configurations used in our experiments.

We perform experiments on 13 memory-intensive benchmarks from SPEC CPU
2006. We chose benchmarks that achieve at least 100% performance gain with a per-
fect memory system, that is, one in which all memory accesses hit in the L1 cache.
However, we also excluded four additional benchmarks that meet this definition of
memory intensive—omnetpp, astar, xalancbmk, and wrf—because we were not able to
insert any software prefetch intrinsics.

We use Pinpoints [Patil et al. 2004] to select a representative simulation region for
each benchmark using the reference input set. Each benchmark is run for roughly
200M x86 instructions.9 Since different binaries have different numbers of instruc-
tions, we ensure that the number of function calls is the same, so that we simulate the
same section of the code across different binaries.

7We chose 0.05 through experimentation. The sensitivity results are not included due to the space
limitations.
8http://code.google.com/p/macsim/
9Due to extra software prefetching instructions, the SW binaries have more than 200M instructions.

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 1, Article 2, Publication date: March 2012.

When Prefetching Works, When It Doesn’t, and Why 2:9

Table IV. Processor Configurations (base:baseline, less: less aggressive, agg: more aggressive)

Execution Core
less 2-wide 10-stage Pipeline, 36-entry ROB, 1GHz in-order
base 4-wide 15-stage Pipeline, 256-entry ROB, 2GHz out-of-order
agg 6-wide 18-stage Pipeline, 1024-entry ROB, 4GHz out-of-order

Front-end
less I-cache: 16KB, 4-way, 2-cycle, 2/2 write/read ports
base I-cache: 32KB, 4-way, 3-cycle, 4/4 write/read ports
agg I-cache: 64KB, 4-way, 4-cycle, 6/6 write/read ports

On-chip Caches

less
L1 D-cache: 16KB, 4-way, 2-cycle, 2/2 write/read ports
L2 Unified-cache: 128KB, 8-way, 6-cycle, 1/1 write/read port, 32 MSHRs

base
L1 D-cache: 32KB, 4-way, 3-cycle, 4/4 write/read ports
L2 Unified-cache: 1MB, 8-way, 10-cycle, 1/1 write/read port, 128 MSHRs

agg
L1 D-cache: 64KB, 4-way, 4-cycle, 6/6 write/read port
L2 Unified-cache: 8MB, 8-way, 14-cycle, 1/1 write/read port, 256 MSHRs
LRU replacement, 64B line

Buses and Memory
less DDR2-533, 3-3-3, Bandwidth 2.1GB/s
base DDR2 800, 6-6-6, Bandwidth 6.4GB/s
agg DDR3-1600, 9-9-9, Bandwidth 25.6GB/s

Stream Prefetcher [Tendler et al. 2002; Srinath et al. 2007] 16 streams, Prefetch Degree 2, Prefetch Dist. 16
GHB Prefetcher [Nesbit and Smith 2004; Nesbit et al. 2004] 1024 entries, Prefetch Degree 16

Table V. Characteristics of the Simulated Benchmarks

BASE SW

Lang/Type # Inst. L1 MPKI L2 MPKI Base IPC PerfMem IPC � (%) # Inst. Static # Pref. Dyn. # Pref.

bzip2 c/int 203M 13.17 2.02 0.61 110 217M 19 4.91M

gcc c/int 207M 43.24 15.31 0.26 369 214M 7 3.17M

bwaves F/fp 202M 28.77 26.5 0.46 243 204M 12 65.91M

mcf c/int 200M 83.88 29.69 0.12 758 225 6 4.94M

milc c/fp 210M 35.59 17.40 0.33 482 217M 36 5.2M

zeusmp F/fp 216M 11.48 6.09 0.51 212 233M 72 10.93M

cactusADM FPP/fp 201M 9.16 5.97 0.51 204 224M 113 9.78M

leslie3d F/fp 203M 39.09 23.23 0.27 389 356M 152 41.81M

soplex c++/fp 257M 14.55 7.84 0.39 223 300M 52 6.61M

GemsFDTD F90PP/fp 216M 65.10 20.00 0.22 700 376M 97 27.55M

libquantum c/int 200M 70.10 26.28 0.27 700 236M 4 27.55M

lbm c/fp 200M 57.89 29.40 0.22 555 212M 19 11.19M

sphinx3 c/fp 201M 68.15 11.63 0.62 292 243M 31 29.16M

PerfMem: the performance of benchmarks with zero-cycle memory latency

Static Pref and Dynamic Pref: the number of prefetch instructions that are inserted by a programmer

Table V shows the characteristics of the evaluated benchmarks (Base binaries) on
the baseline processor. The remaining SPEC CPU 2006 benchmarks are presented in
Table VI. All benchmarks are compiled using icc 11.0.081 and ifort 11.0.081. Results
for the GCC compiler appear in Section 5.3.

5. EVALUATIONS: BASIC OBSERVATIONS ABOUT PREFETCHING

We first make a number of basic observations about software and hardware prefetching
and their interactions. Our goal is to evaluate the hypotheses outlined in Section 3.
Note that we consider a variety of factors; for a quick summary of the key findings,
refer to Section 5.9.

5.1 Overhead and Limitations of Software Prefetching

5.1.1 Instruction Overhead. Instruction overhead is among the major negative im-
pacts of software prefetching (Section 3.2). Figure 4 shows how the instruction count

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 1, Article 2, Publication date: March 2012.

2:10 J. Lee et al.

Table VI. Characteristics of the Remaining SPEC CPU 2006 Benchmarks

Bench perlbench gobmk hmmer sjeng h264ref omnetpp astar xalancbmk

Lang/Type c/int c/int c/int c/int c/int c++/int c++/int c++/int

Base IPC 1.11 0.79 1.21 1.07 1.53 0.27 0.36 0.76

PerfMem � (%) 80 23 64 28 74 592 405 166

Bench gamess gromacs namd dealII povray calculix tonto wrf

Lang/Type FPP/fp c/fp c++/fp c++/fp c++/fp F/fp F90PP/fp F90PP/fp

Base IPC 1.84 1.89 1.61 1.61 1.16 1.32 2.07 0.41

PerfMem � (%) 16 39 29 47 29 71 16 656

Fig. 5. Ideal experiments (SW+P: no pollution, SW+B: no bandwidth, SW+L: no latency, SW+R: eliminate
redundant prefetch overhead, SW+I: eliminate inst. overhead).

increases in SW binaries. For GemsFDTD, bwaves, and leslie3d, the total number of
instructions increases by more than 50% (more than 100% for bwaves). These extra in-
structions come not just from prefetch instructions but also from regular instructions
due to handling of indirect memory accesses and index calculations. Surprisingly, al-
though GemsFDTD increases instructions by more than 50%, it is still in the positive (im-
proved performance) group because the benefits outweigh this instruction overhead.

5.1.2 Software Prefetching Overhead. To measure the overhead of software prefetching,
we eliminate the overhead of cache pollution (SW+P), bandwidth consumption (SW+B, be-
tween core and memory), memory access latency (SW+L), redundant prefetch overhead
(SW+R), and instruction overhead (SW+I). Figure 5 summarizes the results.

Cache pollution would be caused by early or incorrect prefetches. However, there
are not many of either in our experiments. Thus, the effects of cache pollution are
small, as shown by the relatively small values of SW+P in essentially all cases. Sim-
ilarly, the mostly small values of SW+B show that current machines provide enough
bandwidth for single-thread applications. The mostly larger values of SW+L shows that
software prefetching is not completely hiding memory latency. The values of SW+R show
that, surprisingly, the negative effect of redundant prefetch instructions is generally
negligible even though a huge number of redundant prefetches exist. Finally, SW+I
experiments show that even though the number of instructions increased significantly
for GemsFDTD, bwaves, and leslie3d (see Section 5.1.1), their actual time overhead is
not high.

5.1.3 The Effect of Prefetch Distance. Figure 6 shows the sensitivity of performance to
prefetch distance. The x-axis show the prefetch distance relative to the base prefetch
distance. The base prefetch distance is calculated using Equation (1). The unit of
prefetch distance is a cache block.

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 1, Article 2, Publication date: March 2012.

When Prefetching Works, When It Doesn’t, and Why 2:11

Fig. 6. Performance variations by the prefetch distance.

Table VII. Categorization of Benchmark Groups by the Distance Sensitivity

Group Optimal Zone Perf. Delta Benchmarks

A narrow high GemsFDTD, lbm, milc
B narrow low cactusADM

C wide high bwaves
D wide low mcf

E insensitive soplex, sphinx3, libquantum, gcc, bzip2, leslie3d, zeusmp

Based on the shape of the optimal distance zone and the performance variance,
we categorize all benchmarks into five groups. Table VII shows all groups and their
descriptions. Figure 6 shows the performance variations from each group. Most bench-
marks from the neutral and negative groups in Figure 1 are insensitive to the prefetch
distance (Group E). The two exceptions are cactusADM and bwaves. These benchmarks
reach the optimal distance from the beginning (−4 in Figure 6) and have wider optimal
distance zones.

5.1.4 Static Distance vs. Machine Configuration. One limitation of using static prefetch
distances is that the optimal distance might vary by machine. This effect will be ex-
acerbated in future heterogeneous multicore systems, since the programmer is likely
not to know the core/system configuration in advance. To understand the sensitivity of
optimal prefetch distance to machine configuration, we compare the best performing
static distance for three different machine configurations (base, less-aggressive, and
aggressive processors in Table IV). The left three figures in Figure 7 show the perfor-
mance for the best prefetch distance for each machine configuration. The right three
figures in Figure 7 show the performance difference between the the best distance in
the baseline and the best distance for each machine’s configuration. For example, the
best distances for lbm are 2, 0, and 8 for less-aggressive, base, and aggressive proces-
sors, respectively. We measure the performance difference between that of distance
2 and 0 in the less-aggressive processor and the difference between that of distance
8 and 0 in the aggressive processor. Despite the variations in the optimal distance,
the performance difference is generally not high except for lbm. This observation is
not surprising given that most benchmarks are classified as Group E (insensitive) in
Table VII. As for lbm, we analyze it in more detail in Section 6.1.4. We conclude that
the static prefetch distance variance does not impact performance significantly even if
the machine configuration is changed at runtime.

5.1.5 Cache-Level Insertion Policy. In general, an out-of-order processor can easily tol-
erate L1 misses, so hardware prefetchers usually insert prefetched blocks into the last
level cache to reduce the chance of polluting the L1 cache. However, when the L1 cache

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 1, Article 2, Publication date: March 2012.

2:12 J. Lee et al.

Fig. 7. Best performing distance variances with different core specifications.

Fig. 8. Different prefetch hint results.

miss rate is higher than what a processor can tolerate, even an L1 cache miss can
degrade performance. Since software prefetching is generally accurate, we can safely
insert prefetched blocks into the L1 cache directly without the risk of polluting the L1
cache.

In all our experiments, we use the T0 cache-level placement hint, as shown in
Table II. Note that T1 and T2 behave the same in our two-level cache hierarchy.
Figure 8 shows performance results when varying the hint (level). The benefit of T0
over T1 (T2) mainly comes from hiding L1 cache misses by inserting prefetched blocks
into the L1 cache. In the evaluated benchmarks, libquantum represents this behav-
ior. With software prefetching, the L1 cache miss rate is reduced from 10.4% to 0.01%
(Figure 26), which results in a significant performance improvement. Where we might
expect the T1 and T2 hints to work well is in the case of streaming applications that
have little data reuse. Since our benchmarks do not have such applications, we find
that T0 always performs better than other hints in all evaluated benchmarks.

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 1, Article 2, Publication date: March 2012.

When Prefetching Works, When It Doesn’t, and Why 2:13

Fig. 9. Hardware prefetcher trained by software prefetch requests.

5.2 Effect of Using Hardware and Software Prefetching Together

5.2.1 Hardware Prefetcher Training Effects. To evaluate how software and hardware
prefetching interact with each other, we consider two different hardware prefetcher
training policies.

(1) NT (SW+GHB, SW+STR). The hardware prefetcher’s training algorithm ignores software
prefetch requests. That is, the hardware prefetcher is only trained by demand
cache misses.

(2) Train (SW+GHB+T, SW+STR+T). The hardware prefetcher’s training algorithm includes
software prefetch requests, in addition to the usual demand misses.

Figure 9 shows the performance improvement of the Train policy over NT for both
GHB and STR. For both GHB and STR, the sphinx3 benchmark shows a small benefit
from training with software prefetches. By contrast, milc, gcc, and soplex exhibit
negative effects for both GHB and STR. The mcf and bwaves benchmarks are largely
unaffected by training policy. For the remaining benchmarks, the effect of the training
policy is prefetcher-specific, for instance, positive with GHB and negative with STR.

The benefit could be up to 3–5% and these benefits come from training hardware
prefetching early, that is, by reducing late prefetching. However, the negative impact
can be severe: −55.9% for libquantum, and −22.5% for milc. The milc benchmark has
short streams, so software prefetching can trigger unnecessary hardware prefetches.
There are two reasons for the performance degradation in libquantum. The first reason
is because of severe L1 miss penalties. Software prefetches are mainly inserted into
the L1 and L2 caches. However, if hardware prefetching is trained by this software
prefetching, prefetched blocks are inserted into only L2 rather than L1, thereby re-
ducing the L1 prefetching benefits. The second reason is overly aggressive prefetches.
To provide timeliness, software and hardware prefetches have prefetch distances inde-
pendently. However, when software prefetch instructions train a hardware prefetcher,
then hardware prefetch requests can be too aggressive (on top of software prefetch dis-
tance, now hardware prefetching adds its own prefetch distance), resulting in many
early prefetches.

From these experiments, we can conclude that the negative impact can reduce
performance degradation significantly. Thus, although there are some positive ben-
efits, it is generally better not to train hardware prefetching with software prefetching
requests.

5.2.2 Prefetch Coverage. We consider the prefetch coverage—or, the ratio of useful
prefetches to total L2 misses—in Figure 10(a), for GHB and STR. Figure 10(b) shows
the prefetch coverage of SW+GHB and SW+STR. Additional useful hardware prefetches are
indicated as HW and are shown on top of the SW bars.

Generally, the coverage of software prefetching is higher than that of hardware
prefetchers, but the software coverage of benchmarks in that neutral and negative

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 1, Article 2, Publication date: March 2012.

2:14 J. Lee et al.

Fig. 10. Prefetch coverage.

Fig. 11. Software prefetch classifications (G:SW+GHB, S:SW+STR, GT:SW+GHB+T, ST:SW+STR+T).

groups is lower than that of the hardware prefetchers. Thus, we can conclude that less
coverage is the main reason for performance loss in the neutral and negative groups.

5.2.3 Prefetching Classification. For each benchmark, we classify the prefetches into the
categories of timely, late, early, etc., as summarized in Table III. Figure 11 summarizes
the results. Only bzip2 and soplex show more than 10% early prefetches. A prefetch
cache could mitigate the cache pollution effect. For mcf, 10% of prefetches are late, due
to a dependent load instruction that the prefetch intrinsic generates. By eliminating
the latency overhead (Figure 5 SW+L case), the performance of mcf is improved by 9%.
Surprisingly, even though a significant number of redundant prefetches exists in many
benchmarks, there is little negative effect on the performance (Figure 5 SW+R case).

5.3 Using the GCC Compiler

Except in this section, we use the icc compiler for our evaluation because gcc (more
specifically gfortran) does not support intrinsics in Fortran. To understand the gcc
compiler’s effect, we insert intrinisics after compiling the code with gcc in these
experiments. The simulated regions are exactly the same as those of icc, but we ex-
clude all Fortran benchmarks since the gfortran compiler does not support prefetch
intrinsics. We use gcc 4.4 in our evaluations.

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 1, Article 2, Publication date: March 2012.

When Prefetching Works, When It Doesn’t, and Why 2:15

Fig. 12. Baseline experiments with gcc compiler.

Fig. 13. Instruction counts with gcc compiler.

Table VIII. Specification of Two Intel Processors

Machine Specification

Nehalem Dual Intel Xeon E5520 (2.27GHz, 8MB L3 Cache, SMT Disabled), 24GB DDR3 Memory
Core 2 Dual Intel Xeon E5420 (2.50GHz, 12MB L2 Cache), 8GB DDR2 Memory

We summarize the results of the gcc compiler experiments in Figure 12. Figure 13
shows the number of prefetch instructions in each binary. The gcc compiler inserts
more software prefetches than icc, except for mcf and lbm. Recall that icc does not
insert any prefetch instructions. However, gcc still cannot cover all cache misses. Thus,
the performance of the Base binaries compiled with gcc lies between the performance
of NOSW (prefetch flag is disabled) and SW, whereas that of icc is the same as NOSW.

5.4 Real System Experiments

In addition to the simulation results, we also measured the effect of software prefetch-
ing on two recent Intel processors, Core 2 and Nehalem. Table VIII summarizes the
specifications of these processors. In our real systems experiments, we run the entire
reference input sets, not just the simpointed section.10 Table IX shows that both simu-
lated regions and the entire execution have a similar portion of prefetch instructions.
Except for milc, gcc, and zeusmp, the simulated region of other benchmarks accurately
represents the entire code. Note that our simulated system is closer in its configuration
to the Core 2.

Figure 14 shows results. In real system experiments, we also see that software
prefetching reduced the performance of cactusADM, soplex, bwaves, sphinx3, and

10This is one of the reasons the simulated and measured performance differ.

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 1, Article 2, Publication date: March 2012.

2:16 J. Lee et al.

Table IX.

Comparison between entire and simulated codes. Total ratio is #prefetch inst/#total inst and Sim ratio is the
fraction in the simulated regions

Benchmark Total (Mem) Inst. Total ratio Sim ratio Benchmark Total (Mem) Inst. Total ratio Sim ratio

milc 1.66T (728B) 0.48% 2.40% GemsFDTD 1.69T (860B) 5.06% 7.32%

mcf 906B (463B) 2.24% 2.19% lbm 1.45T (609B) 5.1% 5.27%

libquantum 2.41T (799B) 10.7% 8.9% gcc 157B (81B) 0.02% 1.48%

zeusmp 1.94T (675B) 0.38% 4.68% bzip2 583B (267B) 1.8% 2.26%

cactusADM 2.78T (1.6T) 4.45% 4.36% soplex 1.73T (972B) 2.2% 2.2%

bwaves 2.59T (1.8T) 14% 16.26% sphinx3 4.34T (1.73T) 11.8% 11.97%

leslie3d 2.14T (1.1T) 10.74% 11.71%

Fig. 14. Real system experiment results.

leslie3d by a small amount in the real system measurements, even though it always
shows benefits in our simulations. However, all benchmarks in the positive group also
show benefits from using software prefetches. Compared with the Core 2, the hard-
ware prefetchers of Nehalem have improved. Also, due to the multiple cache levels of
prefetchers in Nehalem (L3 to L2 and L2 to L1), the benefits of software prefetching are
reduced (In Section 3.1.4, we discussed the software prefetching benefits of inserting
prefetched blocks directly into the L1 cache).

5.5 Profile-Guided Optimization (PGO)

We also examine the effect of profile-guided optimization. Note that we perform ex-
periments using both icc and gcc, but we do not include the results from icc because it
does not insert any software prefetches. We use gcc 4.4 with fprofile-generate and
fprofile-use flags. Figure 15 shows the results of PGO.

Generally, the performance of using PGO lies between that of Base and SW. However,
performance benefits come from other optimizations, not only software prefetching.
Figure 15(c) and (d) show the number of total and prefetch instructions. The number
of prefetch instructions are rather decreased in the PGO-compiled binaries. Also, the
instruction count of the PGO binaries is less than that of the Base binaries in all cases.

5.6 Hardware Prefetcher for Short Streams

One weakness of hardware prefetching is the difficulty of exploiting short streams. To
tackle this problem, some have proposed the so-called ASD hardware prefetcher [Hur
and Lin 2006, 2009]. (ASD is currently an idea with no known implementations, as far
as we know.) We evaluate ASD along with software and hardware prefetching, with
the results summarized in Figure 16.

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 1, Article 2, Publication date: March 2012.

When Prefetching Works, When It Doesn’t, and Why 2:17

Fig. 15. Profile-guided optimization results.

Fig. 16. ASD hardware prefetcher results.

The milc benchmark exhibits short stream behavior. On average, ASD provides
a 7% performance benefit on milc without software prefetching. However, software
prefetching itself can still provide more than a 2x speedup. Although ASD can predict
short-length streams, it still requires observing the first instances of a memory stream.
ASD provides benefits over the other two evaluated hardware prefetchers, but the
overall benefit is less than 3%. The gcc, sph, and les benchmarks perform better
than the baseline when combining ASD, software prefetching, and GHB/STR hardware
prefetching, but only by 2% or less. Thus, we conclude that software prefetching is
much more effective for prefetching short streams than ASD.

5.7 Content Directed Prefetching

We also evaluated content directed prefetching (CDP) schemes, which target linked
and other irregular data structures [Al-Sukhni et al. 2003; Cooksey et al. 2002;
Ebrahimi et al. 2009]. Figure 17 shows results. We focus on gcc and mcf results since

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 1, Article 2, Publication date: March 2012.

2:18 J. Lee et al.

Fig. 17. CDP hardware prefetcher results.

Fig. 18. Manual optimization results.

these are the only two benchmarks affected, positively or negatively, by CDP. CDP
provides 3.9% and 6.5% improvement on mcf and gcc, respectively. We also evalu-
ate CDP with a separate prefetch cache (CDP+PF), which prevents cache pollution, a
well-known limitation of CDP. We find additional 2% and 5% benefits. However, when
compared with software prefetching’s 78% improvement, we conclude that software
prefetching is more effective for irregular data structures.

5.8 Manual Tuning

Since we used the prefetch intrinsic insertion algorithm in Section 4.1 for all bench-
marks, we cannot be sure that software prefetching is being used to its full poten-
tial. Thus, we also manually and exhaustively tune the benchmarks. In particular,
we remove useless prefetches, adjust the prefetch distance of each software prefetch,
and apply additional overhead-reduction techniques, such as loop unrolling and pro-
logue/epilogue transformations for each benchmark. We exclude milc, GemsFDTD, lbm,
bwaves, and bzip2 because they either are already highly optimized or require signifi-
cant code structure changes.

Figure 18 shows the manual tuning results, where MAN indicates our manually tuned
binaries. The speedup shown is for MAN over SW. We vary the distance of all prefetch
intrinsics individually and select the distance for each prefetch intrinsic that yields
the best performance. The speedup in the neutral and negative groups is much higher
than the speedup in the positive group, which implies that it is more effective to re-
move negative intrinsics manually. However, there are no significant performance
changes between manual tuning and the algorithm in Section 4.1, especially in the
positive group, which shows that the algorithm is good to use as a guideline for insert-
ing software prefetch intrinisics.

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 1, Article 2, Publication date: March 2012.

When Prefetching Works, When It Doesn’t, and Why 2:19

Table X. Prefetching Summary of Benchmark Group

Benchmark Data structure GHB+T STR+T Why SW is better Why SW is worse Best

POS

433.milc short array – – short array SW+GHB
459.GemsFDTD indirect, stride = + indirect access SW+STR+T
429.mcf RDS, AoP = = irregular (AoP) SW+STR
470.lbm stride = = reduction in L1 misses SW+STR+T
462.libquantum stride – = reduction in L1 misses SW+STR+T
403.gcc RDS, indirect - – indirect access SW+STR
434.zeusmp stride + - reduction in L1 misses SW+GHB+T

NEU

434.bzip2 indirect, hash + + SW+GHB+T
436.cactusADM stride + - SW+GHB+T
436.soplex indirect - - STR
410.bwaves stream = = STR

NEG
482.sphinx3 stride + + loop is too short SW+STR
437.leslie3d stream - - loop is too short SW+STR

+: positive, -: negative, Best: best performing case among all evaluated cases

5.9 Summary of New Findings

Though there are numerous results, here we summarize our key findings.

(1) Hardware prefetchers can under-exploit even regular access patterns, such as
streams. Short streams are particularly problematic, and software prefetching is
frequently more effective in such cases.

(2) The software prefetching distance is relatively insensitive to the hardware config-
uration. The prefetch distance does need to be set carefully, but as long as the
prefetch distance is greater than the minimum distance, most applications will not
be sensitive to the prefetch distance.

(3) Although most L1 cache misses can be tolerated through out-of-order execution,
when the L1 cache miss rate is much higher than 20%, reducing L1 cache misses
by prefetching into the L1 cache can be effective.

(4) The overhead of useless prefetching instructions is not very significant. Most ap-
plications that have prefetching instructions are typically limited by memory op-
erations. Thus, having some extra instructions (software prefetching instructions)
does not increase execution time by much.

(5) Software prefetching can be used to train a hardware prefetcher and thereby
yield some performance improvement. However, it can also degrade performance
severely, and therefore must be done judiciously if at all.

6. CASE STUDIES: SOURCE CODE ANALYSIS OF INDIVIDUAL BENCHMARKS

In this section, we explain the reasons for the observed software prefetching behaviors
using source code analysis. The key observed behaviors appear in Table X.

6.1 Positive Group

6.1.1 433.milc. Most cache misses in milc occur during accesses to small arrays, in
such functions as mult su3 na, which is shown in Figure 19. These functions operate on
3x3 matrices. As discussed in Section 3.1.2, these matrix accesses correspond to short
streams, which are too short to train the hardware prefetchers. By contrast, software
prefetching can effectively prefetch these arrays, provided the prefetch requests are
inserted appropriately near the call site. When doing so, we observe a 2.3x speedup
compared with the best hardware-only prefetching scheme.

Figure 20 shows the number of L2 cache misses for Base, GHB, STR, and SW binaries
from the eight source code lines that generate the most cache misses in Base. Since

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 1, Article 2, Publication date: March 2012.

2:20 J. Lee et al.

Fig. 19. Code example:433.milc.

Fig. 20. L2 cache misses in 433.milc.

the Base and SW binaries have different PC addresses, we match each individual PC
address with the source line. As expected, hardware prefetchers do not reduce cache
misses, whereas software prefetching can eliminate almost all misses. Since software
prefetching can cover all misses, training the hardware prefetchers will increase mem-
ory traffic with useless prefetches, thereby increasing the execution time by 15% and
23% with GHB and stream prefetcher, respectively.

6.1.2 459.GemsFDTD. Most delinquent loads in GemsFDTD come from complex indirect
memory accesses. For instance, consider Figure 21. The variable m is used as an (indi-
rect) index. Since this indirect indexing is very irregular from the hardware perspec-
tive, the hardware prefetchers do not prove to be very useful, improving performance
by only 12% improvement (stream prefetcher). On the contrary, this complex indirect
indexing can be handled very effectively in software prefetching. Doing so results in
more than a 50% execution time reduction compared with Base.

6.1.3 429.mcf. The mcf benchmark is well-known as a memory intensive benchmark
due to its pointer chasing behavior. It also uses an array of pointers (AoP) data struc-
ture. Since AoP exhibits irregular behavior, hardware prefetchers typically do not
perform well on such structures. However, the arc structure can be prefetched in soft-
ware, as shown in Figure 22. A suitable software prefetch can calculate the next ad-
dress by using the next array index, whereas neither GHB nor stream prefetchers can
prefetch them. SW+STR provides a 180% improvement over STR. The stream prefetcher

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 1, Article 2, Publication date: March 2012.

When Prefetching Works, When It Doesn’t, and Why 2:21

Fig. 21. Code example:459.GemsFDTD.

Fig. 22. Code example:429.mcf.

can prefetch stream accesses exhibited in other data structures and the benefit is still
effective with software prefetching.

6.1.4 470.lbm. The lbm benchmark is dominated by a 3-D stencil update loop that
references all 27 nearest neighbors in two 3-D arrays. Thus, there are many (up to
27×2 = 54) distinct streams with three distinct stride values. Both GHB and STR can
prefetch these streams. As we discussed in Section 5.1.5, because of the high L1 cache
hit ratio improvement, software prefetching performs better than hardware prefetch-
ing alone even though hardware prefetching also can predict addresses correctly.

Another unusual characteristic of the lbm benchmark is that it is very sensitive
to prefetch distance variations. Software prefetching shows almost 100% coverage
(Figure 10), because almost all the elements of srcGrid may be prefetched. Since
the working set size is relatively large, very aggressive prefetching can easily gener-
ate early evictions. Figure 23 shows the performance and the distribution of prefetch
requests as we vary prefetch distances. As these results depict, the performance of

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 1, Article 2, Publication date: March 2012.

2:22 J. Lee et al.

Fig. 23. Prefetch distance variance in 470.lbm. Fig. 24. Code example:470.lbm.

Fig. 25. Code example:462.libquantum. Fig. 26. # Cache misses ratio in 462.libquantum.

software prefetching is sensitive to the prefetch distance. In this example, one prefetch
distance unit corresponds to one next loop iteration in Figure 24.

6.1.5 462.libquantum. The dominant memory access pattern in libquantum con-
sists solely of fixed-stride streaming over a single array, reg which is shown in
Figure 25. Hence, both hardware and software prefetching can predict the reg->node
addresses. However, software prefetching provides 1.23x speedup over the best hard-
ware prefetcher, due to the L1 cache miss penalties. In particular, even though the L1
latency is only three cycles in our baseline configuration, there are too many L1 cache
misses due to the high miss ratio (shown in Figure 26). Thus, both execution cycles
and on-chip L2 traffics increase. In GHB with software training, because it generates
useless prefetches, 14% more prefetches become late (4% to 18%), resulting in a 55%
performance degradation.

6.1.6 403.gcc. The dominant data structure of gcc is RDS. Since the code that ac-
cesses this RDS is very irregular, we could do not insert prefetches effectively in RDS.
In addition, gcc suffers from indirect accesses. By inserting prefetches for such struc-
tures, we achieve a 14% improvement. Figure 27 shows a code snippet of the gcc
benchmark.

6.1.7 434.zeusmp. The zeusmp benchmark has a 3-D stencil update memory access
pattern, i.e., it iterates over points in a 3-D grid (array) and in each iteration accesses
the nearest neighbors in all dimensions. Like cactusADM, it has a 3-D array with
the iteration over points. However, unlike cactusADM, it accesses nearest neighbors
in all three dimensions. Figure 28 shows a code snippet with software prefetching.
The v3 structures can be prefetched well by both hardware and software prefetch-
ing. Moreover, an extra 10% performance improvement using software prefetching
comes from reducing the number of L1 cache misses. Also, a stream prefetcher with
training generates an additional 4% improvement by eliminating some of the late
prefetches.

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 1, Article 2, Publication date: March 2012.

When Prefetching Works, When It Doesn’t, and Why 2:23

Fig. 27. Code example:403.gcc.

Fig. 28. Code example:434.zeusmp.

Fig. 29. Code example:401.bzip2. Fig. 30. Code example:436.cactusADM.

6.2 Neutral Group

6.2.1 401.bzip2. The core of the bzip2 algorithm is the Burrows-Wheeler transform,
which is also called block-sorting compression. As shown in Figure 29, since many
delinquent loads are dependent on the outcomes of branches, hardware prefetchers are
not effective. Software prefetching experiences the same problem. Figure 11 shows
that there are many early prefetches in bzip2. Nonetheless, software prefetching is
still able to improve performance by 8%.

6.2.2 436.cactusADM. The main data structure in cactusADM is a 3-D array with it-
eration over points. Each iteration only accesses nearest neighbors in one dimen-
sion. Figure 30 shows how prefetching is inserted for alp and ADM kxx stag p data
structures. Although all data structures in cactusADM are fairly easy to predict, the

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 1, Article 2, Publication date: March 2012.

2:24 J. Lee et al.

Fig. 31. Number of cache misses in 450.soplex.

Fig. 32. Code example:410.bwaves. Fig. 33. Number of L1/L2 misses in 410.bwaves.

effectiveness of the stream prefetcher is much less than GHB. This is because there are
too many in-flight streams, so the stream prefetcher misses some of them. However,
because software prefetching covers many of the streams that the stream prefetcher
cannot capture, the gap between GHB and the stream prefetcher is reduced in SW.
GHB with training can reduce the number of late prefetches, which results in a 7%
improvement.

6.2.3 450.soplex. soplex implements a simplex algorithm. It features primal and
dual solving routines for linear programs and is implemented in C++. Many cache
misses are occurred from C++ class overloaded operators and member functions that
do not contain any loops. Without complete knowledge of its program structure, it is
hard to decide where to insert software prefetches. Indeed, these memory accesses
have a certain level of regularity, so hardware prefetching turns out to be reasonably
effective.

As shown in Figure 31, although software prefetching is effective in terms of cache
miss reduction, the reason why soplex is in the neutral group (3% degradation) is due
to bandwidth consumption and many early/incorrect software prefetches. In Figure 5,
soplex shows benefits in the SW+B and SW+P cases.

6.2.4 410.bwaves. The dominant computational loop in bwaves is a block-structured
matrix-vector multiply, whose memory access pattern consists of 7 distinct unit-
stride streams with no temporal reuse coupled with 7 additional semi-regular ac-
cesses (strided “bursts” of unit-stride access) on data with a high degree of temporal
reuse. The cache misses are primarily due to the non-temporal unit-stride streams,
which we would expect to be easily prefetched by conventional hardware mechanisms.
Figure 32 shows the main loop of bwaves and how we insert software prefetches.
Figure 33 shows the number of L1 and L2 cache misses. Compared with STR, SW+STR
shows similar number of L2 cache misses, but it reduces L1 cache misses significantly.
However, the performance of SW+STR is actually 5% worse than STR, due to instruction
overhead. Specifically, the instruction count increases by 100% (from 200M to 400M),
but the number of prefetch instructions is only 65M. Moreover, among 65M prefetches,
more than 90% are redundant prefetches.

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 1, Article 2, Publication date: March 2012.

When Prefetching Works, When It Doesn’t, and Why 2:25

Fig. 34. Code example:437.leslie3d.

6.3 Negative Group

6.3.1 482.sphinx3. The sphinx3 benchmark, a speech recognition application, con-
tains a variety of access styles such as RDS, array of pointers, and regular strides,
but is dominated primarily by unit-stride streams on short vectors. Hence, hard-
ware prefetchers perform well for this benchmark. Because of timeliness issues and
the short length of arrays, not all software prefetch requests are inserted for all the
data structures, which results in lower coverage than hardware prefetchers (shown in
Figure 10).

6.3.2 437.leslie3d. leslie3d (Figure 34) has very regular stride behavior. However,
because the work between loop iterations is very limited, we inevitably use large
prefetch distances. As a result, the coverage of SW is only 68% (HW: > 90%). Even
though there is a superposition effect with hardware prefetchers (now, more than 95%),
the instruction overhead offsets the benefits.

7. RELATED WORK

There is considerable literature on both software and hardware prefetching. For dif-
ferent prefetch mechanisms, please refer to Vanderwiel and Lilja [2000] and the paper
on MicroLib [Perez et al. 2004]. In this section, we only discuss the most relevant work
that focuses on the limitations of software prefetching and the interaction of hardware
and software prefetching.

Reducing software prefetching overhead. How to reduce the overhead of software
prefetching has been discussed even from the first software prefetching proposal by
Callahan et al. [1991]. They analyzed the overhead of software prefetching and sug-
gested saving address recalculations by storing the calculated addresses into registers.
Subsequently, many studies have discussed how to request software prefetch requests
in a timely manner. Several algorithms were proposed to find the optimal prefetch
distance in software prefetching [Badawy et al. 2004; Chen and Baer 1994; Mowry
et al. 1992; Pai and Adve 2001; Vanderwiel and Lilja 2000]. Chen and Baer [1994]
proposed using prologue and epilogue to insert software prefetches. Luk and Mowry
[1996] proposed software prefetching mechanisms for RDS and also suggested several
methods to reduce useless prefetches. Zhang et al. [2006] discussed the overhead of
software prefetching and suggested using dynamic compilation to reduce the overhead
of software prefetching, especially for reducing redundant prefetch requests.

Jerger et al. [2006] analyzed prefetch requests in multiprocessors and discussed
harmful prefetches due to shared data. Their work focused on the negative effects of
hardware prefetching on multiprocessors. Recently, the limitation of existing compiler
algorithms for software prefetching in emerging chip multiprocessors is discussed [Son
et al. 2009]. In their work, helper thread-based software prefetching is used rather
than simple and low overhead software prefetching schemes. Our work is different
from the previous work on reducing the overhead of software prefetching. Although
some work provided the analysis of software prefetch requests, none of the work
analyzed the behavior of software prefetching from the application’s behavior, code

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 1, Article 2, Publication date: March 2012.

2:26 J. Lee et al.

analysis, data structures, and algorithms. Furthermore, our work emphasizes the
interactions between software and hardware prefetching. We also increase the under-
standability of software prefetching limitations and hardware prefetching limitations
when both prefetching schemes are used together.

Hardware and software cooperative prefetching. Several mechanisms were proposed to
take advantage of hardware and software prefetching together. Chen and Baer [1994]
proposed a software prefetching mechanism that inserts data objects into a secondary
cache and the a hardware supporting unit brings them to the primary cache. Wang
et al. [2003] proposed guided region prefetching. In their work, the compiler inserts
load instructions with hints indicating memory access patterns, and the information
is consumed by hardware prefetchers. Saavedra and Park [1996] proposed a runtime-
adaptive software prefetching mechanism to adjust prefetch distances and degree. Luk
and Mowry [1998] proposed a hardware-based filtering mechanism for harmful soft-
ware prefetch requests. In their work, they only focused on instruction prefetching,
which is not a critical performance bottleneck in today’s processors. All these mecha-
nisms were built on the assumption that software and hardware prefetching provide
superposition effects. In contrast to the above work, our work provides detailed anal-
ysis of when software and hardware prefetching can generate synergistic/antagonistic
effects. Our work is focused on improving the understanding of interactions rather
than proposing a new hardware or software prefetching mechanism.

8. CONCLUSION AND FUTURE WORK

Our detailed empirical and qualitative study of the benefits and limitations of software
prefetching provides concrete examples showing the complexity of current schemes
and most interestingly, on the synergistic and antagonistic interaction effects between
software and hardware prefetching.

Our analysis of the SPEC CPU 2006 suite, whose benchmarks we classified into
positive, neutral, and negative groups based on observed software/hardware prefetch
interactions, leads us to confirm, quantitatively the following conclusions.

(1) Having to select a static prefetch distance is generally considered one of the lim-
itations of more aggressive software prefetching. Indeed, in benchmarks like lbm
where aggressive prefetching generates many early prefetch requests, the optimal
prefetch distance becomes sensitive to the machine configuration. However, we
observe that for most of the benchmarks in our suite, performance is not very sen-
sitive to distance, and so not too difficult to tune. Moreover, we observe that when
software prefetch has a high coverage of delinquent loads, we can overcome the
overhead of extra instructions due to prefetching. Thus, provided we can identify
the right context for prefetching, these two observations imply that we can prefetch
more aggressively than previously believed.

(2) Prefetching for short streams shows the most positive effects, as seen in the milc
benchmark. Hardware prefetchers cannot prefetch short streams, irregular ad-
dresses, or a large number of concurrent streams. Thus, it is in these contexts that
we should expect to use software-based prefetching techniques more.

(3) Coverage should be the main metric to decide which prefetching scheme to use. It
is via this metric that we see that short stream and indirect references are good
candidates for using software prefetching; and that, by contrast, if a data structure
shows strong stream behavior or regular stride patterns, using software prefetch-
ing does not provide a significant performance improvement and can even degrade
the performance of hardware prefetching.

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 1, Article 2, Publication date: March 2012.

When Prefetching Works, When It Doesn’t, and Why 2:27

Future work will focus on developing software prefetch algorithms to decide how
to train hardware prefethers and reducing the negative interactions between software
and hardware prefetching schemes so that compilers can insert prefetch instructions
more aggressively.

REFERENCES
AL-SUKHNI, H., BRATT, I., AND CONNORS, D. A. 2003. Compiler-directed content-aware prefetching for

dynamic data structures. In Proceedings of the 12th International Conference on Parallel Architecture
and Compilation Technology. IEEE, Los Alamitos, CA, 91–100.

AMD. AMD Phenom II Processors.
http://www.amd.com/us/products/desktop/processors/phenom-ii/Pages/phenom-ii.aspx.

BADAWY, A.-H. A., AGGARWAL, A., YEUNG, D., AND TSENG, C.-W. 2004. The efficacy of software prefetch-
ing and locality optimizations on future memory systems. J. Instruct.-Level Parallelism 6.

BAER, J. AND CHEN, T. 1991. An effective on-chip preloading scheme to reduce data access penalty. In
Proceedings of the ACM/IEEE Conference on Supercomputing. ACM, New York, NY, 176–186.

CALLAHAN, D., KENNEDY, K., AND PORTERFIELD, A. 1991. Software prefetching. In Proceedings of the 4th
International Conference on Architectural Support for Programming Languages and Operating Systems.
ACM, New York, NY, 40–52.

CHEN, S., AILAMAKI, A., GIBBONS, P. B., AND MOWRY, T. C. 2007. Improving hash join performance
through prefetching. ACM Trans. Datab. Syst. 32, 3, 17.

CHEN, T.-F. AND BAER, J.-L. 1994. A performance study of software and hardware data prefetching
schemes. In Proceedings of the 16th International Symposium on Computer Architecture. 223–232.

COLLINS, J. D., TULLSEN, D. M., WANG, H., AND SHEN, J. P. 2001. Dynamic speculative precomputation.
In Proceedings of the 34th International Symposium on Microarchitecture. IEEE Computer Society, Los
Alamitos, CA, 306–317.

COLLINS, J. D., SAIR, S., CALDER, B., AND TULLSEN, D. M. 2002. Pointer cache assisted prefetching. In
Proceedings of the 35th International Symposium on Microarchitecture. IEEE Computer Society Press,
Los Alamitos, CA, 62–73.

COOKSEY, R., JOURDAN, S., AND GRUNWALD, D. 2002. A stateless, content-directed data prefetching mech-
anism. In Proceedings of the 10th International Conference on Architectural Support for Prog. Languages
and Operating Systems. ACM, New York, NY, 279–290.

EBRAHIMI, E., MUTLU, O., AND PATT, Y. N. 2009. Techniques for bandwidth-efficient prefetching of linked
data structures in hybrid prefetching systems. In Proceedings of the 15th International Symposium on
High Performance Computer Architecture. IEEE Computer Society, Los Alamitos, CA, 7–17.

EMMA, P. G., HARTSTEIN, A., PUZAK, T. R., AND SRINIVASAN, V. 2005. Exploring the limits of prefetching.
IBM J. Resear. Devel. 49, 127–144.

GCC-4.0. GNU compiler collection. http://gcc.gnu.org/.
HUR, I. AND LIN, C. 2006. Memory prefetching using adaptive stream detection. In Proceedings of the 39th

International Symposium on Microarchitecture. IEEE Computer Society, Los Alamitos, CA, 397–408.
HUR, I. AND LIN, C. 2009. Feedback mechanisms for improving probabilistic memory prefetching. In Pro-

ceedings of the 15th International Symposium on High Perf Compo Architecture. IEEE Computer Society,
Los Alamitos, CA, 443–454.

ICC. Intel C++ compiler.
http://www.intel.comlcd/software/products/asmo-na/eng/compilers/clin/277618.htm.

INTEL. 2004. Intel Pentium M Processor. http://www.intel.com/design/intarch/pentiumm/pentiumm.htm.
INTEL. 2007. Intel core microarchitecture.

http://www.intel.com/technology/45nm/index.htm?iid=tech micro+45nm.
INTEL. 2008. Intel AVX. http://software.intel.com/en-us/avx.
INTEL. 2009. Intel Nehalem microarchitecture.

http://www.intel.com/technology/architecture-silicon/next-gen/index.htm?iid=tech micro+nehalem.
INTEL. 2011. Intel 64 and IA-32 Architectures Software Developer’s Manual.

http://www3.intel.com/Assets/PDF/manual/253667.pdf.
JERGER, N., HILL, E., AND LIPASTI, M. 2006. Friendly fire: Understanding the effects of multiprocessor

prefetches. In Proceedings of the IEEE International Symposium on Performance Analysis of Systems
and Software. IEEE Computer Society, Los Alamitos, CA, 177–188.

JOSEPH, D. AND GRUNWALD, D. 1997. Prefetching using Markov predictors. In Proceedings of the 19th
International Symposium on Computer Architecture. ACM, New York, NY, 252–263.

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 1, Article 2, Publication date: March 2012.

2:28 J. Lee et al.

JOUPPI, N. P. 1990. Improving direct-mapped cache performance by the addition of a small fully-associative
cache and prefetch buffers. In Proceedings of the 12th International Symposium on Computer Architec-
ture. ACM, New York, NY, 388–397.

KROFT, D. 1981. Lockup-free instruction fetch/prefetch cache organization. In Proceedings of the 3rd In-
ternational Symposium on Computer Architecture. IEEE Computer Society Press, Los Alamitos, CA,
81–87.

LAI, A.-C., FIDE, C., AND FALSAFI, B. 2001. Dead-block prediction and dead-block correlating prefetchers.
In Proceedings of the 23rd International Symposium on Computer Architecture. ACM, New York, NY,
144–154.

LIPASTI, M. H., SCHMIDT, W. J., KUNKEL, S. R., AND ROEDIGER, R. R. 1995. SPAID: Software prefetching
in pointer- and call-intensive environments. In Proceedings of the 28th International Symposium on
Microarchitecture. IEEE Computer Society Press, Los Alamitos, CA, 232–236.

LUK, C.-K. 2001. Tolerating memory latency through software-controlled pre-execution in simultaneous
multithreading processors. In Proceedings of the 23rd International Symposium on Computer Architec-
ture. ACM, New York, NY, 40–51.

LUK, C.-K. AND MOWRY, T. C. 1996. Compiler-based prefetching for recursive data structures. In
Proceedings of the 7th International Conference on Architectural Support for Programming Languages
and Operating Systems. 222–233.

LUK, C.-K. AND MOWRY, T. C. 1998. Cooperative prefetching: Compiler and hardware support for effective
instruction prefetching in modern processors. In Proceedings of the 31st International Symposium on
Microarchitecture. IEEE Computer Society Press, Los Alamitos, CA, 182–194.

MOWRY, T. C., LAM, M. S., AND GUPTA, A. 1992. Design and evaluation of a compiler algorithm for
prefetching. In Proceedings of the 5th International Conference on Architectural Support for Program-
ming Languages and Operating Systems. ACM, New York, NY, 62–73.

NESBIT, K. J., DHODAPKAR, A. S., AND SMITH, J. E. 2004. AC/DC: An adaptive data cache prefetcher. In
Proceedings of the 13th International Conference on Parallel Architecture and Compilation Technology.
IEEE Computer Society, Los Alamitos, CA, 135–145.

NESBIT, K. J. AND SMITH, J. E. 2004. Data cache prefetching using a global history buffer. In Proceedings
of the 10th International Symposium on High Performance Computer Architecture. IEEE Computer
Society, Los Alamitos, CA, 96–105.

PAI, V. S. AND ADVE, S. V. 2001. Comparing and combining read miss clustering and software prefetching.
In Proceedings of the 10th International Conference on Parallel Architecture and Compilation Technol-
ogy. IEEE Computer Society, Los Alamitos, CA, 292–303.

PATIL, H., COHN, R., CHARNEY, M., KAPOOR, R., SUN, A., AND KARUNANIDHI, A. 2004. Pinpointing
representative portions of large Intel Itanium programs with dynamic instrumentation. In Proceedings
of the 37th International Symposium on Microarchitecture. IEEE Computer Society, Los Alamitos, CA,
81–92.

PEREZ, D. G., MOUCHARD, G., AND TEMAM, O. 2004. Microlib: A case for the quantitative comparison of
micro-architecture mechanisms. In Proceedings of the 37th International Symposium on Microarchitec-
ture. IEEE Computer Society, Los Alamitos, CA, 43–54.

PIN. A binary instrumentation tool. http://www.pintool.org.
ROTH, A. AND SOHI, G. S. 1999. Effective jump-pointer prefetching for linked data structures. In

Proceedings of the 21st International Symposium on Computer Architecture. IEEE Computer Society,
Los Alamitos, CA, 111–121.

SAAVEDRA, R. H. AND PARK, D. 1996. Improving the effectiveness of software prefetching with adaptive
execution. In Proceedings of the 5th International Conference on Parallel Architecture and Compilation
Technology. IEEE Computer Society, Los Alamitos, CA, 68–78.

SON, S. W., KANDEMIR, M., KARAKOY, M., AND CHAKRABARTI, D. 2009. A compiler-directed data prefetch-
ing scheme for chip multiprocessors. In Proceedings of the 14th ACM SIGPLAN Symposium on Princi-
ples and Practice of Parallel Programming. ACM, New York, NY, 209–218.

SRINATH, S., MUTLU, O., KIM, H., AND PATT, Y. N. 2007. Feedback directed prefetching: Improving the
performance and bandwidth-efficiency of hardware prefetchers. In Proceedings of the 13th International
Symposium on High Performance Computer Architecture. IEEE Computer Society, Los Alamitos, CA,
63–74.

TENDLER, J., DODSON, S., FIELDS, S., LE, H., AND SINHAROY, B. 2002. POWER4 system microarchitec-
ture. IBM J. Resear. Devel. 46, 1, 5–25.

VANDERWIEL, S. P. AND LILJA, D. J. 2000. Data prefetch mechanisms. ACM Comput. Surv. 32, 2, 174–199.

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 1, Article 2, Publication date: March 2012.

When Prefetching Works, When It Doesn’t, and Why 2:29

WANG, Z., BURGER, D., MCKINLEY, K. S., REINHARDT, S. K., AND WEEMS, C. C. 2003. Guided region pre
fetching: A cooperative hardware/software approach. In Proceedings of the 25th International Sympo-
sium on Computer Architecture. ACM, New York, NY, 388–398.

WU, Y. 2002. Efficient discovery of regular stride patterns in irregular programs and its use in compiler
prefetching. In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation. ACM, New York, NY, 210–221.

YANG, C.-L., LEBECK, A. R., TSENG, H.-W., AND LEE, C.-H. 2004. Tolerating memory latency through
push prefetching for pointer-intensive applications. ACM Trans. Architect. Code Optim. 1, 4, 445–475.

ZHANG, W., CALDER, B., AND TULLSEN, D. M. 2006. A self-repairing prefetcher in an event-driven dynamic
optimization framework. In Proceedings of the 4th International Symposium on Code Generation and
Optimization. IEEE Computer Society, Los Alamitos, CA, 50–64.

ZILLES, C. AND SOHI, G. 2001. Execution-based prediction using speculative slices. In Proceedings of the
23rd International Symposium on Computer Architecture. ACM, New York, NY, 2–13.

Received November 2010; revised July 2011; accepted August 2011

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 1, Article 2, Publication date: March 2012.

