GPU Computing and the Road to
Extreme-Scale Parallel Systems |

STEVE KECKLER |
DIRECTOR OF ARCHITECTURE RESEARCH

NVIDIA

Agenda

GPU Computing Overview

* Contemporary GPU Architectures
* Fermi GPU Architecture
GPU systems

* Challenges for Extreme-Scale Parallel
Systems

* Echelon — An NVIDIA HPC Research Project

Evolution of GPUs

SANVIDIA.

@ NVIDIA 2011

History of GPU Computing

NVIDIA

1.0: Compute pretending to be graphics (early 2000s)

@ NVIDIA 2011

Disguise data as textures or geometry
Disguise algorithm as render passes
Trick graphics pipeline into doing your computation!

: Program GPU directly — end of “GPGPU”

No graphics-based restrictions

2006: Introduction of CUDA — general purpose compute
language for hybrid GPU systems

: GPU computing ecosystem (today)

100,000+ active CUDA developers

Libraries, debuggers, performance tools, HPC/consumer
applications, ISV applications and support

Education and research (350 universities teaching CUDA)

Throughput Processor Ingredients

High arithmetic and memory bandwidth

Throughput more important than latency
Hide DRAM latency with multithreading

Explicit parallelism via fine-grained threads ...
Architecture o |
Programming system

Hardware thread management
Thread creation/sync
Scheduling
i GeForce 8800
Memory allocation e

GeForce FX

GeForce 3 125M xtors

GeForce®™ 256 60Mxtors
RIVA 128 23M xtors

@ NVIDIA 2011

CUDA (Today) In One Slide

Thread

per-thread
local memory

Global barrier

@ NVIDIA 2011

Local barrier

Kernel foo ()

>

NVIDIA

per-block
shared

memory

Kernel bar ()

per-device
global
memory

N

NVIDIA

void saxpy_serial(int n, float a, float *x, float *y)

{

for (int i = 0; i < n; ++1)

y[il = a*x[i] + y[il; Serial C Code

}

// Invoke serial SAXPY kernel
saxpy_serial(n, 2.0, x, y);

__global__ void saxpy_parallel(int n, float a, float *x, float *y)
{

int 1 = blockIdx.x*blockDim.x + threadIdx.x;
if (1 < n) y[i] = a*x[i1] + y[i];
} Parallel C Code

// Invoke parallel SAXPY kernel with 256 threads/block
int nblocks = (n + 255) / 256;
saxpy_parallel<<<nblocks, 256>>>(n, 2.0, x, y);

@ NVIDIA 2071

NVIDIA Fermi GPU and
Systems

<SANVIDIA.

@ NVIDIA 2011

Fermi Focus Areas <X

NVIDIA

Expand performance
sweet spot of the GPU

Caching
Concurrent kernels
FP64

More cores

More memory BW

Bring more users,
more applications to
the GPU

* C++

Visual Studio
Integration

ECC

@ NVIDIA 2011

Streaming Multiprocessor (SM) <X

NVIDIA

_Instruction Cache
T
* Main computation engines " Register File

* 16 SMs per Fermi chip

32 “CUDA cores” per |
SM (51 2 tOtal) Core_ Core_Core Core-

Core Core | Core Core

Core Core | Core Core

Core Core | Core Core

Core| Core Core Core

Core| Core Core Core

Core| Core Core Core

Core| Core Core Core

Load/Store Units x 16
Special Func Units x 43|

Interconnect Network

FP32 FP64 INT t

4K Configurable
OPS / clk 32 16 che/Shared Mem

~ Uniform Cache

@ NVIDIA 2011

NVIDIA

SM Microarchitecture

_ Instruction Cache

Math Operations Sispaton Dispaten

IEEE 754'2008 ~ Register File
arithmetic standard M Eore| Bore | Bore Bore

Fused MUItipIy-Add (o] (-] (o] (-] ore ore
(FMA) for SP & DP ppiarand Colletitor : : : :

Integer ALU optimized INT Unit g akl ol

for 64-bit and extended Core Core Core Core

pI‘ECiSiOI‘I OpS I Ftesult Queui Core Core Core Core

Large |Oca| register file Core Core Core Core

64KB Configurable Iocal Core| Core Core Core
memory Core Core Core Core

Scratch and Cache ' Load/Store Units x 164
Special Func Units x 41

Interconnect Network

SIMT microarchitecture |:4Kc°.,ﬁgu,ab.e

ache/Shared Mem
_ Uniform Cache

@ NVIDIA 2011

SIMD versus MIMD versus SIMT? <X

NVIDIA

VLD

SIMD: Slngle Instruction VADD ' ; ¥
Multiple Data v N W o0 W

LD ADD LD
ADD ST ADD
ST BR ST

BR LD BR
A\ A AXLR /4

MIMD: Multiple
Instruction Multiple Data

SIMT: Single Instruction
Multiple Thread

SIMT = MIMD Programming Model w/
SIMD Implementation Efficiencies

@ NVIDIA 2011

Memory Hierarchy
NVIDIA

True cache hierarchy + on-chip shared

RAM

On-chip shared memory: regular
memory access

dense linear algebra, image
processing, ...
Caches: irregular /unpredictable
memory access

ray tracing, sparse matrix multiply,
physics ...

DRAM I/F
4/ Nvda

HOST I/F

=)
1)
>
=
T

S

| qlga]’ h efd
4/1 NVHa

Unified L2 Cache for all SMs (768 KB)

Fast, coherent data sharing across all
cores in the GPU

GDDRS5 memory interface
2x peak speed over GDDR3

DRAM I/F

. dnwvHa

@ NVIDIA 2011

Transistors 681 million 1.4 billion 3.0 billion
CUDA Cores 128 240 512
Double Precision Floating Point - 30 FMA ops/clock 256 FMA ops/clock

Single Precision Floating Point 128 MAD ops/clock 240 MAD ops/clock 512 FMA ops/clock

Special Function Units (per SM) 2 2 4
Tesla C2050 Performance

Warp schedulers (per SM)

Shared Memory (per SM) 51 5 D P G F|OpS Configurable 48/16 KB

L1 Cache (per SM) 1.03 SP TFlops Configurable 16/48 KB
L2 Cache 144 GB/sec memory BW

768 KB
ECC Memory Support - - Yes
Concurrent Kernels - - Upto 16

Load/Store Address Width 64-bit

@ NVIDIA 2011

NVIDIA Tesla GPUs Power 3 of Top 5
Supercomputers

#1 : Tianhe-1A #3 : Nebulae #4 : Tsubame 2.0

7168 Tesla GPUs 2.5 PFLOPS 4650 Tesla GPUs 1.2 PFLOPS 4224 Tesla GPUs 1.194
PFLOPS

8 more GPU accelerated machines

in the November Top500 AR %\ /

NVIDIA M2070 NVIDIA C2070
Module PC Card

GPU Supercomputers: More Power <3
Efficient e

T

Tianhe-1A Jaguar Nebulae Tsubame LBNL

Performance
2500

Gigaflops
=
Ul
=)
=)

(2]
e
-

[

S

©

o

(V]
=

B GPU-CPU Supercomputer [CPU only Supercomputer Power

@ NVIbiA cu i

Sustained Performance (Optimized) <3

Linpack

Sparse Matrix-

Vector Multiply

Radix Sort

Breadth-First
Search

@ NVIDIA 2011

Metric

GFlops
GFlops

Bandwidth
(GB/sec)

Million Keys/sec

Metric

Billion Edges/sec

CPU + GPU
(Tesla 2050)

300+
8

100-140
(of 145)

800+

CPU + GPU
(Tesla 2050)

~1700

NVIDIA

1 CPU Socket
(3+ GHz 4-core
Nehalem)

2 CPU Sockets
(3+ GHz 4-core
Nehalem)

800-1000

Wide Adoption of Tesla GPUs <3

NVIDIA

Oil and gas Edu/Research Government Life Sciences Finance Manufacturing
v

Chevron lalne e
< g ’ ki Lo A %P}(}HI{)IIE. © Bloomberg
‘ e ﬁ HARVARD IﬂE SYSTEHS i ;;:-:erll-l;lgll.:m:f”m GIMQ;?:AI

HOSPITAL

ToTAaL School of Engineering

and Applied Sciences ¥
BNP PARIBAS

m Eug UNIVERSITY OF Y, 5 ﬁ % @
PETROBRAS ¥ CAMBRIDGE B YW B Vumern

H " P
©Paradigm AR S : -

s) : all |

_ sch‘“mhemp | 2:%@%?‘ DIGITALGLOBE . | j:} ¢ \(Jtamp [nc.

Key Challenges for Parallel Systems &

NVIDIA

@ NVIDIA 2011

<X

2%

NVIDIA

Power Constrained Computers

100KW-20MW

@ NVIDIA 2011

Energy Efficiency <X

NVIDIA

Today’s chip-level efficiency (40nm)
CPUs: ~2nJ/FLOPS (DP FLOPS sustained)
GPUs: ~300pJ/FLOPS

Future systems (e.g. ExaScale at 20MW)
20pJ/FLOPS sustained across entire system

Similar efficiencies required at other envelopes
Process scaling 40nm to 10nm will get us ~4x
Need another 4x

Lower voltage and lower energy circuits

Energy-optimized architecture
Software

@ NVIDIA 2011

Where is the energy going? <X

NVIDIA

* Per-instruction overheads (speculation, OOO execution, etc.)
* FP operation is just ~50pJ of 2nd instruction

Communication energy

64-bit DP
50pd DRAM
Rd/Wr

256-bit Efficient
buses off-chip
link
256-bit acces
8 kB SRAM

@ NVIDIA 2011

Processor Technology Projections

Processor
Technology

Vdd (nominal)

Frequency Target

DFMA energy

64b 8 KB SRAM Rd

Wire energy
(Standard P&R)

Wire energy target
(Engineered Channel)

@ NVIDIA 2011

28 nm
(2011)

o9V
1.5 GHz

47 pd

14 pd

486 fd/trans/mm

111 fJ/trans/mm

10nm High Perf
(2017)

0.75V

2.5 GHz

11.7 pJ
(0.25x)

5.4 pd
(0.25x)

303 fd/trans/mm
(0.61x)

69 fd/trans/mm
(0.61x)

10nm Low Power

(2017)

0.6V

2 GHz

7.5 pJ
(0.16x)

2.3 pJ
(0.16x)

194 fd/trans/mm
(0.39x)

44 fd/trans/mm
(0.39x)

Strategies for Energy Reduction <X

NVIDIA

Improve (physical) locality
Move bits less far: registers, memory
Drag fewer bits across the I/O pins

Simplify architectures
Reduce per-instruction overheads
Push work from dynamic to static

Reduce waste
Speculation/mis-speculation, prefetching, overfetching

Push voltage down further
Dennard scaling is over, now an optimization process
More research in low-voltage circuits (e.g. RAMs)

Lots of interesting research problems here

@ NVIDIA 2011

Fundamental and Incidental <X
Obstacles to Programmability

NVIDIA

* Fundamental
* Expressing 10° way parallelism

* Expressing locality to deal with >100:1
global:local energy

Balancing load across 10° cores

* Incidental

* Dealing with multiple address spaces
* Partitioning data across nodes
* Aggregating data to amortize message overhead

@ NVIDIA 2011

How will thread count scale? <X

NVIDIA

For GPU-based systems with threads/SM chosen for
memory latency tolerance

2010: 2018:
4640 GPUs 90K GPUs

Threads/SM 1.5K ~103
Threads/GPU 21 K ~10°
Threads/Cabinet 672 K ~107
Threads/Machine 97 M ~109-1010

Billion-fold parallel fine-grained threads for Exascale

@ NVIDIA 2011

Very simple hardware can provide <3

NVIDIA

Shared global address space (PGAS)

* No need to manage multiple copies with different
hames

Fast and efficient small (4-word) messages

No need to aggregate data to make Kbyte
messages

» Efficient global block transfers (with
gather/scatter)
* No need to partition data by “node”
* Vertical locality is still important

@ NVIDIA 2011

A Layered approach to Fundamental @
Programming Issues

VIDIA

* Hardware mechanisms for efficient communication,
synchronization, and thread management

Programmer limited only by fundamental machine
capabilities

* A programming model that expresses all available
parallelism and locality
* hierarchical thread arrays and hierarchical storage

* Compilers and run-time auto-tuners that selectively
exploit parallelism and locality

@ NVIDIA 2011

What about legacy codes? <3

NVIDIA

Will continue to run — faster than they do now
* But...

* They don’t have enough parallelism to begin to fill

the machine

Their lack of locality will cause them to bottleneck
on global bandwidth

* As they are ported to the new model

@ NVIDIA 2011

* The constituent equations will remain largely

unchanged

®* The solution methods will evolve to the new cost

model

Echelon

Extreme-scale Computer Hierarchies with

Efficient Locality-Optimized Nodes

A DARPA UHPC-sponsored research
project

@ NVIDIA 2011

A

>

NVIDIA

Echelon Team

UNIVERSITY of Technology

THE UNIVERSITY OF
mu T E X A S @Georgialnstitute

AT AUSTIN"

A THEU)
LOCKHEED MARTIN7 TEII:I]II\\/]%{EISTEéUF

@ NVIDIA 2011

<A

NVIDIA

Objectives

100x better application energy efficiency over today’s
CPU systems.

Improved programmer productivity

®* Time required to write a parallel program achieving a large
fraction of peak efficiency is comparable to the time required
to write a serial program today

Strong scaling for many applications

®* Tens of millions of threads in rack, billions in Exascale

High application mean-time to interrupt (AMTTI)

®* Low overhead, matched to application needs

Machines resilient to attack

@ NVIDIA 2011

<A

NVIDIA

Approach

®* Energy challenge
®* Fine-grained parallel system with heterogeneous cores
®* Exposed and optimized vertical memory hierarchy

®* Programming challenge
Global address space
Programs express concurrency/locality abstractly
Autotuning for hardware mapping
Software selective memory hierarchy configuration;
selective coherence for non-critical data

®* Resilience challenge

* HW/SW cooperative resilience for energy- and performance-
efficient fault protection

¢ Guarded pointers for memory safety

@ NVIDIA 2011

N

[-a—

NVIDIA

System Interconnect

Y
Cabinet Interconnect

| |
| . B s N

| | : Self-Aware

oS

L2, \"' L2003

Self-Aware
Runtime

Processor Chip (PC)

Node O (NO) 16TF, 1.6TB/s, 256GB
kru’lodule 0 (M))128TF, 12.8TB/s, 2TB
_Cabhinet0 (CO) 2PF, 205TB/s, 32TB

_Echelon System

Locality-Aware
Compiler &
Autotuner

@ NVIDIA 2011

<3

SM Lane Architecture
NVIDIA

Control
Path

Thread PCs

Scheduler

64 threads

4 active threads

2 DFMAs (4 FLOPS/clock)

ORF bank: 16 entries (128 Bytes)
LO 1$: 64 instructions (1KByte)
LM Bank: 8KB (32KB total)

@ NVIDIA 2011

RF RF
LOAddr LOAddr
L1Addr L1Addr

Net Net

N\ N\ N
FP/Int FP/Int LS/BR

Streaming Multiprocessor (SM) :ff%ﬂ
Architecture “

Tile Network

I

A

\ 4

LO D$

Scratch

MRF

Lane O

512 threads

32 active threads
16 DFMAs (32 FLOPs/clock)

L1 I$: 2K instructions (32KB)
RF/Scratch/D$: 256KB

LO caches in other lanes form L1 cache

@ NVIDIA 2011

>
NVIDIA

Echelon Chip Floorplan

DRAM I/O DRAM I/O [Nwio | DRAM I/O DRAM I/O

0wl n|l ol v 0wl n|l vl v (2] w| n 0wl n|l n v w0l n v
SE|I==|= SE|I==|= = == SE|I==|= =S ===

O/l Nvyda
O/l Nvyda

O/l Nvda
O/l Nvda

| [onmn | |
| [onmn | |

10nm process
290mm?

O/l Nvyda
O/l Nvyda

O/l W\vya
O/l W\vyad

== | == = | === == = | = = | === = (===
w nl|lno n w nl|lo n n | n [ZENT] w nl|lo | n n | nl|ln | n

DRAM I/O DRAM I/O [NwWio | DRAM I/O DRAM I/O

@ NVIDIA 2011

Node MCM - 16 TF + 256GB

160GB/s
Network BW

1.6TB/s
DRAM BW

Cabinet: 128 Nodes, 2 PF, 38 kW

ROUTER

MODULE MODULE MODULE MODULE MODULE

32 Modules, 4 Nodes/Module,
Central Router Module(s), Dragonfly
@ NViDIA 201 Interconnect

Exascale System

Dragonfly Interconnect
500 Cabinets is ~1EF and ~19MW

@ NVIDIA 2011

The Future of High Performance <X
Computing

NVIDIA

Power constraints dictate extreme energy efficiency
Programming systems are the long-pole in the tent

* All future interesting problems will be cast as
throughput workloads

* GPUs are evolving to be the general-purpose
throughput processors

* CPUs
Latency-optimized cores: important for Amdahl’s law
mitigation
But CPUs as we know them will become (already are?)
“good enough”, and shrink to a corner of the die/system

@ NVIDIA 2011

Questions?

<SANVIDIA.

@ NVIDIA 2011

