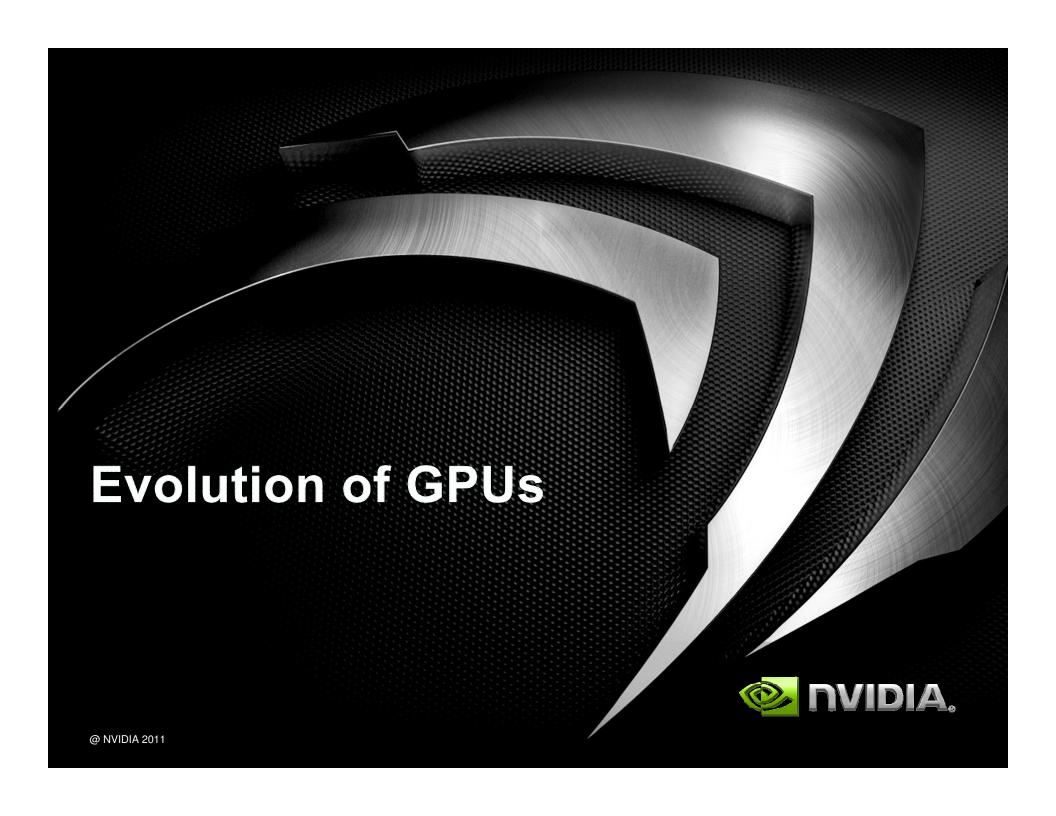


Agenda

- GPU Computing Overview
- Contemporary GPU Architectures
 - Fermi GPU Architecture
 - GPU systems
- Challenges for Extreme-Scale Parallel Systems
- Echelon An NVIDIA HPC Research Project



History of GPU Computing

- 1.0: Compute pretending to be graphics (early 2000s)
 - Disguise data as textures or geometry
 - Disguise algorithm as render passes
 - Trick graphics pipeline into doing your computation!
- 2.0: Program GPU directly end of "GPGPU"
 - No graphics-based restrictions
 - 2006: Introduction of CUDA general purpose compute language for hybrid GPU systems
- 3.0: GPU computing ecosystem (today)
 - 100,000+ active CUDA developers
 - Libraries, debuggers, performance tools, HPC/consumer applications, ISV applications and support
 - Education and research (350 universities teaching CUDA)

Throughput Processor Ingredients

- High arithmetic and memory bandwidth
- Throughput more important than latency
 - Hide DRAM latency with multithreading

GeForce 3 60M xtors

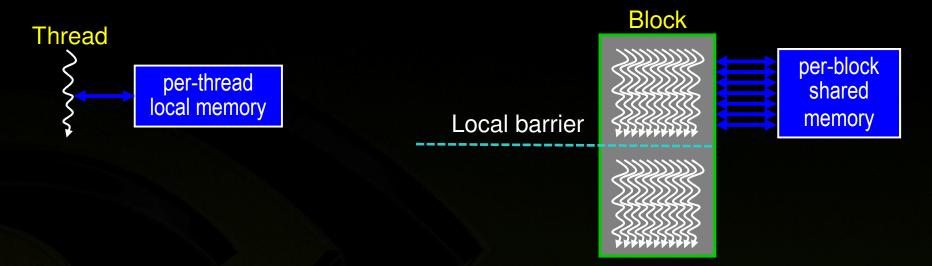
- Explicit parallelism via fine-grained threads
 - Architecture
 - Programming system
- Hardware thread management

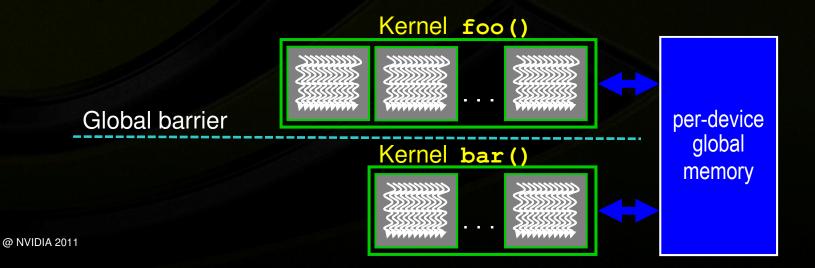
GeForce® 256 23M xtors

- Thread creation/sync
- Scheduling
- Memory allocation

"Fermi"

CUDA (Today) In One Slide

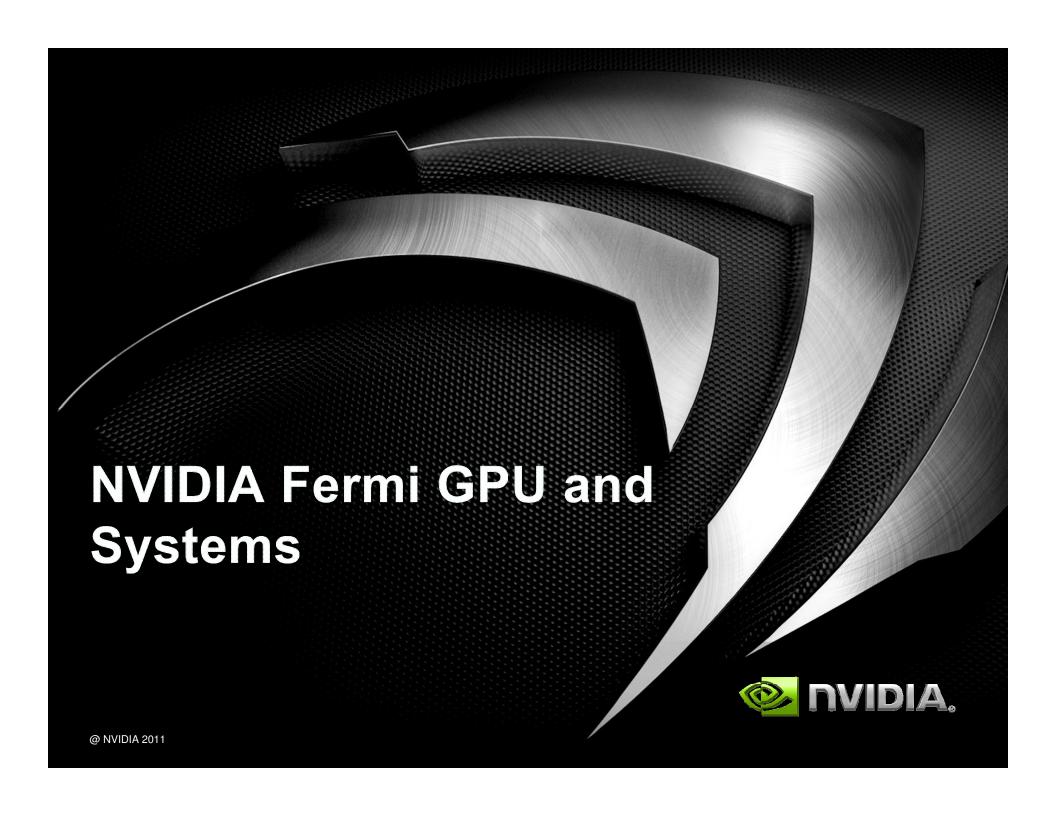




CUDA C Example

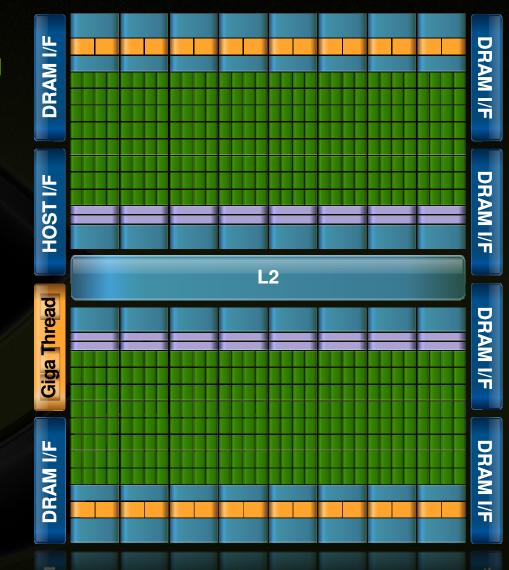

```
void saxpy_serial(int n, float a, float *x, float *y)
{
   for (int i = 0; i < n; ++i)
        y[i] = a*x[i] + y[i];
}

// Invoke serial SAXPY kernel
saxpy_serial(n, 2.0, x, y);</pre>
```



Fermi Focus Areas

- Expand performance sweet spot of the GPU
 - Caching
 - Concurrent kernels
 - FP64
 - More cores
 - More memory BW
- Bring more users, more applications to the GPU
 - C++
 - Visual Studio Integration
 - ECC



Streaming Multiprocessor (SM)

- Main computation engines
 - 16 SMs per Fermi chip
 - 32 "CUDA cores" per SM (512 total)

	Core	Core	Core	Core	
	Core	Core	Core	Core	
	Core	Core	Core	Core	
	Core	Core	Core	Core	
	Core	Core	Core	Core	
	Load/Store Units x 16 Special Func Units x 4 Interconnect Network 64K Configurable				

Cache/Shared Mem

Uniform Cache

Instruction Cache

Register File

Core Core Core

Core Core Core

Core Core Core

Scheduler

Dispatch

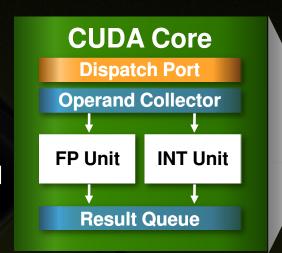
Scheduler

Dispatch

	FP32	FP64	INT	SFU	LD/ST
Ops / clk	32	16	32	4	16

SM Microarchitecture

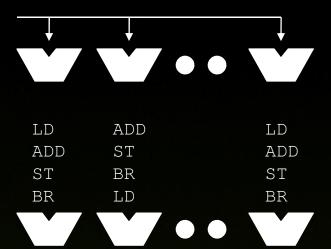
- Math Operations
 - IEEE 754-2008 arithmetic standard
 - Fused Multiply-Add (FMA) for SP & DP
 - Integer ALU optimized for 64-bit and extended precision ops
- Large local register file
- 64KB configurable local memory
 - Scratch and Cache
- SIMT microarchitecture



Instruction Cache				
Sche	duler	Scheduler		
Disp	atch	Dispatch		
	Regist	er File		
Core	Core	Core	Core	
Core	Core	Core	Core	
Core	Core	Core	Core	
Core	Core	Core	Core	
Core	Core	Core	Core	
Core	Core	Core	Core	
Core	Core	Core	Core	
Core	Core	Core	Core	
Load/Store Units x 16				
Special Func Units x 4				
Interconnect Network				
64K Configurable Cache/Shared Mem				
Uniform Cache				

SIMD versus MIMD versus SIMT?

SIMD: Single Instruction Multiple Data VLD VADD VST



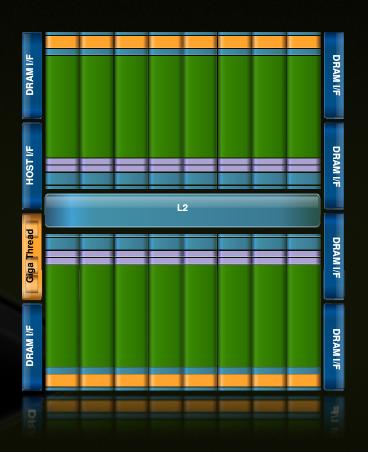
MIMD: MultipleInstruction Multiple Data

SIMT: Single Instruction Multiple Thread

> SIMT = MIMD Programming Model w/ SIMD Implementation Efficiencies

Memory Hierarchy

- True cache hierarchy + on-chip shared RAM
 - On-chip shared memory: regular memory access
 - dense linear algebra, image processing, ...
 - Caches: irregular /unpredictable memory access
 - ray tracing, sparse matrix multiply, physics ...
- Unified L2 Cache for all SMs (768 KB)
 - Fast, coherent data sharing across all cores in the GPU
- GDDR5 memory interface
 - 2x peak speed over GDDR3



	G80	GT200	Fermi
Transistors	681 million	1.4 billion	3.0 billion
CUDA Cores	128	240	512
Double Precision Floating Point		30 FMA ops/clock	256 FMA ops/clock
Single Precision Floating Point	128 MAD ops/clock	240 MAD ops/clock	512 FMA ops/clock
Special Function Units (per SM)	2	2	4
Warp schedulers (per SM)	Tesla C2050) Performance	2
Shared Memory (per SM)	515 DF	P GFlops	Configurable 48/16 KB
L1 Cache (per SM)	1.03 SP TFlops		Configurable 16/48 KB
L2 Cache	144 GB/sec	memory BW	768 KB
ECC Memory Support		-	Yes
Concurrent Kernels		-	Up to 16
Load/Store Address Width	32-bit	32-bit	64-bit

@ NVIDIA 2011

NVIDIA Tesla GPUs Power 3 of Top 5 Supercomputers

#1: Tianhe-1A

#3: Nebulae

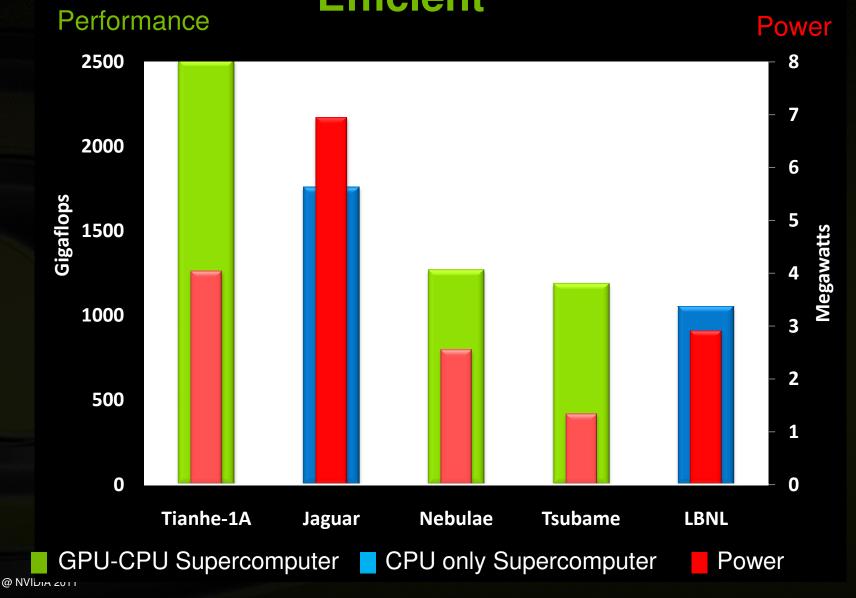
7168 Tesla GPUs 2.5 PFLOPS 4650 Tesla GPUs 1.2 PFLOPS

#4: Tsubame 2.0

4224 Tesla GPUs 1.194 **PFLOPS**

8 more GPU accelerated machines in the November Top500

GPU Supercomputers: More Power Efficient



Sustained Performance (Optimized)

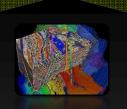
	Metric	CPU + GPU (Tesla 2050)	1 CPU Socket (3+ GHz 4-core Nehalem)
Linpack	GFlops	300+	~40
Sparse Matrix- Vector Multiply	GFlops	8	2
	Bandwidth (GB/sec)	100-140 (of 145)	
Radix Sort	Million Keys/sec	800+	240

	Metric	CPU + GPU (Tesla 2050)	2 CPU Sockets (3+ GHz 4-core Nehalem)
Breadth-First Search	Billion Edges/sec	~1700	800-1000

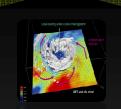
@ NVIDIA 2011

Wide Adoption of Tesla GPUs

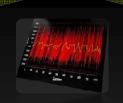
Oil and gas Edu/Research Government Life Sciences **Finance** Manufacturing



Reverse Time Migration **Kirchoff Time Migration Reservoir Sim**



Astrophysics Molecular **Dynamics** Weather / Climate **Modeling**



Signal **Processing Satellite Imaging Video Analytics Synthetic Aperture Radar**

BAE SYSTEMS

WISCONSIN

Bio-chemistry

Bio-informatics

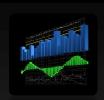
Material

Science

Sequence

Analysis

Genomics



Risk Analytics Monte Carlo Options Pricing Insurance modeling

Structural **Mechanics** Computational **Fluid Dynamics Machine Vision Electromag.**

Key Challenges for Parallel Systems

Power

Programming

Power Constrained Computers

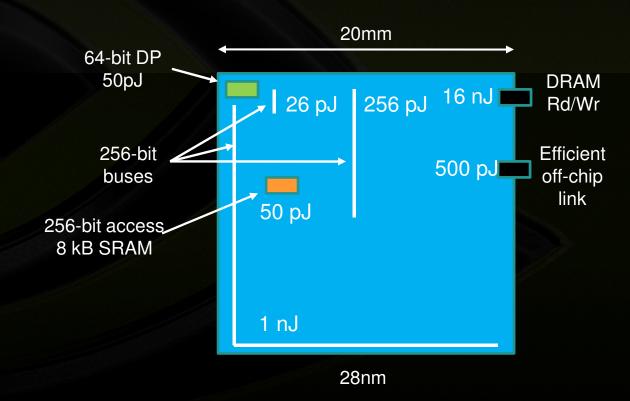
@ NVIDIA 2011 20

Energy Efficiency

- Today's chip-level efficiency (40nm)
 - CPUs: ~2nJ/FLOPS (DP FLOPS sustained)
 - GPUs: ~300pJ/FLOPS
- Future systems (e.g. ExaScale at 20MW)
 - 20pJ/FLOPS sustained across entire system
 - Similar efficiencies required at other envelopes
- Process scaling 40nm to 10nm will get us ~4x
- Need another 4x
 - Lower voltage and lower energy circuits
 - Energy-optimized architecture
 - Software

Where is the energy going?

- Per-instruction overheads (speculation, OOO execution, etc.)
 - FP operation is just ~50pJ of 2nJ instruction
- Communication energy



Processor Technology Projections

Processor Technology	28 nm (2011)	10nm High Perf (2017)	10nm Low Power (2017)
Vdd (nominal)	0.9 V	0.75 V	0.6 V
Frequency Target	1.5 GHz	2.5 GHz	2 GHz
DFMA energy	47 pJ	11.7 pJ (0.25x)	7.5 pJ (0.16x)
64b 8 KB SRAM Rd	14 pJ	5.4 pJ (0.25x)	2.3 pJ (0.16x)
Wire energy (Standard P&R)	486 fJ/trans/mm	303 fJ/trans/mm (0.61x)	194 fJ/trans/mm (0.39x)
Wire energy target (Engineered Channel)	111 fJ/trans/mm	69 fJ/trans/mm (0.61x)	44 fJ/trans/mm (0.39x)

@ NVIDIA 2011 23

Strategies for Energy Reduction

- Improve (physical) locality
 - Move bits less far: registers, memory
 - Drag fewer bits across the I/O pins
- Simplify architectures
 - Reduce per-instruction overheads
 - Push work from dynamic to static
- Reduce waste
 - Speculation/mis-speculation, prefetching, overfetching
- Push voltage down further
 - Dennard scaling is over, now an optimization process
 - More research in low-voltage circuits (e.g. RAMs)

Lots of interesting research problems here

Fundamental and Incidental Obstacles to Programmability

- Fundamental
 - Expressing 10⁹ way parallelism
 - Expressing locality to deal with >100:1 global:local energy
 - Balancing load across 10⁹ cores
- Incidental
 - Dealing with multiple address spaces
 - Partitioning data across nodes
 - Aggregating data to amortize message overhead

How will thread count scale?

For GPU-based systems with threads/SM chosen for memory latency tolerance

	2010: 4640 GPUs	2018: 90K GPUs
Threads/SM	1.5 K	~10 ³
Threads/GPU	21 K	~10 ⁵
Threads/Cabinet	672 K	~10 ⁷
Threads/Machine	97 M	~10 ⁹ -10 ¹⁰

Billion-fold parallel fine-grained threads for Exascale

Very simple hardware can provide

- Shared global address space (PGAS)
 - No need to manage multiple copies with different names
- Fast and efficient small (4-word) messages
 - No need to aggregate data to make Kbyte messages
- Efficient global block transfers (with gather/scatter)
 - No need to partition data by "node"
 - Vertical locality is still important

A Layered approach to Fundamental Programming Issues

- Hardware mechanisms for efficient communication, synchronization, and thread management
 - Programmer limited only by fundamental machine capabilities
- A programming model that expresses all available parallelism and locality
 - hierarchical thread arrays and hierarchical storage

Compilers and run-time auto-tuners that selectively exploit parallelism and locality

@ NVIDIA 2011 28

What about legacy codes?

- Will continue to run faster than they do now
- But...
 - They don't have enough parallelism to begin to fill the machine
 - Their lack of locality will cause them to bottleneck on global bandwidth
- As they are ported to the new model
 - The constituent equations will remain largely unchanged
 - The solution methods will evolve to the new cost model

Echelon

Extreme-scale Computer Hierarchies with Efficient Locality-Optimized Nodes

A DARPA UHPC-sponsored research project

Echelon Team

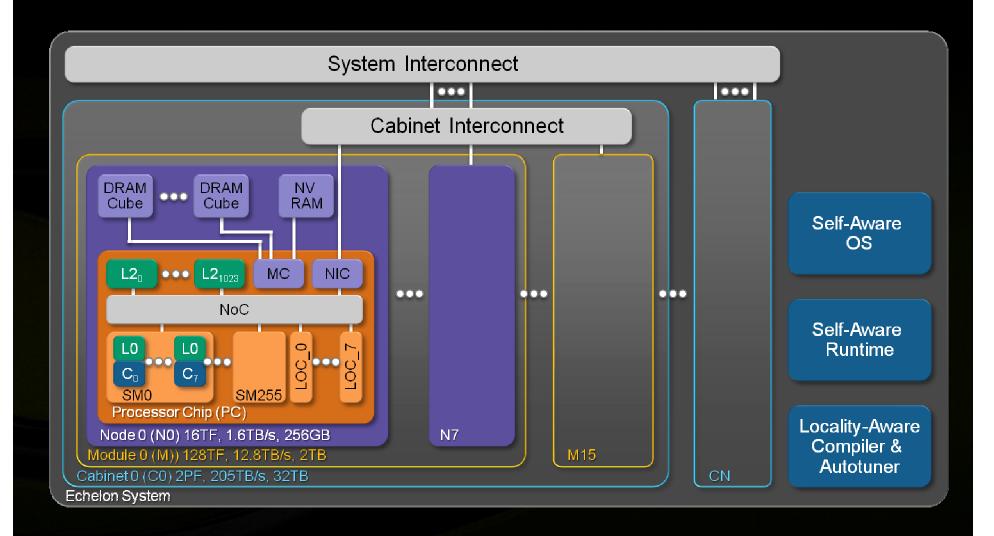
Objectives

- 100x better application energy efficiency over today's CPU systems.
- Improved programmer productivity
 - Time required to write a parallel program achieving a large fraction of peak efficiency is comparable to the time required to write a serial program today
- Strong scaling for many applications
 - Tens of millions of threads in rack, billions in Exascale
- High application mean-time to interrupt (AMTTI)
 - Low overhead, matched to application needs
- Machines resilient to attack

Approach

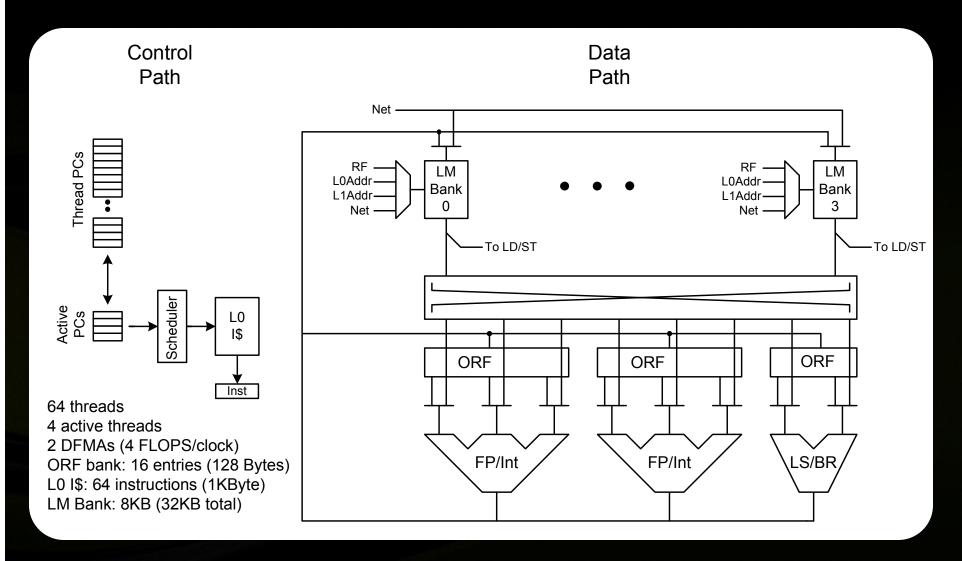
- Energy challenge
 - Fine-grained parallel system with heterogeneous cores
 - Exposed and optimized vertical memory hierarchy
- Programming challenge
 - Global address space
 - Programs express concurrency/locality abstractly
 - Autotuning for hardware mapping
 - Software selective memory hierarchy configuration; selective coherence for non-critical data
- Resilience challenge
 - HW/SW cooperative resilience for energy- and performanceefficient fault protection
 - Guarded pointers for memory safety

Echelon Node and System

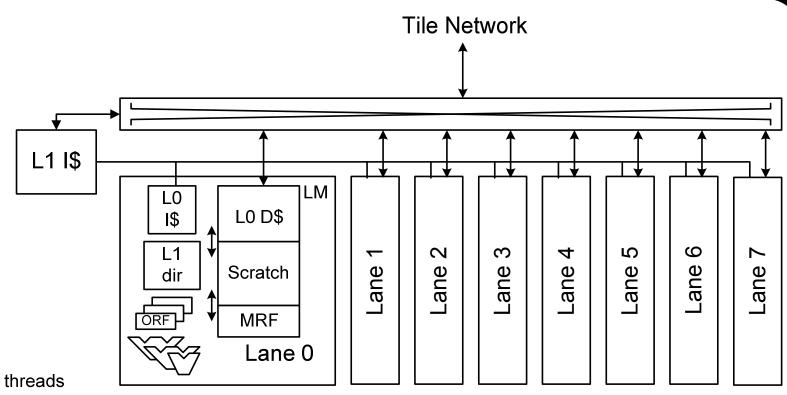


@ NVIDIA 2011 34

SM Lane Architecture



Streaming Multiprocessor (SM) Architecture



512 threads

32 active threads

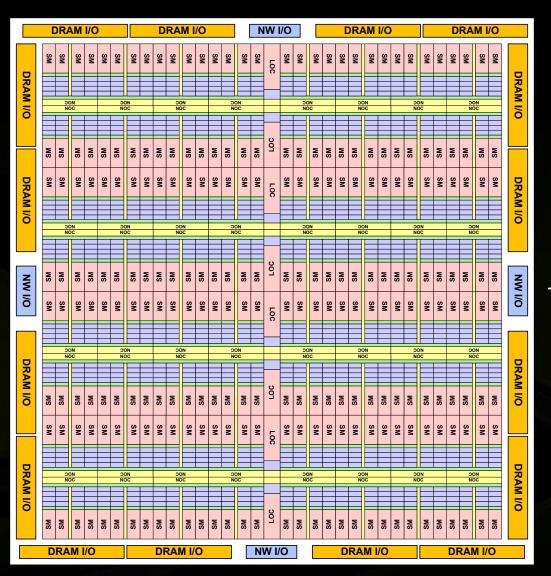
16 DFMAs (32 FLOPs/clock)

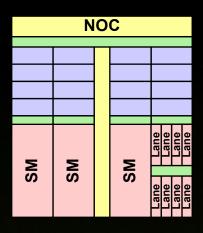
L1 I\$: 2K instructions (32KB)

RF/Scratch/D\$: 256KB

L0 caches in other lanes form L1 cache

Echelon Chip Floorplan



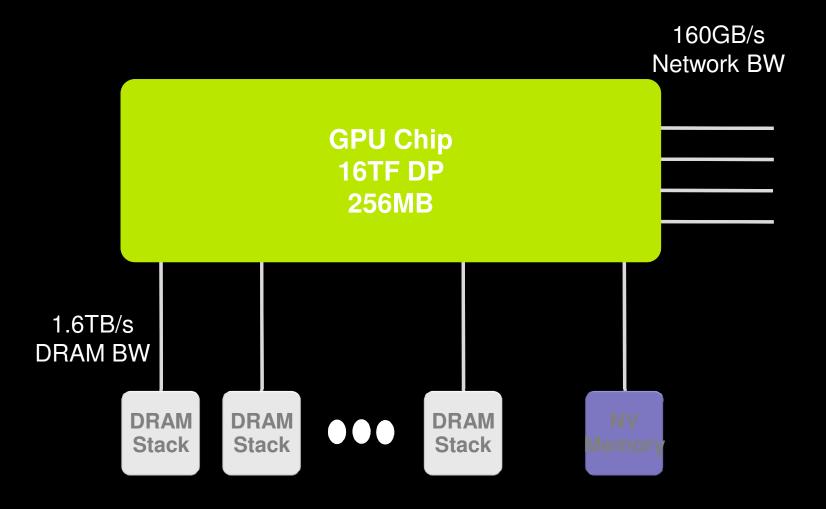


17mm

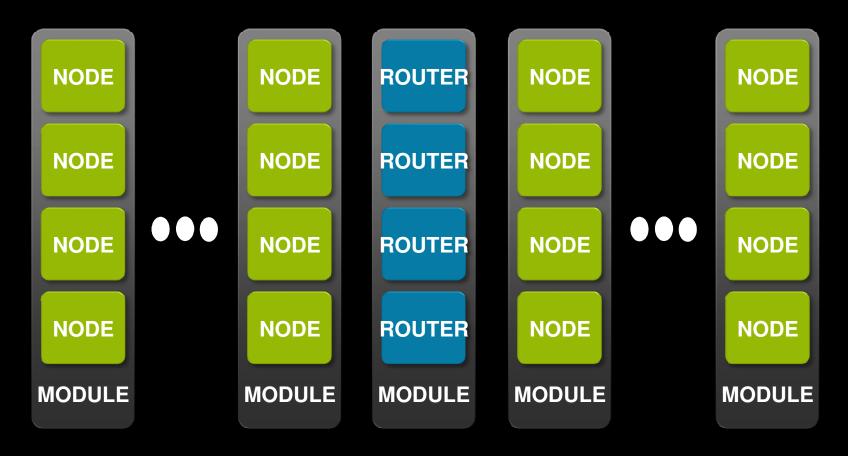
10nm process 290mm²

@ NVIDIA 2011

Node MCM - 16 TF + 256GB



Cabinet: 128 Nodes, 2 PF, 38 kW



32 Modules, 4 Nodes/Module, Central Router Module(s), Dragonfly Interconnect

Exascale System

Dragonfly Interconnect 500 Cabinets is ~1EF and ~19MW

The Future of High Performance Computing

- Power constraints dictate extreme energy efficiency
- Programming systems are the long-pole in the tent
- All future interesting problems will be cast as throughput workloads
- GPUs are evolving to be the general-purpose throughput processors
- CPUs
 - Latency-optimized cores: important for Amdahl's law mitigation
 - But CPUs as we know them will become (already are?) "good enough", and shrink to a corner of the die/system

