gf3-1 Case Study: NVIDIA GeForce 3 Series gf3-1

Overview
Early programmable GPU.
Available 2001, discontinued.
Specifications (GeForce3 Ti 500)
Memory: 64 MiB

Bandwidth: 8 GB/s.

Programmable vertex processor (shader).

gf3'] EE 7700-1 Lecture Transparency. Formatted 10:08, 12 March 2010 from set-study-gf3. gf3']

gf3-2

of3-2

References gf3-2

Description of GeForce 3 Vertex Processor Microarchitecture
Good technical description in top-tier graphics conference.

Erik Lindholm, Mark J. Kilgard, Henry Moreton, “A User-Programmable Verter Engine,”
SIGGRAPH 2001, |p|.149-

Product Overview

Manufacturers progliict description page, http://www.nvidia.com/page/geforce3.html

Slides describing Ge¢Horce3 with good coverage of instruction set.

Michael McCool, Mpuro Steigleder, “Graphics Accelerators: State of the Art: NVIDIAs
GeForce3d”, http:/|/ywww.cgl.uwaterloo.ca/Projects/rendering/Talks/StateArt2.ppt

eficy. Formatted 10:08, 12 March 2010 from set-study-gf3. gf3-2

oE 7700-1 Lecture Transp{

http://www.nvidia.com/page/geforce3.html
http://www.cgl.uwaterloo.ca/Projects/rendering/Talks/StateArt2.ppt

of3-3 of3-3
Specification of Vertex Processor API

Ostensibly, an API for programming, not the [t1ue set of machine instructions. ..
5 close to true instruction set.

— o

... however Lindholm 2001 strongly implies it

NV_Vertex_Program specification,
http://www.ece.lsu.edu/gp/refs/nv-vertex-program.txt

gf3-3 EE 7700-1 Lecture Transparency. Formatted 10:08, 12 March 2010 from set-study-gf3. gf3-3

http://www.ece.lsu.edu/gp/refs/nv-vertex-program.txt

gf3-4 of3-4
GeForce3 Major Units
Command and Data Fetch
Vertex Processor
Single Unit
Programmable

This unit described in detail here.

Primitive Assembly Setup
Texture Shader
Four Units

An important unit, but not covered in detail until good reference found.

Z-Test, Blend, Frame Buffer Update

gf3-4 EE 7700-1 Lecture Transparency. Formatted 10:08, 12 March 2010 from set-study-gf3. gf3-4

of3-5 of3-5
Operating Modes

Render Mode:
GPU processing vertices as vertex attributes arrive from CPU.

In render mode when processing string of glVertex OpenGL commands.
Setup Mode:
GPU changing state (configuration) in response to non-vertex data from CPU.
Setup might be needed for change of:
Transformation matrices.
Vertex program.

Lighting parameters.

gf3'5 EE 7700-1 Lecture Transparency. Formatted 10:08, 12 March 2010 from set-study-gf3. gf3-5

of3-6 Preliminaries: Quad Data Type of3-6

Quad Data Type
Just one data type, the quad.

Quad:
Set of four 32-bit FP numbers in IEEE 754 format, so total size is 128 bits.

Format follows IEEE 754 standard but arithmetic does not:
Many arithmetic operations not done to full precision.
No arithmetic exceptions.

Just one rounding mode (not four).

0xz=0 Vz, (including non-numbers)

No integer type (with one special-purpose exception).

gf3-6 EE 7700-1 Lecture Transparency. Formatted 10:08, 12 March 2010 from set-study-gf3. gf3-6

of3-7 of3-7
Data Type Rationale
Thirty-two bits sufficient for graphics.

Many graphics operations one 4-element vectors, including homogeneous coordinates and

RGBA data.

True IEEE 754 arithmetic adds to cost but not to value (at least before GPGPU applica-
tions).

gf3-7 EE 7700-1 Lecture Transparency. Formatted 10:08, 12 March 2010 from set-study-gf3. gf3-7

of3-8 Preliminaries: Swizzling gf3-8

Swizzling (Vector Element Rearrangement and Duplication)

Swizzle:

To rearrange or duplicate elements of a vector. For example, (1,2,3,4) can be swizzled to
(4,2,2,3).

Swizzle Notation
Let R1 be the name of something that stores a quad.
The symbols x, y, z, and w denote the four elements (x is first element, etc.).

Name followed by four letters (e.g., R1.zyxx), rearrange as shown. F.g., for R1.zyxx:
(1,2,3,4) — (3,2,1,1). (Note duplication of z.)

Vertex Assembly Notation: One letter (e.g., RO.y): duplicate, equivalent to RO.yyyy.
E.g., (1,2,3,4) — (2,2,2,2).

GL Shader Language Notation: Name followed by x € [1,4] letters: vector of length x
swizzled as shown. FE.g., let R1 = (1,2,3,4); then R1.y = (2) (note difference with vertex
assembly notation).

gf3-8 EE 7700-1 Lecture Transparency. Formatted 10:08, 12 March 2010 from set-study-gf3. gf3-8

of3-9 Preliminaries: Vertex Attribute of3-9

GeForce 3 Vertex Attribute:
One of 16 quads describing some aspect of a vertex.

Attributes are numbered and each has a specific meaning.
Attribute 0 is the vertex coordinate, attribute 2 is normal, etc.
Attribute numbers are exposed to the APIs (OpenGL, Direct3D).

Attributes number used as register number in several places.

gf3'9 EE 7700-1 Lecture Transparency. Formatted 10:08, 12 March 2010 from set-study-gf3. gf3'9

of3-10 of3-10
Unit: Command and Data Fetch
In rendering mode, reads attributes from CPU.

Data from CPU in variety of formats (8-bit integer, 32-bit float, etc.) ...
... and may not be full 4-element vectors.

Unit coverts data to quads and writes to Vertex Attribute Buffer.

Missing array elements are initialized to 0 or 1.

Vertex Attribute Buffer (VAB):

Set of 16 quad registers, each register corresponds to a vertex attribute.

Hardware implementation of command / data fetch unit not described.

gf3-] 0 EE 7700-1 Lecture Transparency. Formatted 10:08, 12 March 2010 from set-study-gf3. gf3-] 0

of3-11 Vertex Processor Overview of3-11

Vertex Processor Overview
Purpose: Apply transform & lighting computations.
Operation: Read data from VAB, write to OB.

Implemented as very simple microprogrammed processor.

gf3']] EE 7700-1 Lecture Transparency. Formatted 10:08, 12 March 2010 from set-study-gf3. gf3']]

of3-12 VP Registers of3-12

VP Registers

Input Buffer (implements, Vertex Attribute Registers):

A set of 16 quad registers holding vertex attributes, these registers are read-only by vertex
processor. Each vertex processor has several input buffers.

Number of input buffers not available.

The number might have been chosen to match operation latency.
Constant Registers (implements, Program Parameter Registers):
A set of 96 quad registers that are read only by vertex processor.

Constant registers do not change from vertex to vertex.

They hold data such as transformation matrices and lighting parameters.

gf3-] 2 EE 7700-1 Lecture Transparency. Formatted 10:08, 12 March 2010 from set-study-gf3. gf3-] 2

of3-13 VP Registers of3-13

Temporary Registers:
A set of 12 quad registers that can be read or written by vertex processor.

Address Register:

Effectively a single 32-bit integer register, but defined as a four-element vector of 32-bit integers.
Can only be written by one instruction, ARL. Value can only be used for indexed addressing of
constant (parameter) registers.

Output Buffer (implements Vertex Result Registers):
A set of 16 quad registers that are write only. Each VP has multiple output buffers.

gf3'] 3 EE 7700-1 Lecture Transparency. Formatted 10:08, 12 March 2010 from set-study-gf3. gf3'] 3

gf3-14

gf3-14

Vertex Attribute (Input Buffer) Register Names and Purpose (Table X.2)

Vertex

Attribute

Register
Number

O© 00N Ol WNH+— O

e
= O

e S =
a b W

Conventional
Per-vertex
Parameter

vertex position

vertex weights

normal

primary color
secondary color

fog coordinate

texture
texture
texture
texture
texture
texture
texture
texture

coord
coord
coord
coord
coord
coord
coord
coord

EE 7700-1 Lecture Transparency. Formatted

~NOo Ok WD - O

Conventional
Per-vertex Parameter Command

Vertex

VertexWeightEXT

Normal
Color

SecondaryColorEXT

FogCoordEXT

MultiTexCoord (GL_TEXTUREO_ARB,
MultiTexCoord (GL_TEXTURE1_ARB,
MultiTexCoord (GL_TEXTURE2_ARB,
MultiTexCoord (GL_TEXTURE3_ARB,
MultiTexCoord (GL_TEXTURE4_ARB,
MultiTexCoord (GL_TEXTURES_ARB,
MultiTexCoord (GL_TEXTUREG6_ARB,
MultiTexCoord (GL_TEXTURE7_ARB,

10:08, 12 March 2010 from set-study-gf3.

.
.
| S A U S S U A

Conventional
Component

Mapping

gf3-14

gf3-14

of3-15

gf3-15

Vertex Result (Output Buffer) Register Names and Purpose (Table X.1)

Vertex Result
Register Name

HPOS

COLO

COL1

BFCO

BFC1

FOGC

PSIZ

TEXO

TEX1

TEX2

TEX3

TEX4

TEX5

TEX6

TEX7

Description

Homogeneous clip space position
Primary color (front-facing)
Secondary color (front-facing)
Back-facing primary color
Back-facing secondary color

Fog coordinate
Point size

Texture
Texture
Texture
Texture
Texture
Texture
Texture
Texture

EE 7700-1 Lecture Transparency. Formatted

coordinate
coordinate
coordinate
coordinate
coordinate
coordinate
coordinate
coordinate

set
set
set
set
set
set
set
set

~NOo ok WD O

Component
Interpretation

(x,y,z,w)
(r,g,b,a)
(r,g,b,a)
(r,g,b,a)
(r,g,b,a)
(f,%,%,%)
(p,*,*,%)
(s,t,r,q)
(s,t,r,q)
(s,t,r,q)
(s,t,r,q)
(s,t,r,q)
(s,t,r,q)
(s,t,r,q)
(s,t,r,q)

10:08, 12 March 2010 from set-study-gf3.

of3-15

gf3-15

of3-16 Vertex Attribute Buffer and Input Buffer of3-16

Vertex attribute buffer (VAB) to input buffer (IB) transfer.
Data automatically copied from VAB to IB.
Transfer is triggered by a write to VAB attribute 0 (vertex position).
The 16 VAB registers are copied to the 16 registers of one of the IBs.
IB chosen in round-robin fashion.

Dirty bits used to avoid copying data that’s unchanged.

Note automatic triggering of copy by write of attribute 0.

gf3-] 6 EE 7700-1 Lecture Transparency. Formatted 10:08, 12 March 2010 from set-study-gf3. gf3-] 6

gf3-17 VP Instruction Set Architecture of3-17

Instruction Sets

True Instruction Set
Instructions recognized by vertex processor hardware.
These are not documented . ..
... but are likely some kind of microinstructions.

Exposed Instruction Set
Instructions recognized by API calls.
Documented in OpenGL NV _Vertex_Program specification.
Lindholm 2001 implies close match to true instruction set.

NVIDIA-provided software translates exposed instruction set to true one.

Description here is of exposed instruction set.

gf3-] 7 EE 7700-1 Lecture Transparency. Formatted 10:08, 12 March 2010 from set-study-gf3. gf3-] 7

of3-18

of3-18

VP Instruction Set Architecture

Register Name Assembly Syntax
Based on output of NVIDIA compiler.
Input Buffer (Vertex Attribute) Register Names:
vertex_program notation: v[0]-v[15] or v[0POS]-v[TEX7].

NVIDIA compiler: vertex.position, vertex.normal, etc.

Constant Register Names: c[0]-c[95].
Temporary Register Names: RO-R11.
Output Buffer Register Names:
vertex_program notation: o[0]-o[15].
NVIDIA compiler: result.position, result.color, etc.

Example:

MAD result.position, vertex.position.w, c[14], RO;

EE 7700-1 Lecture Transparency. Formatted 10:08, 12 March 2010 from set-study-gf3.

of3-18

of3-18

gf3-19 VP Instruction Set Architecture of3-19

Instruction Sources

Instructions can have up to three register source operands:
MAD R1, R2, R3, R4;

Any source operand can read 1B, temporary, or constant registers:
ADD R1, R2, R3 (Read temporary.)

ADD R1, R2, c[3] (Read constant.)

ADD R1, R2, vertex.position (Read input buffer.)

Any source operand can be arbitrarily swizzled:

ADD R1, R2.x, R3.wzyx (Reverse order of last operand’s components.)

Any source operand can be negated:
ADD RO.y, RO, -RO.z;

Constant register can be indexed using address (not memory) register, AO:
ADD R1, -R2, c[AO];

There are no immediates (instead, place constant in constant register).

gf3-] 9 EE 7700-1 Lecture Transparency. Formatted 10:08, 12 March 2010 from set-study-gf3. gf3-] 9

gf3-20 VP Instruction Set Architecture gf3-20

Instruction Destinations
Any instruction can write temporary and output buffer registers.
Un-exposed instructions may be able to write constant memory.

Write can target any subset of components:
DP3 RO.x, RO, R1; (Leave RO’s y, z, and w unchanged.)

gf3'20 EE 7700-1 Lecture Transparency. Formatted 10:08, 12 March 2010 from set-study-gf3. gf3-20

gf3-21

of3-21

VP Instruction Set Architecture

Complete Instruction Set

From 2.14.1.9:

Opcode
ARL
MOV
MUL
ADD
MAD
RCP
RSQ
DP3
DP4
DST
MIN
MAX
SLT
SGE
EXP
LOG
LIT

Inputs
(scalar or vector)

< < <
<

)

- -

- -

< 9 € € § < <

)

ST N BEES TS TSI SIS TS O L B IS T S TR S S T 0

EE 7700-1 Lecture Transparency. Formatted

Output
(vector or
replicated scalar)

()]
0
()]
)]

9 < < < 9 < <

10:08, 12 March 2010 from set-study-gf3.

gf3-21

Operation

address register load
move

multiply

add

multiply and add
reciprocal

reciprocal square root
3-component dot product
4-component dot product
distance vector
minimum

maximum

set on less than

set on greater equal than
exponential base 2
logarithm base 2

light coefficients

of3-21

of3-22 Instruction Descriptions of3-22

Selected instructions described below.

For descriptions of all instructions see vertex_program Section 2.14.1.10.

gf3'22 EE 7700-1 Lecture Transparency. Formatted 10:08, 12 March 2010 from set-study-gf3. gf3'22

of3-23

of3-23

Instruction: RCP destination, source(

Reciprocal
t.x

if
if
if
if
if
if

Precision:

= sourceO.c;
(negate0) {t.x = -t.x;}

(t.x == 1.0f) {u.x = 1.0f;} else {u.x

(xmask) destination.
(ymask) destination.
(zmask) destination.
(wmask) destination.

= N< M
I

u.x — IEEE(1.0/t.x) < 2722,

u.

u
u.
u

1.0f / t.x;}

EE 7700-1 Lecture Transparency. Formatted 10:08, 12 March 2010 from set-study-gf3.

of3-23

of3-23

gf3-24

of3-24

Instruction: EXP destination, source(

Exponential Base 2

t.x = sourceO.c;

if (negate0) {t.x = -t.x;}

q.x = 2°floor(t.x);

q.y = t.x - floor(t.x);
q.z = q.x * APPX(q.y);
if (xmask) destination.x
if (ymask) destination.y
if (zmask) destination.z
if (wmask) destination.w

x component holds approximate result, y and z hold values needed to compute exact result.

EE 7700-1 Lecture Transparency. Formatted 10:08,

// Approximation of 27°q.y

q.x;
q.¥;
q.z;
1.0;

12 March 2010 from set-study-gf3.

gf3-24

of3-24

of3-25 VP ISA: Sample Code

Vertex transformation only (no lighting).

Source Code (OpenGL Shader Language):

of3-25

gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;

vertex_program Assembler Code (Output of NVIDIA compiler)

PARAM c[5] = { program.locall0],
state.matrix.mvp.transpose 1I};

TEMP RO;

MUL RO, vertex.position.y, c[2];

MAD RO, vertex.position.x, c[1], RO;

MAD RO, vertex.position.z, c[3], RO;

MAD result.position, vertex.position.w, c[4], RO;

END

4 instructions, 1 R-regs

gf3-25 EE 7700-1 Lecture Transparency. Formatted 10:08, 12 March 2010 from set-study-gf3.

of3-25

of3-26 of3-26
Transformation and Lighting

Source Code (OpenGL Shader Language):

gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;

vecd vertex_e = gl_ModelViewMatrix * gl_Vertex;

vec3 norm_e = gl_NormalMatrix * gl_Normal;

vecd light_pos = gl_LightSource[l].position;

float phase_light = dot(norm_e, normalize(light_pos - vertex_e).xyz);
float phase_user = dot(norm_e, -vertex_e.xyz);

float phase = sign(phase_light) == sign(phase_user) 7 abs(phase_light) : 0.0;]}
const vec3 ambient = gl_LightSource[l].ambient.rgb;

const vec3 diffuse = gl_LightSource[l].diffuse.rgb;

vec4 new_color;

new_color.rgb = gl_Color.rgb * (phase * diffuse + ambient);
new_color.a = gl_Color.a;

gl_FrontColor = new_color;

gl_BackColor = gl_Color;

gf3-26 EE 7700-1 Lecture Transparency. Formatted 10:08, 12 March 2010 from set-study-gf3. gf3-26

gf3-27

of3-27

vertex_program Assembler Code (Output of NVIDIA compiler)

of3-27

PARAM c[15] = { { 0 },

state.matrix.modelview.transpose,
state.matrix.modelview.inverse.row[0..2],
state.light[1].ambient,

state.light[1] .diffuse,

state.light[1] .position,
state.matrix.mvp.transpose 1};

TEMP RO; TEMP R1; TEMP R2;

MUL
MAD
MAD
MAD
ADD
DP4
RSQ
MUL
MAD
MAD
MUL
DP3
DP3

RO
RO
RO
R2
R1
RO
RO
RO
RO
RO
R1
RO
RO

, vertex.position.y, c[2];

, vertex.position.x, c[1], RO;

, vertex.position.z, c[3], RO;

, vertex.position.w, c[4], RO;

, -R2, c[10];

.w, R1, R1;

.w, RO.w;

.Xyz, vertex.normal.y, c[6];
.Xyz, vertex.normal.x, c[5], RO;
.Xyz, vertex.normal.z, c[7], RO;
.xyz, RO.w, R1;

.w, RO, -R2;

.x, RO, R1;

EE 7700-1 Lecture Transparency. Formatted 10:08, 12 March 2010 from set-study-gf3.

of3-27

of3-28

of3-28

SLT
SLT
ADD
SLT
SLT
ADD
ADD
ABS
SGE
ABS
ABS
SGE
MAD
MUL
MUL
MAD
ADD
MAD
MUL
MAD
MOV
MOV
END

RO.y, RO.w, c[0].x;

RO.z, c[0].x, RO.w;

RO.w, RO.z, -RO.y;

RO.z, RO.x, c[0].x;

RO.y, c[0].x, RO.x;

RO.y, RO, -RO.z;

RO.y, RO, -RO.w;

RO.y, RO;

RO.y, c[0].x, RO;

RO.y, RO;

RO.x, RO;

RO.y, cl[0].x, RO;

R1.x, -RO, RO.y, RO;

RO, vertex.position.y, c[12];
R1l.xyz, Rl.x, c[9];

RO, vertex.position.x, c[11], RO;
R1.xyz, R1, c[8];

RO, vertex.position.z, c[13], RO;
result.color.xyz, vertex.color, Rl;
result.position, vertex.position.w, c[14], RO;
result.color.back, vertex.color;
result.color.w, vertex.color;

EE 7700-1 Lecture Transparency. Formatted 10:08, 12 March 2010 from set-study-gf3.

of3-28

of3-28

of3-29 of3-29

35 instructions, 3 R-regs

gf3'29 EE 7700-1 Lecture Transparency. Formatted 10:08, 12 March 2010 from set-study-gf3. gf3'29

gf3-30 VP Instruction Set Architecture of3-30

Instruction Set Design Choices
Based on analysis of fixed-functionality vertex processing code:
Used about 50% of time: MOV, MUL, ADD, MAD
Used about 40% of time: DP3, DP4.
RCP: Instead of divide because it’s faster.

RSQ: Within 1.5 bits of IEEE precision.

gf3-30 EE 7700-1 Lecture Transparency. Formatted 10:08, 12 March 2010 from set-study-gf3. gf3-30

gf3-31 VP Microarchitecture gf3-31

Register sets listed above.
Instruction memory has room for 128 instructions.
Executes at rate of one instruction per cycle.

200 MHz clock.

Two functional units.

gf3'3] EE 7700-1 Lecture Transparency. Formatted 10:08, 12 March 2010 from set-study-gf3. gf3-3]

gf3-32 gf3-32
Functional Units:
Two exposed functional units (SIMD, Special).
SIMD Vector Unit

Three source operands.

MOV, MUL, ADD, MAD, DP3, DP4, DST, MIN, MAX, SLT, SGE

Special Functional Unit

Single source operand.

RCP, RSQ, LOG, EXP, LIT

Possible additional units for fixed-function use.

All instructions have same latency.

gf3-32 EE 7700-1 Lecture Transparency. Formatted 10:08, 12 March 2010 from set-study-gf3. gf3-32

of3-33 of3-33
Program Sequencing
In setup mode:
Program loaded to program memory.

Constants loaded into constant registers.

In render mode:
Program run for particular IB/OB pair.
Program starts each time an IB fills.
Program completion signals primitive assembly unit to proceed.

Execution multithreaded.

gf3-33 EE 7700-1 Lecture Transparency. Formatted 10:08, 12 March 2010 from set-study-gf3. gf3-33

gf3-34 of3-34
Program Execution
Assumed Stages (Timing and number of stages unknown, p-insn fetch omitted):
RR: Register Read.
SN: Swizzle and Negate.
Ei: Execute stage i. This likely takes multiple cycles and fully pipelined.

WB: Writeback.

Multithreaded execution is used in GeForce 3.

gf3-34 EE 7700-1 Lecture Transparency. Formatted 10:08, 12 March 2010 from set-study-gf3. gf3-34

gf3-35

of3-35

Single Thread (Not Multithreaded) Execution
A design option not used for GeForce 3.
Finish data from one IB before starting another.

Consider a pair of dependent instructions:

ADD ri1, c[2], vI[3] RR SN E1 E2 WB
MUL o[4], r1l, c[5] RR ----> SN E1 E2 WB

MUL stalls two cycles waiting for result of ADD.

In GF3 number of stalls would be higher since there are more Ei.

+Just need one uPC and one set of temporary registers.
-Multi-cycle stalls.

-To avoid stalls need bypass paths or scheduling opportunities.

EE 7700-1 Lecture Transparency. Formatted 10:08, 12 March 2010 from set-study-gf3.

gf3-35

of3-35

of3-36 of3-36
Multithreaded Execution
Used in GeForce 3 (and most if not all modern GPUs).
Work on data from several input buffers simultaneously.
Each thread accesses data from one input buffer.
Let ti denote thread i.
Thread i has its own set of temporary registers and uPC.

Thread i reads IB i registers, writes output buffer i registers.

gf3-36 EE 7700-1 Lecture Transparency. Formatted 10:08, 12 March 2010 from set-study-gf3. gf3-36

of3-37 of3-37
Same pair of dependent instructions as last example.

Five threads active.

Cycle O 1 2 3 4 5 6 7 8 9
t0: ADD rl, c[2], v[3] RR SN E1 E2 WB <- v[3] in IB 0 r1 in set OR
tl: ADD ri1, c[2], vI[3] RR SN E1 E2 WB <- v[3] in IB 1 1r1 in set 1J}
t2: ADD ri1, c[2], v[3] RR SN E1 E2 WB
t3: ADD ri1, c[2], vI[3] RR SN E1 E2 WB
t4: ADD rl1, c[2], v[3] RR SN E1 E2 WB
t0: MUL ol[4], r1, c[5] RR SN E1 E2 WB <- Also for tl1-t4
Cycle O 1 2 3 4 5 6 7 8 9
+No stalls.

+No bypass paths needed.

-Need multiple sets of temporary registers.

Number of IB chosen to cover execution latency.

gf3-37 EE 7700-1 Lecture Transparency. Formatted 10:08, 12 March 2010 from set-study-gf3. gf3-37

gf3-38 Vertex Processor Design Factors gf3-38

Exploits vertex program code characteristics:
No memory access: no memory port.
Small program size: tiny program memory.
Limited purpose: specialized instructions.
Vertex independence: easy multithreaded execution.

Repeated execution: data-triggered sequencing.

gf3-38 EE 7700-1 Lecture Transparency. Formatted 10:08, 12 March 2010 from set-study-gf3. gf3-38

of3-39 of3-39
Vertex Processors in More Recent GPUs
Limited control-transfer instructions (branching).
Access to memory.

Features carefully controlled to preserve multithreading and simplify memory access.

gf3'39 EE 7700-1 Lecture Transparency. Formatted 10:08, 12 March 2010 from set-study-gf3. gf3-39

