
NVIDIA GPU Microarchitecture

These Notes: NVIDIA GPU Microarchitecture

Current state of notes: Under construction. (Disorganized mess.)
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Organization Overview � Software Organization Overview

Organization Overview

Software Organization Overview

CPU code runs on the host, GPU code runs on the device.

A kernel consists of multiple threads.

Threads execute in 32-thread groups called warps.

Threads are grouped into blocks.

A collection of blocks is called a grid.
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Organization Overview � Hardware Organization Overview

Hardware Organization Overview

GPU chip consists of one or more streaming multiprocessors (SMs).

A multiprocessor consists of 1 to 4 warp schedulers.

Each warp scheduler can issue to one or two dispatch units.

A multiprocessor consists of functional units of several types, including FP32 units a.k.a. CUDA cores.

GPU chip consists of one or more L2 Cache Units for mem access.

Multiprocessors connect to L2 Cache Units via a crossbar switch.

Each L2 Cache Unit has its own interface to device memory.

Number of Warp Schedulers Per SM

CC → 1.x 2.x 3.x 5.x 6.x 7.0 8.0 8.6 8.9 9.0

# Warp Schedulers 1 2 4 4 4 4 4 4 4 4

Issue Width 1 1 2 1 1 2 1 1 1 1?

# FP32 Func. Units 8 32 192 128 128 64 64 128 128 128
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Organization Overview � Execution Overview

Execution Overview

Up to 16 (CC 3.X, 7.5) or 32 (CC 5- 7.0) blocks are active in a multiprocessor.

The warp scheduler chooses a warp for issue from active blocks.

One (CC 5 and 6) or two (CC 2, 3, 7) instructions are assigned to dispatch units.

Over a period lasting from 1 to 32 cycles . . .

. . . the instructions in a warp are dispatched to functional units.

The number of cycles to dispatch all instructions depends on . . .

. . . the number of functional units of the needed type. . .

. . . and any resource contention.
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Organization Overview � Storage Overview

Storage Overview

Device memory hosts a 32- or 64-bit global address space.

Each MP has a pool of registers split amongst threads.

Instructions can access a cache-backed constant space.

Instructions can access high-speed shared memory.

Instructions can access local memory. (Speed varies by CC.)

Instructions can access global space through a low-speed [sic] texture cache using texture or surface spaces.

The global space is backed by a high-speed:

L1 read/write cache in CC 2.x devices and CC 7.x and later devices.

Read-only cache in CC 3.5 through CC 6.X devices.
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Thread Organization (Placeholder)

Thread Organization (Placeholder)

Warp

Block

Grid

nv-org-6 EE 7722 Lecture Transparency. Formatted 11:18, 24 March 2023 from set-nv-org-TeXize. nv-org-6



Streaming Multiprocessor

Streaming Multiprocessor

Functional Units

Scheduler

Memory
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Streaming Multiprocessor � Overall SM Organization
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Typical SM, with 2 Warp Schedulers.

Overall SM Organization

Hardware for a Typical SM.

Functional Units (FP32, INT32, SF, LS)

Data Storage

Registers

Constant Cache (Const.)

Shared Memory

Warp Contexts (Warp Ctxs)

One for each warp assigned to SM.

Holds PC (addr of next insn to execute), etc.

Warp Scheduler
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Streaming Multiprocessor � Functional Units

Functional Units

Functional Unit:

A piece of hardware that can execute certain types of instructions.

Typical CPU functional unit types: integer ALU, shift, floating-point, SIMD.

In CPUs latency can vary by unit and insn type. . .

. . . with integer add/sub fastest . . .

. . . and FP division slow.

In NVIDIA GPUs throughput (threads per cycle) varies by type of unit.

Latency can be similar across units . . .

. . . to simplify warp scheduling.
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Streaming Multiprocessor � Functional Units

Some NVIDIA GPU Functional Unit Types

FP32:

Performs 32-bit floating point add, multiply, multiply/add, and similar instructions.

INT32:

Performs 32-bit add, multiply, multiply-add, and maybe some logical operations.

Special Functional Unit (SFU):

Performs reciprocal ( 1
x ) and transcendental instructions such as sine, cosine, and reciprocal square root.

FP64:

Executes 64-bit FP instructions.

CUDA Core:

Functional unit that executes most types of instructions, including most integer and single-precision floating point instructions. Pre-7.0
may have contained an FP32 and an INT32.

Load/Store (LS):

Performs loads and stores from shared, constant, local, and global address spaces.
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Streaming Multiprocessor � Functional Units

Functional Unit Documentation

There is no complete listing of information about FUs on NVIDIA GPUs.

Major information sources:

“CUDA C Programming Guide 10.1”, Section 5.4 (Performance Guidelines, Maximize Instruction Throughput).

Provides instruction throughput by operation type.

From that one can infer what units are present.

GPU Whitepaper. For example, “NVIDIA Tesla V100 GPU Architecture” v1.1.

Shows functional units in a floorplan-like diagram of an SM.

For example, in Figure 5, Page 13.
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Streaming Multiprocessor � Functional Units

Device Number of Functional Units

Sources: NVIDIA C Programmer’s Guide and whitepapers.

Not every type of functional unit is shown.

Number of Functional Units per SM

Unit Type CC → 1.x 2.0 2.1 3.0 3.5 5.x 6.0 6.1/6.2 7.0 7.5 8.0 8.6 8.9 9.0

FP32: 32-Bit Floating Point 8 32 48 192 192 128 64 128 64 64 64 128 128 128

FP64: 64-Bit Floating Point 1 16 4 8 64 4 32 4 32 4 32 2 2 64

SFU: Special (Division, trig, etc.) 2 4 8 32 32 32 16 32 16 16 16 16 16 16

LS: Load/Store (shared/local/global) 8 16 16 32 32 32 16 32 16 16 16 16 16 16
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Streaming Multiprocessor � Functional Units � Functional Unit Latency

Functional Unit Latency

Latency [of a functional unit]:

The maximum number of cycles that a dependent instruction would need to wait for the result.

CPU example for a typical 5-stage RISC pipeline . . .

. . . and a FP pipeline with a 4-stage ADD functional unit (A1 to A4):

# Cycle 0 1 2 3 4 5 6 7 8 9 10

lw R1, 0(r2) IF ID EX ME WB

add r3, R1, r4 IF ID -> EX ME WB # One-cycle stall for r1 dependence.

add.s F1, f2, f3 IF -> ID A1 A2 A3 A4 WF

sub.s f4, F1, f5 IF ID -------> A1 A2 A3 A4 WF # Three-cycle stall for f1.

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13

The load (lw) operation has a 1-cycle latency . . .

. . . causing the stall in cycle 2 (the arrow head, ->, is where the stall ends.

The FP add has a 3-cycle latency . . .

. . . causing the stall in cycles 5-7.
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Streaming Multiprocessor � Functional Units � Functional Unit Latency � Device Latency Values

Device Latency Values

Values below based on whitepaper claims and microbenchmarks.

See code in cuda/microbenchmark in course repo.

Device Latency of 32-bit FP add/mul/madd

Unit Type CC → 1.x-2.x 3.x 5.x,6.x 7.0,8.x,9.0

FP32 latency, LF = 22 cyc 9 cyc 6 cyc 4 cyc
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Streaming Multiprocessor � Latency and GPU Design and Coding

Latency and GPU Design and Coding

Important Fact:

Latency does not slow things down . . .

. . . when useful work is done while waiting for the result.

(Sorry about the overuse of bold face text.)
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Streaming Multiprocessor � Latency and GPU Design and Coding � Hiding Latency to Avoid Stalls

Hiding Latency to Avoid Stalls

Dependence stalls can be avoided by hiding latency.

Methods of Hiding Latency to Avoid Dependence Stalls

Stalls can be avoided by scheduling (reärranging) instructions within a thread (see example below).

Stalls can be avoided by switching threads (on GPUs and SMT CPUs).

Scheduling to avoid stalls:

# Cycle 0 1 2 3 4 5 6 7

lw R1, 0(r2) IF ID EX ME WB

add.s F1, f2, f3 IF ID A1 A2 A3 A4 WF

add r3, R1, r4 IF ID EX ME WB # No stall! r1 bypassed from WB to EX.

sub.s f4, F1, f5 IF ID ----> A1 A2 A3 A4 WF # Two (not 3) stalls.

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11

The lw/add stall was avoided by moving the add.s between them.

It’s not always possible to find an instruction to place between . . .

. . . dependent instructions that would stall.
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Streaming Multiprocessor � Latency and GPU Design and Coding � GPU v. CPU Latencies

GPU v. CPU Latencies

CPU Latencies

CPU FU latencies are kept low to avoid dependence stalls.

Latencies are kept low in part by using bypass paths.

GPU Latencies

GPU FU latencies can be higher . . .

. . . since GPUs can avoid stalls by switching threads . . .

. . . and so the cost of bypass paths are avoided.
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Streaming Multiprocessor � Instruction Execution
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Typical SM, with 2 Warp Schedulers.

Instruction Execution

Consider:

__global__ void examp(float2 *dout, float2 *din) {

int idx = threadIdx.x + blockIdx.x * blockDim.x;

dout[idx].x = din[idx].x * din[idx].x - din[idx].y * din[idx].y;

dout[idx].y = 2 * din[idx].x * din[idx].y; }

__host__ int main(int argv, char** argc) {

int block_size = 224; // 224/32 = 7 warps.

int grid_size = 100; // 100 blocks or 700 warps total.

examp<<<grid_size,block_size>>>examp(dout,din); }

. . . launched on a device . . .

. . . of CC 6.0 with 20 SMs and a limit of 64 warps per SM.

Number of warps in kernel launch shown above: 224
32 100 = 700.

At most b 647 c = 9 blocks can be active on each SM . . .

. . . and so block scheduler will assign blocks to SMs until each SM has 7 blocks or until each block assigned.

When a block is assigned to an SM . . .

. . . an unused warp context in the SM . . .

. . . is initialized for each warp in the block.
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Streaming Multiprocessor � Thread, Warp, Insn Notation

Thread, Warp, Insn Notation

Consider:

__global__ void examp(float2 *dout, float2 *din) {

int idx = threadIdx.x + blockIdx.x * blockDim.x;

dout[idx].x = din[idx].x * din[idx].x - din[idx].y * din[idx].y;

dout[idx].y = 2 * din[idx].x * din[idx].y; }

__host__ int main(int argv, char** argc) {

int block_size = 224; // 224/32 = 7 warps.

int grid_size = 100; // 100 blocks or 700 warps total.

examp<<<grid_size,block_size>>>examp(dout,din); }

Each block has 7 warps (7× 32 = 224 threads).

Threads of a block labeled: t000, t001, . . ., t223.

Warps of a block labeled: wp0, wp1, . . ., wp6.

Warps of, say, block 3 labeled: b3wp0, b3wp1, . . ., b3wp6.
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Streaming Multiprocessor � Thread, Warp, Insn Notation

Consider CUDA C and the corresponding simplified assembler:
__global__ void examp(float2 *dout, float2 *din) {

int idx = threadIdx.x + blockIdx.x * blockDim.x;

dout[idx].x = din[idx].x * din[idx].x - din[idx].y * din[idx].y;

dout[idx].y = 2 * din[idx].x * din[idx].y; }

I0: LD.E.64 R2, [R4];

I1: FMUL R9, R3, R3;

I2: FFMA R9, R2, R2, -R9;

I3: ST.E [R6], R9;

I4: LD.E R0, [R4];

I5: FADD R0, R0, R0;

I6: FMUL R0, R3, R0;

I7: ST.E [R6+0x4], R0;

For a launch with B = 224 (threads/block), G = 100 (blocks):

Each thread executes I0 once.

Each warp executes I0 32 times (once per thread).

Each block (in the example above) executes I0 224 times.

The kernel executes I0 224× 100 = 22400 times.

(The same applies to instructions I1 to I7.)
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Streaming Multiprocessor � Execution Diagrams

Execution Diagrams

Pipeline Execution Diagram:

A diagram used to analyze the timing of instruction execution in pipelined systems.

Dynamic instructions on vertical axis, time on horizontal axis.

Symbols show pipeline stages.

# Cycle 0 1 2 3 4 5 6 7

lw r1, 0(r2) IF ID EX ME WB

add.s f1, f2, f3 IF ID A1 A2 A3 A4 WF

add r3, r1, r4 IF ID EX ME WB

Execution Diagram:

A diagram used to analyze the timing of instruction execution.

Thread, warps, or warp schedulers on vertical axis, time on horizontal axis.

Symbols show instructions.

# Cycle 0 1 2 3 4 .. 400 401 402 403

wp0: [I0 ] [I1] [I2]

wp4: [I0 ] [I1] [I2]
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Streaming Multiprocessor � Warp Contexts

Warp Contexts

Warp Context:

The execution state of thread in the warp, including the program counter value and the execution state (whether thread is waiting, ready,
or finished).

Warp Context Storage:

The storage in an SM for warp contexts.

Table shows the maximum number of resident warps (warp contexts) per SM.

CC 3.0-7.0 7.5 8.0,9.0 8.6-8.9

Warps / SM 64 32 64 48

The number of warp contexts limits the number of active blocks on an SM.

Example:

Suppose block size is 25 warps (800 threads) and an SM can store 64 contexts.

At most b 6425c = 2 blocks can be active on this SM. . .

. . . leaving 14 contexts unused.

If that’s a problem, block size should be changed, say to 16 warps.
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Streaming Multiprocessor � Warp Context States

Warp Context States

A state is associated with each warp context.

Possible States (Note: The states below are assumed.)

New:

The warp is ready to execute its first instruction. PC is first instruction in global routine.

Ready:

The next instruction in the warp can be executed.

Waiting:

The next instruction cannot be executed because an operand is not yet available.

Done:

All threads in the warp finished.
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Streaming Multiprocessor � Warp Scheduler
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Typical SM, with 2 Warp Schedulers.

Warp Scheduler

Warp Scheduler:

Hardware that determines which warp to issue next.

Each SM has 2 or 4 warp schedulers. (Just 1 in older devices.)

In illustration there are two warp schedulers.

Warp contexts evenly divided among warp schedulers.

In illustration each Warp Ctxs block holds 32 contexts . . .

. . . for a total of 64.

For example, if there are 64 contexts and 2 schedulers . . .

. . . one scheduler schedules contexts 0, 2, 4, . . .. . .

. . . and the other scheduler schedules contexts 1, 3, 5, . . ..
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Streaming Multiprocessor � Warp Scheduler

Warp Schedulers in Execution Diagrams

Warp schedulers in diagram separated vertically:

# Cycle 0 1 2 3 4 .. 400 401 402 403

Scheduler 0:

wp0: [I0 ] [I1] [I2]

wp2: [I0 ] [I1] [I2]

Scheduler 1:

wp1: [I0 ] [I1] [I2]

wp3: [I0 ] [I1] [I2]

Note that each scheduler can issue simultaneously.

Often labels for schedulers omitted.
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Streaming Multiprocessor � Warp Scheduler � Registers, Functional Units and Warp Schedulers
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Typical SM, with 2 Warp Schedulers.

Registers, Functional Units and Warp Schedulers

Registers and functional units . . .

. . . are also divided among warp schedulers.

In most cases functional units are divided evenly . . .

. . . for example with 128 FP32 units and 4 schedulers . . .

. . . there are 32 FP32 units per scheduler . . .

. . . and each FP32 unit connects to just one scheduler.

In some cases a unit can be shared by two schedulers.

CC 3.x devices had 192 FP32 and 4 schedulers . . .

. . . each scheduler had its own set of 32 FP32’s . . .

. . . schedulers 0 and 1 share 32 FP32s . . .

. . . and schedulers 2 and 3 share 32 FP32s.

All warps share:

Shared Memory

Barriers (not illustrated).
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Streaming Multiprocessor � Warp Scheduler � Scheduling Policies

Scheduling Policies

Scheduling Policy:

Method used to choose among ready warps.

Round-Robin Policy: (Assume Lf = 3)

# Cycle 0 1 2 3 4 .. 400 401 402 403 404 405

wp0: [I0 ] [I1] [I2]

wp2: [I0 ] [I1] [I2]

wp4: [I0 ] [I1] [I2]

Advantage: easy to implement, roughly even progress.

Lowest-Numbered Policy: (Assume LF = 1.)

# Cycle 0 1 2 3 4 .. 400 401 402 403 404 405 406 407 408 409 410

wp0: [I0 ] I1 I2 [I3 ]

wp2: [I0 ] I1 I2 [I3 ]

wp4: [I0 ] I1 I2 [I3 ]

Advantage: easy to implement.
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Streaming Multiprocessor � Warp Scheduler � Scheduling Policies

Other possible policies:

Furthest Ahead:

Choose warp that has executed the most instructions.

Furthest Behind:

Choose warp that has executed the least instructions.

NVIDIA devices seem to use round-robin policy.
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Streaming Multiprocessor � Instruction Issue and Dispatch � Instruction Issue

Instruction Issue and Dispatch

At each cycle, each warp scheduler . . .

. . . chooses a warp for execution . . .

. . . and chooses how many instructions of that warp to execute.

The chosen instructions are said to be issued.

Issue Width:

The maximum number of instructions that can be issued per cycle by a warp scheduler.

NVIDIA devices have an issue width of 1 or 2.

CPUs can have issue widths of 8 or more (depending on how you count).
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Streaming Multiprocessor � Instruction Issue and Dispatch � Instruction Issue � Dual Issue Issues

Dual Issue Issues

Dual Issue [feature]:

A device having an issue width of 2.

Multiple Issue [feature]:

A device having an issue width of 2 or larger.

Dual Issue [event]:

The issuing of two instructions.

“The schedulers in CC 3.X GPUs are dual issue. In my code dual issue occurs 1% of the time. :-(”.

For dual issue to occur:

There must be functional units for both instructions.

The instructions must be consecutive.

Other conditions might apply.
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Streaming Multiprocessor � Instruction Issue and Dispatch � Instruction Issue � Device Multiple Issue

Device Multiple Issue

Multiple Issue in Some Devices:

CC 2.x, CC 3.x: Can dual issue a pair of FP32 instructions.

CC 7.x: Can dual issue one INT32 and some other insn.

CC 8.x: At most one instruction per cycle per scheduler.

nv-org-31 EE 7722 Lecture Transparency. Formatted 11:18, 24 March 2023 from set-nv-org-TeXize. nv-org-31



Streaming Multiprocessor � Instruction Issue and Dispatch � Instruction Issue � Issue in Execution Diagrams

Issue in Execution Diagrams

Example:

Device: single issue, two schedulers, 16 LS/scheduler, 32 FP32/scheduler.

# Cycle 0 1 2 3 4 .. 400 401 402 403

Scheduler 0:

wp0: [I0 ] [I1] [I2]

wp2: [I0 ] [I1] [I2]

Scheduler 1:

wp1: [I0 ] [I1] [I2]

wp3: [I0 ] [I1] [I2]

In Cycle 0, scheduler 0 issues I0 for wp0.

In Cycle 2, scheduler 0 issues I0 for wp2.

In Cycle 400, scheduler 0 issues I1 for wp0.

In Cycle 401, scheduler 0 issues I1 for wp2.
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Streaming Multiprocessor � Instruction Issue and Dispatch � Instruction Issue � Issue in Execution Diagrams

Example:

Device: dual issue, two schedulers, 64 FP32/scheduler.

I0-I3 are FP32, I4-I5 are loads, all are independent.

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11

wp0: I0 I2 [I4 ] [I5 ]

I1 I3

wp2: I0 I2 [I4 ] [I5 ]

I1 I3

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11

wp1: I0 I2 [I4 ] [I5 ]

I1 I3

wp3: I0 I2 [I4 ] [I5 ]

I1 I3

# Cycle 0 1 2 3 4 5 6 7 8 9 10 11

In Cycle 0, I0 and I1 dual issued by both scheduler 0 and 1..

In Cycle 4 only I4 is issued since not enough FUs for I4 and I5.
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Streaming Multiprocessor � Instruction Issue and Dispatch � Instruction Dispatch

Instruction Dispatch

Instruction Dispatch:

The sending of threads to functional units.

Instruction issue always occurs in a cycle . . .

. . . but instruction dispatch can take several cycles.

In execution diagrams square brackets around an instruction . . .

. . . show the time needed for dispatch.

Note: The number of cycles needed for dispatch . . .

. . . is determined by the number of functional units available to the scheduler.

Usually that’s the number of FU per SM divided by the number of schedulers.
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Streaming Multiprocessor � Instruction Issue and Dispatch � Instruction Dispatch � Instruction Dispatch Example

Instruction Dispatch Example

Consider a CC 6.x device in which there are 16 load/store units per scheduler.

For such devices it takes 32/16 = 2 cycles to dispatch the threads in a warp.

In the example below I0 (a load) takes two cycles to dispatch . . .

. . . while I1 and I2 (single-precision FP) take one cycle.

# Cycle 0 1 2 3 4 .. 400 401 402 403

Scheduler 0:

wp0: [I0 ] [I1] [I2]

wp2: [I0 ] [I1] [I2]
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Streaming Multiprocessor � Instruction Latency and Issue Timing

Instruction Latency and Issue Timing

In many statically scheduled CPU designs . . .

. . . a load that misses the cache will stall the pipeline . . .

. . . frustrating instructions after the load that did not need the value.

In contrast, NVIDIA devices (so far) use a stall on use policy . . .

. . . in which load instructions do not stall issue . . .

. . . until execution reaches an instruction that needs the loaded value . . .

. . . at which time issue stalls until the value arrives.

Interesting Questions:

Does /how does the warp scheduler know which registers are needed . . .

. . . by the next instruction in each warp?
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Execution Diagram Examples � Simple Loop, Ultra Simple SASS

Execution Diagram Examples

Simple Loop, Ultra Simple SASS

For very simple CUDA C code and ultra-simplified SASS code. . .

. . . show execution diagram for one warp on a CC 6.1 device.

CUDA Code:

for ( int h=tid; h<N; h += n_threads ) dout[h] = din[h] + 1;

Ultra-Simplified SASS:

LD.E R2, [R2];

FADD R7, R2, 1;

ST.E [R4], R7;
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Execution Diagram Examples � Simple Loop, Ultra Simple SASS

CC 6.1 Device Characteristics:

16 LS per scheduler, 32 FP32 per scheduler, LM = 400 cyc (assumed) and LF = 6 cyc (actual).

Simplified SASS and Execution Diagram.

.Loop // Note: tis = x is issue time, tre = y is ready time.

I0: LD.E R2, [R2]; // tis = 0. tre = L m = 400.

I1: FADD R7, R2, 1; // tis = 400. (R2). tre = 400 + L f = 406.

I2: ST.E [R4], R7; // tis = 406. (R7).

I3: BRA .Loop // tis = 408.

# Cycle: 0 1 2 400 401 402 403 404 405 406 407 408

wp0: [I0 ] I1 [I2 ] I3

Notes:

I1 had to wait until cycle 400 due to R2 dependence.

I2 waits much less time for R7 because FP latency is much less than global memory latency.

I0 and I2 take two cycles to dispatch because there are only 16 load/store units per scheduler.

We are assuming that the branch can dispatch in one cycle.
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Execution Diagram Examples � Simple Loop, Compiler-Generated SASS

Simple Loop, Compiler-Generated SASS

For very simple CUDA C code and Compiler-Generated SASS code. . .

. . . show execution diagram for one warp on a CC 6.1 device.

CUDA Code:

for ( int h=tid; h<N; h += n_threads ) dout[h] = din[h] + 1;

SASS Code with hand-added comments:

.L_2: // Note: .L_2 is a line label.

I00: MOV R2, R6; // Move low 32b of load addr from prev iteration.

I01: MOV R4, R8; // Move low 32b of store addr from prev iteration.

I02: LD.E R2, [R2];

I03: IADD32I R8.CC, R8, 0x4; // Increment low 32-bits of store address.

I04: MOV R5, R9;

I05: IADD32I R0, R0, 0x1;

I06: ISETP.GE.AND P0, PT, R0, R11, PT; // Check h<N

I07: IADD.X R9, RZ, R9; // Increment high 32-bits (using I03 carry).

I08: IADD32I R6.CC, R6, 0x4; // Increment low 32b of load addr.

I09: IADD.X R3, RZ, R3; // Increment high 32-bits of load (I08 car)

I10: FADD R7, R2, 1; // din[h] + 1

I11: ST.E [R4], R7;

I12: @!P0 BRA ‘(.L_2);
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Execution Diagram Examples � Simple Loop, Compiler-Generated SASS

CC 6.1 Device Characteristics:

Per Scheduler: 16 LS, 32 FP32, 32 INT32 per scheduler. Latencies: LM = 400 cyc (assumed) and LF = 6 cyc (actual).

Annotated SASS and Execution Diagram:

.L_2: // Note: .L_2 is a line label.

I00: MOV R2, R6; // tis = 0. tre = 6

I01: MOV R4, R8; // tis = 1. tre = 7

I02: LD.E R2, [R2]; // tis = 6 (R2). tre = 406.

I03: IADD32I R8.CC, R8, 0x4; // tis = 8 (R8). tre = 14

I04: MOV R5, R9; // tis = 9 tre = 15

I05: IADD32I R0, R0, 0x1; // tis = 10 tre = 16

I06: ISETP.GE.AND P0, PT, R0, R11, PT;// tis = 16 (R0) tre = 22

I07: IADD.X R9, RZ, R9; // tis = 17 tre = 23

I08: IADD32I R6.CC, R6, 0x4; // tis = 18 tre = 24

I09: IADD.X R3, RZ, R3; // tis = 24 (CC) tre = 30

I10: FADD R7, R2, 1; // tis = 406 (R2) tre = 412

I11: ST.E [R4], R7; // tis = 412 (R7)

I12: @!P0 BRA ‘(.L_2); // tis = 414

# Cycle 0 1 2 ..5 6 7 8 9 10 .. 16 17 18 .. 24 .. 406 .. 412 413 414

wp0: I00 I01 [I02 ] I3 I4 I5 I6 I7 I8 I9 I10 [I11 ] I13
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Instruction Execution (older material) � Overview

Instruction Execution (older material)

Overview

Each MP has one or more warp schedulers.

Scheduler chooses a ready warp for issue.

The next instruction(s) from the chosen warp are assigned to dispatch units.

Over several cycles threads in that warp are dispatched to functional units for execution.
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Instruction Execution (older material) � Warp Scheduling and Instruction Issue � Definitions

Warp Scheduling and Instruction Issue

Definitions

Active Block:

Block assigned to MP.

Other blocks wait and do not use MP resources.

In current NVIDIA GPUs maximum number of active blocks is 8.

Waiting Warp:

A warp that cannot be executed usually because it is waiting for source operands to be fetched or computed.

Ready Warp:

A warp that can be executed.
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Instruction Execution (older material) � Warp Scheduling and Instruction Issue � Definitions

Warp Scheduler:

The hardware that determines which warp to issue next.

Each multiprocessor has 1 (CC 1.X), 2 (CC 2.x), or 4 (CC 3.x, CC 5.x, CC 6.x, CC 8.x, CC 9.0) warp schedulers.

Instruction Issue:

The assigning of instructions from a warp to a dispatch unit.

Instruction Dispatch:

The sending of threads to functional units.

nv-org-43 EE 7722 Lecture Transparency. Formatted 11:18, 24 March 2023 from set-nv-org-TeXize. nv-org-43



Instruction Execution (older material) � NVIDIA GPU Thread Issue

NVIDIA GPU Thread Issue

Thread issue is performed by an MP’s warp scheduler.

1: Warp scheduler chooses a warp.

Warp must be in an active block.

Warp must be ready (not be waiting for memory or register operands).

The warp has a PC, which applies to all its unmasked threads.

2: One (CC 5 and 6) or two instructions from warp issued to dispatch unit.

3: Instruction(s) assigned to dispatch unit are fetched and decoded.
Let x denote the number of functional units for this instruction.

4: At each cycle, x threads are dispatched to functional units, until all threads in warp are dispatched.
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Instruction Execution (older material) � Instruction Throughput and Latency

Instruction Throughput and Latency

Throughput:

Rate of instruction execution for some program on some system, usually measured in IPC (instructions per cycle). May refer to a single
multiprocessor or an entire GPU.

The throughput cannot exceed the number of functional units.

The fastest throughput for a multiprocessor is the number of CUDA cores.

GPUs are designed to have many FU, and so can realize high throughput.
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Instruction Execution (older material) � Instruction Throughput and Latency

Latency of an Instruction:

The number of cycles from instruction dispatch to when its result is ready for a dependent instruction.

For CC 1.x to 2.x typical value is 22 cycles (CUDA Prog Guide V 3.2), here 24 is assumed.

For CC 3.x about 9 cycles (but clock frequency is lower).

For CC 7.0 to 9.0, four cycles for FP32.

Some values: SP FP on CC 6.x, 6 cycles.

Determined in part by the complexity of the calculation.

Determined in part by extra hardware for moving results between instructions (bypassing hardware).

GPUs omit bypassing hardware and so suffer a higher latency than GPUs. In return they get more space for FUs.
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Instruction Execution (older material) � Scheduling Examples � Simple, CC1.0

Scheduling Examples

Simple, CC1.0

Code Sample:
I1: FMUL R17, R19, R29; // Uses CUDA Core.

I2: MUFU.RSQ R7, R7; // Reciprocal square root, uses Special FU.

Execution on CC 1.X Device:
Cyc: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

T00: I1 I2

T01: I1 I2

T02: I1 I2 Notation:

T03: I1 I2 I1 - Issuing insn I1 for thread.

T04: I1 I2 T03 - Activity of thread 3.

T05: I1 I2

T06: I1 I2

T07: I1 I2

T08: I1 I2

T09: I1 I2

T10: I1 I2

T11: I1 I2

T12: I1 I2

T13: I1 I2

T14: I1 I2

T15: I1 I2

T16: I1 I2

T17: I1 I2

T18: I1 I2

T19: I1 I2

T20: I1 I2

T21: I1 I2

T22: I1 I2

T23: I1 I2

T24: I1 I2

T25: I1 I2

T26: I1 I2

T27: I1 I2

T28: I1 I2

T29: I1 I2

T30: I1 I2

T31: I1 I2

Cyc: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
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Instruction Execution (older material) � Scheduling Examples � Simple, CC1.0

Notes About Diagram

Notation T00, T01, . . . indicates thread number.

Notation I0 and I1 shows when each thread is dispatched for the respective instruction.

For example, in cycle 5 thread T03 is dispatched to execute I2.

Instruction completion is at least 24 cycles after dispatch.

Points of example above:

Example shows 32 threads. If that’s all then there’s only one warp.

First instruction executes on a CUDA core, since there are 8 of them it takes 32
8 = 4 cycles to dispatch the 32 threads.

Second instruction uses special FU, there are only 2.

Instruction I2 is not dependent on I1, if it were I2 could not start until I1 finished, at least 24 cycles later.
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Instruction Execution (older material) � Scheduling Examples � Compact Execution Notation.

Compact Execution Notation.

Instead of one row for each thread, have one row for each warp.

Use square brackets [like these] to show span of time to dispatch all threads for an instruction.

Previous example using compact notation:

Cyc: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

W00: [-- I1 --] [-- I2 ---------------------------------------]
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Instruction Execution (older material) � Scheduling Examples � Scheduling Example With Dependencies

Scheduling Example With Dependencies

Example Problem: Show the execution of the code fragment below on a MP in CC 1.0 device in which there are two active
warps.

I1: IADD R1, R0, R5;

I2: IMAD.U16 R3, g [0x6].U16, R5L, R2;

I3: IADD R2, R1, R5; // Depends on I1

Solution:

Cyc: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ... 24 25 26 27 28 29 30 31

W00: [-- I1 --] [-- I2 --] [-- I3 --]

W01: [-- I1 --] [-- I2 --] [-- I3 --]

Example Problem Points

Instruction I3 had to wait until 24 cycles after I1 to issue because of dependence.

Two warps are shown. If that’s all utilization will be 16+8
32 = 0.75 because of the idle time from cycle 16 to 23.

Utilization would be 1.0 if there were three warps.

Instruction throughput here is 3×64
32 = 6 insn/cyc.
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Instruction Execution (older material) � Scheduling Examples � Scheduling Example With Dependencies

Scheduling Example With Dependencies

Example Problem: Show the execution of the code fragment below on a multiprocessor in a CC 2.0 device with a block size
of four warps.

I1: IADD R1, R0, R5;

I2: IMAD.U16 R3, g [0x6].U16, R5L, R2;

I3: IADD R2, R1, R5; // Depends on I1 (via R1)

Solution:

In CC 2.0 there are two schedulers, so two warps start at a time.

Each scheduler can dispatch to 16 CUDA cores.

Cyc: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ... 24 25 26 27

W00: [I1 ] [I2 ] [I3 ]

W01: [I1 ] [I2 ] [I3 ]

W02: [I1 ] [I2 ] [I3 ]

W03: [I1 ] [I2 ] [I3 ]

Cyc: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ... 24 25 26 27
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Instruction Execution (older material) � Scheduling Examples � Scheduling Example With Dependencies

Example Points

Instruction I3 had to wait until 24 cycles after I1 to issue because of dependence.

Four warps are shown.

For a block size of 4 warps utilization is 8+4
28 = 0.43 because of the idle time from cycle 8 to 23.

Utilization would be 1.0 if there were six warps.

It looks like it takes many more warps to hide instruction latency.
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Instruction Execution (older material) � Latency, Dependence Distance, and Warp Limit

Latency, Dependence Distance, and Warp Limit

How many warp contexts are needed?

Recent generations, CC 3-7, provide 64 contexts for 64 warps per MP.

I0: FFMA R11, R15, c[0x3][0x4c], R12;

Instructions that don’t use R11.

Id: FFMA R5, R23, c[0x3][0x50], R11;
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Prefetch and Cache Management Hints

Prefetch and Cache Management Hints

Note: This is based on ptx, may not be part of machine insn.

Definitions

Cache Management Operator:

Part of a load and store instruction that indicates how data should be cached.

Cache Management Hint:

Part of a load and store instruction that indicates expected use of data.

Prefetch Instruction:

An instruction that loads data to the cache, but not to a register. It silently ignores bad addresses, so that it can be used to load data in
advance, even if the address is not certain.
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Prefetch and Cache Management Hints

L1: 128-B line, aligned. Shared: 32 banks, but each bank has 2-cycle

throughput, so half-warps can conflict.

L2: 768 kiB per MP (Fermi Whitepaper)

Used for loads, stores, and textures.

64-b addressing

32-bit integer arithmetic.

Fermi Tuning Guide: L1 cache has higher bw than texture cache.

__threadfence_system()

__syncthreads_count, _and, _or.

FP atomic on 32-bit words in global and shared memory.

__ballot.
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MP Occupancy

MP Occupancy

Important: Number of schedulable warps.

Limits

Number of active blocks per MP:

8 active blocks in CC 1.0 - CC 2.1.

16 active blocks in CC 3.0 and CC 3.5.

32 active blocks in CC 5 and 6.

Number of warps per MP:

48 warps in CC 2.x.

64 warps in CC 3.x and later.
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MP Occupancy

Limiters

Not enough threads in launch. - Programmer or problem size.

A thread uses too many registers.

A block uses too much shared memory.

Block uses 51% of available resources . . .

. . . leaving almost half unused but precluding two blocks per MP.
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Branches and Warp Divergence

Branches and Warp Divergence

Definition

Warp Divergence:

Effect of execution of a branch where for some threads in the warp the branch is taken, and for other(s) it is not taken.

Can slow down execution by a factor of 32 (for a warp size of 32).

Outline

Execution of diverged warp.

Coding examples.

Hardware implementation.

Design alternatives.
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Branches and Warp Divergence � References

References

Basic description of effect:

CUDA C Programmer’s Guide Version 3.1 Section 4.1.

Description of Hardware Details

Fung, Wilson W. L. and Sham, Ivan and Yuan, George and Aamodt, Tor M., “Dynamic Warp Formation and Scheduling for Efficient
GPU Control Flow,” Proceedings of the 40th Annual IEEE/ACM International Symposium on Microarchitecture, 2007, pp. 407–420,
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Branches and Warp Divergence � Key Points:

Key Points:

A warp contains 32 threads (to date).

Each thread can follow its own path.

Hardware just decodes one instruction for whole warp.

If threads in warp do take different paths each executed separately until reconvergence.

Should code to keep divergence infrequent or brief.

Implemented using a reconvergence stack, pushed on branch, etc.

Each paths (taken or not-taken) followed to reconvergence before taking other.

Design makes it easy to keep threads converged.
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Branches and Warp Divergence � Branch Divergence Terminology

Branch Divergence Terminology

Reconvergence Point [of a branch]:

An instruction that will be reached whether or not branch is taken.

Thread Mask:

A register that controls whether a thread is allowed to execute. There might be one 32-bit register for each warp (with one bit per thread).

Masked Thread:

A thread that is not allowed to execute, as determined by the thread mask.
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Branches and Warp Divergence � Branch Divergence Handling

Branch Divergence Handling

When a branch is executed the outcome of each thread in the warp is noted.

No divergence if branch outcome same for all threads in a warp. Threads execute normally.

Otherwise, execution proceeds along one path (say, taken) until synchronization instruction is reached.

When synchronization instruction reached, execution switches back to other path (say, not-taken).

When reconvergence point reached a second time execution continues at reconvergence instruction and beyond.

Additional Details

Divergence can nest:

if (a) { proc1(); if (b) { proc2(); } else {proc3(); } } else { proc4();};

Above branch for b can be executed during divergence in branch for a.
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Branches and Warp Divergence � Example

Example

if ( a > b ) // Appears in diagram as BR (Branch)

d = sin(a); // Appears in diagram as S1 - S4 (Sine)

else d = cos(a); // Appears in diagram as C1 - C4 (Cosine)

array[idx] = d; // Appears in diagram as ST (Store)

Assume that for odd threads in Warp 0, T0-T31, the condition a>b is true and so for even threads a>b is false. For all threads in Warp 1,
T32-T63, the condition a>b is true.

Cycle: 0 24 48 72 96 120 144 168 192 216

T0 BR S1 S2 S3 S4 ST Warp 0 First Thread

T1 BR C1 C2 C3 C4 ST

T2 BR S1 S2 S3 S4 ST

..

T31 BR C1 C2 C3 C4 ST Warp 0 Last Thread

Cycle: 3 27 51 75 99 123 147 171 195

Cycle: 4 28 52 76 100 124 148 172 196

T32 BR S1 S2 S3 S4 ST Warp 1 First Thrd

T33 BR S1 S2 S3 S4 ST

T34 BR S1 S2 S3 S4 ST

..

T63 BR S1 S2 S3 S4 ST Warp 1 Last Thread

Cycle: 7 31 55 79 103 127 151 175 199
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Branches and Warp Divergence � Example

Example Points

Time for diverged warp is sum of each path (sine and cosine).

Divergence of one warp does not affect others.
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Branches and Warp Divergence � CUDA Coding Implications

CUDA Coding Implications

Avoid divergence when possible.

Try to group if statement outcomes by warp.

Reduce size of diverged (control-dependent) regions.
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Branches and Warp Divergence � Hardware Operation

Hardware Operation

Reconvergence Stack:

A hardware structure that keeps track of diverged branches. There is one stack per warp.

Reconvergence stack entry indicates: next-path PC, and thread mask indicating threads that will be active on that path.
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Branches and Warp Divergence � Hardware Operation

Hardware Implementation

Instructions (CC 2.x-6.x)

Branch: @P0 BRA 0x460;

Branch based on predicate register (P0) to 0x460.

If P0 same for all threads in warp, branches normally.

Otherwise, pushes reconvergence stack with branch target . . .

. . . and mask of threads taking branch . . .

. . . and execution follows fall-through (not taken) path. (I’m guessing.)

Set Reconvergence (sync) Instruction: SSY 0x460, PBK 0x460.

Used before a branch, indicates where reconvergence point is.

Pushes reconvergence point and current active mask on reconvergence stack.

There is no counterpart for this instruction in conventional ISAs.
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Branches and Warp Divergence � Hardware Operation

Sync instruction or sync bit of an ordinary instruction. SYNC, foo.S.

Threads that execute sync are masked off.

If no more active threads, . . .

. . . jump to instruction address (branch target or reconvergence point) at TOS. . .

. . . and set active mask to mask at top of stack . . .

. . . and then pop stack.
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Branches and Warp Divergence � Branch Hardware Design Alternatives and Tradeoffs

Branch Hardware Design Alternatives and Tradeoffs

NVIDIA Designs before CC 7.0.

Control Logic Simplicity

Force warps to converge at (outermost) reconvergence point.

Alternative: Threads freely schedulable.

Scheduler can pick any subset of threads with same PC value.

Would still be decoding same instruction for all unmasked insn in thread.

Hardware would be costlier (to determine the best subset each time).

Might be a slight improvement when there are long-latency instructions on each side of branch.
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NVIDIA GPU Instruction Sets � References

NVIDIA GPU Instruction Sets

References

So far, no complete official ISA reference.

CUDA Binary Utilities, v8.0, January 2017.

Lists instructions, but with little detail.

Parallel Thread Execution ISA, v5.0, January 2017.

Detailed description of compiler intermediate language.

Provides hints about details of true ISA.
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NVIDIA GPU Instruction Sets � Instruction Set Versions:

Instruction Set Versions:

For CC 1.X (Tesla), GT200 Instruction Set

Obsolete.

For CC 2.X Fermi Instruction Set

For CC 3.X Kepler Instruction Set

For CC 5.X-CC 6.X Maxwell/Pascal Instruction Set

For CC 7.0 Volta Instruction Set

For CC 7.5 Turing Instruction Set

For CC 8.X Ampere Instruction Set

nv-org-71 EE 7722 Lecture Transparency. Formatted 11:18, 24 March 2023 from set-nv-org-TeXize. nv-org-71



NVIDIA GPU Instruction Sets � NVIDIA Machine Language and CUDA Toolchain

NVIDIA Machine Language and CUDA Toolchain

NVIDIA Assembler

Not available. (In 2021)

Note: PTX only looks like assembler . . .

. . . but it can’t be used to specify machine instructions . . .

. . . and PTX code is passed through additional optimization . . .

. . . so it can’t be used for hand optimization either.

NVIDIA Disassemblers

cuobjdump: CUDA Object File Dump

nvdisasm: NVIDIA Disassembler

Shows assembly code corresponding to CUDA object file.

Conversion is one-way: can not go from assembler to object file.
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NVIDIA GPU Instruction Sets � Instruction Characteristics

Instruction Characteristics

Instruction Size

Fermi, Kepler, Maxwell, Pascal, Volta, Turing, Ampere

Instructions are 64 bits.
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NVIDIA GPU Instruction Sets � Instruction Operand Types

Instruction Operand Types

Major Instruction Operands

Register Operand Types

General Purpose (GP) Registers

Uniform Registers. Starting with Turing (CC 7.5).

Special Registers

Predicate Registers

Address Space Operand Types

Global, Local, Shared Memory Spaces (together or distinct)

Constant Memory Space

Texture and Surface Spaces

Immediate Operand Types
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NVIDIA GPU Instruction Sets � Registers � Uniform Registers

Registers

GP Registers

SASS Names: R0-R255 (maximum reg varies by CC).

Also zero register: RZ.

Register Size: 32 bits.

Amount: 63 in CC 2.X and 3.0; 255 CC 3.5 and later.

Can be used for integer and FP operands.

Can be used as source and destination of most instruction types.

IADD R25, R3, R2 // R25 = R3 + R2

FMUL R25, R3, R2 // R25 = R3 * R2
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NVIDIA GPU Instruction Sets � Registers � Uniform Registers

Uniform Registers

Available starting with CC 7.5 (Turing)

SASS Names: UR1-UR63 (a guess) .

Also zero register: URZ.

Register Size: 32 bits.

Used when compiler believes that all threads in a warp have the same value.

Written using separate uniform instructions.

ULDC UR4, c[0x0][0x0] ;

UIMAD.U32 R5, RZ, RZ, UR4 ;

S2UR UR5, SR_CTAID.X ;

ULDC UR4, c[0x0][0x0] ;

UIMAD UR5, UR5, UR4, URZ ;

ULDC.64 UR20, c[0x3][UR5+0x990] ;

FFMA R24, R27.reuse, UR20, R24 ;

R2UR UR5, R18 ;

nv-org-76 EE 7722 Lecture Transparency. Formatted 11:18, 24 March 2023 from set-nv-org-TeXize. nv-org-76



NVIDIA GPU Instruction Sets � Registers � Special Registers

Special Registers

Hold a few special values such as threadIdx.x.

SASS Names: prefixed with SR , example SR Tid x.

Accessed using S2R instruction to move to GP registers.

S2R R0, SR_Tid.X // Move special register to GP reg 0.

S2R R2, SR_CTAid.X // Move blockIdx (Cooperative Thread Array) to r2.

IMAD R2, R2, c [0x0] [0x8], R0 // Compute blockIdx * blockDim + threadIdx
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NVIDIA GPU Instruction Sets � Registers � Special Registers � Available Special Registers

Available Special Registers

SR TID.X, SR TID.Y, SR TID.Z.

Provide CUDA theadIdx values.

SR NTID.X, SR NTID.Y, SR NTID.Z.

Provide CUDA blockDim values.

SR CTAID.X, SR CTAID.Y, SR CTAID.Z.

Provide CUDA blockIdx values.

SR LANEID, SR WARPID.

Thread’s position within a warp, warps position within block.
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NVIDIA GPU Instruction Sets � Registers � Predicate Registers and Uniform Predicate Registes

Predicate Registers and Uniform Predicate Registes

Names: P0-P7?

Names: UP0-UP7? (Starting with Turing, CC 7.5)

Size: 1 bit

Written by set-predicate instructions.

Used to skip or ignore instructions.

// Simplified Examples:

ISETP.EQ P0, R1, R2 // If R1 == R2 set P0 to true, otherwise to false.

ISETP.EQ P0, P1, R1, R2 // P0 = (R1 == R2); P1 = !( R1 == R2)

ISETP.GT P0, P1, R1, R2 // P0 = (R1 > R2); P1 = !( R1 > R2)

// Full Example:

ISETP.GT.AND P0, P1, R1, R2, P3 // P0 = (R1 > R2) && P3; P1 = !( R1 > R2) && P3

@P0 FMUL R25, R3, R2 // if ( P0 ) R25 = R3 * R2

@!P0 FADD R25, R3, R2 // if ( !P0 ) R25 = R3 + R2
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NVIDIA GPU Instruction Sets � Address Spaces � Constant Address Space

Address Spaces

Constant Address Space

Assembler Syntax: c[BANK][ADDR]

Banks:

Bank 0: Kernel arguments, launch configuration.

E.g., stencil iter<<<grid dim,block dim>>>(array in,array out);

Bank 1: System use, including address of thread-local storage.

Bank 2: Constants written using cudaMemcpyToSymbol.

IMAD R20, R11, c [0x0] [0x8], R19; // Bank 0, read a kernel call argument.

IADD.X R3, R0, c [0x2] [0xec]; // Bank 2, read a user-written constant.
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NVIDIA GPU Instruction Sets � Address Spaces � Constant Address Space � Example:

Example:

__constant__ float some_constant;

extern "C" __global__ void demo_const(float *array_in, float *array_out) {

const int tid = threadIdx.x + blockIdx.x * blockDim.x;

array_out[tid] = some_constant * array_in[tid]; }

/*0000*/ MOV R1, c [0x1] [0x100];

/*0008*/ NOP CC.T;

/*0010*/ MOV32I R6, 0x4;

/*0018*/ S2R R0, SR_CTAid.X;

/*0020*/ S2R R2, SR_Tid.X;

/*0028*/ IMAD R2, R0, c [0x0] [0x8], R2; // c[0][0x8] = blockDim.x

/*0030*/ IMUL.HI R3, R2, 0x4;

/*0038*/ IMAD R4.CC, R2, R6, c [0x0] [0x20]; // c[0][0x20] = *array_in;

/*0040*/ IADD.X R5, R3, c [0x0] [0x24];

/*0048*/ IMAD R2.CC, R2, R6, c [0x0] [0x28]; // c[0][0x28] = *array_out;

/*0050*/ LD.E R0, [R4];

/*0058*/ IADD.X R3, R3, c [0x0] [0x2c];

/*0060*/ FMUL.FTZ R0, R0, c [0x2] [0x30]; // c[2][0x30] = some_constant;

/*0068*/ ST.E [R2], R0;

/*0070*/ EXIT;
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NVIDIA GPU Instruction Sets � Immediate Operands

Immediate Operands

Immediate:

A constant stored in an instruction.

Size of immediate varies by instruction and instruction set.

/*0010*/ /*0x10019de218000000*/ MOV32I R6, 0x4;

/*0020*/ /*0xfc30dc034800ffff*/ IADD R3, R3, 0xfffff;

/*00e8*/ /*0x1023608584000000*/ @!P0 LD.E R13, [R2+0x4];
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NVIDIA GPU Instruction Sets � Memory Address Operands

Memory Address Operands
/*0460*/ /*0x10348485c1000000*/ @P1 LDS R18, [R3+0x4];

/*0428*/ /*0x00209c8584000000*/ LD.E R2, [R2];

/*11b0*/ /*0x00125e85c0000000*/ LDL.LU R9, [R1];

Kepler Immediate Size: ≈ 31 bits.

That’s huge by CPU standards!

Maxwell/Pascal Immediate Size: ≈ 22 bits.
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NVIDIA GPU Instruction Sets � Instruction Formats

Instruction Formats

The instruction format determines operand types.

Typical CPU RISC Formats

All instructions 32 bits.

Three register format: Two source registers, one dest reg.

Two register format: One source reg, one immediate, one dest reg.
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NVIDIA GPU Instruction Sets � Memory Access Instructions

Memory Access Instructions

Shared Memory

LDS R0, [R8+0x4]; STS [R5], R13;

Constant Memory

LDC R39, c[0x3][R28+0x4];

Local Memory

LDL.64 R2, [R9]; STL [R14+0x4], R7;

Mixed Address Space (Global or Shared or Local)

LD.E R7, [R2+0x4]; ST.E [R6], R0;

Global Address Space

LDG.E.CT.32 R2, [R6];

Texture Space

TLD.LZ.T R4, R0, 0x0, 1D, 0x9;
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Efficiency Techniques

Efficiency Techniques

Goal: Generate fastest code.

These techniques are in addition to good memory access patterns.

Techniques

Minimize Use of Registers

Do as much compile-time computation as possible.

Minimize number of instructions.
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Minimize Use of Registers

Reason: Maximize Warp Count

How to Determine Number of Registers:

Compiler Option: --ptxas-options=-v

CUDA API: cudaFuncGetAttributes(attr,func);

Profiler
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Resource Use Compiler Option

Option: –ptxas-options=-v

Shows registers, and use of local, shared, and constant memory.

Numbers are a compile-time estimate, later processing might change usage. (See cudaFuncGetAttributes.)
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Resource Use Compiler Option

Use in Class

Included in the rules to build homework and class examples.

File Makefile:

COMPILERFLAGS = -Xcompiler -Wall -Xcompiler -Wno-unused-function \

--ptxas-options=-v --gpu-architecture=sm_13 -g -O3

Output of compiler showing register Use:

ptxas info : Compiling entry function ’_Z22mm_blk_cache_a_local_tILi4EEvv’ for ’sm_13’

ptxas info : Used 29 registers, 0+16 bytes smem, 60 bytes cmem[0], 4 bytes cmem[1]

Notes:

Function name, Z22mm blk cache a local tILi4EEvv is mangled, a way of mixing argument and return types in function name.
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CUDA API: cudaFuncGetAttributes(attr,func);

attr is a structure pointer, func is the CUDA function.

Structure members indicate register use and other info.

Course code samples print out this info:

mm_blk_cache_a_local_t<3>:

0 B shared, 60 B const, 0 B loc, 50 regs; 640 max thr / block
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Efficiency Techniques: Minimizing Register Use

Methods to Reduce Register Use

Compiler option to limit register use.

Where possible, use constant-space variables.

Where possible, use compile-time constants.

Simplify calculations.
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Compiler Option to Limit Register Use

nvcc Compiler Option: --maxrregcount NUM

NUM indicates maximum number of registers to use.

To reduce register use compiler might:

Use local memory.

Provide less distance between dependent instructions.

Tradeoffs of Reduced Register Count

Direct Benefit: Can have more active warps.

Cost: More latency to hide.

Use with care, easy to make things worse!
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Methods to Reduce Register Use: Use Constant Space Variables.

GPU arithmetic instructions can read a constant, so avoid register use.

Example of where a constant could be used:

int itid_stride = gridDim.x << ( DIM_BLOCK_LG + row_stride_lg );

Variables above same for all threads and known to CPU before launch.

Therefore can compute on CPU and put in a constant:

// HOST CODE

const int cs_itid_stride = dg.x << ( dim_block_lg + row_stride_lg );

TO_DEV(cs_itid_stride);

// DEVICE CODE

__constant__ int cs_itid_stride;

// ...

for ( ;; c_idx_row += cs_itid_stride )

GPU Code After, cs itid stride in c [0x0] [0xa]:

/*0520*/ IADD R2, R4, c [0x0] [0xa];
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Compile-Time Constants

Compile-Time Constant:

A value known to compiler.

Examples:

__constant__ int my_var; // NOT a compile-time constant.

__device__ void my_routine(){
int y = threadIdx.x; // NOT a compile-time constant.

int a = blockDim.x; // NOT a compile-time constant.

int i = 22; // Obviously a compile-time constant.

int j = 5 + i * 10; // Is a compile-time constant.

if ( a == 256 )

{

int size = 256; // Is a compile time constant.

for ( k = 0; k<size; k++ ) { ... }

} else { ... }

}

Can use macros and templates to create compile-time constants.
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Efficiency Techniques: Maximize Compiler Computation

Maximize Compiler Computation

Unroll Loops.

Write code using compile-time constants (not same as constant registers).
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