utogpu-1 3D Rendering Code on CPUs & Possible GPU Designs cputogpu

Goal: Find something better than CPU for 3D rendering pipeline code.
Plan:
By hand analysis find potential performance of rp (rendering pipeline) code.
Determine how closely CPU achieves potential.
Consider minor CPU modifications.

Consider new GPU design.
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utogpu-2 Rendering Pipeline Software CPU Execution Analysis Cputogpu

Analysis Performed Using
CPU-only “Demo” routines from course.
Compiled for SPARCV9 with visual and multiply/add insn.
Use Sun Studio 12 compiler with aggressive optimizations.
Simulated execution on Fujitsu SPARC64 VI.

Use RSIML for simulation and PSE for visualization.
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utogpu-3 Rendering Pipeline Software CPU Execution Analysis cputogpu

SPARCVY9
RISC ISA, developed by Sun Microsystems.

Has 32 64-bit floating point registers.

SPARC64 VI
Four-way superscalar. (Can execute up to 4 insn / cycle.)
Dynamically scheduled. (Can execute insn out of prog. order.)
Can start two FP operations per cycle.

Can keep 64 insn in flight (32 int, 32 fp).
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utogpu-4 cputogpu
RSIML and PSE
RSIML used to simulate approximate model of SPARC64 VI.
PSE shows detailed results of simulations.

PSE will be used to find execution performance limiters.
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utogpu-5 RP Software Characteristics cputogpu

Important RP software characteristics to look for:
Substantial independence.
High floating-point density.

Relaxed FP precision requirements.
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utogpu-6 Vertex Transformation Code Analysis

Start with something simple, vertex transformation.

for ( pVertex_Iterator ci = vtx_list.begin(); ci < vtx_list.end(); ci++ )

{
pVertex& v = **ci;
v *= transform; // Multiply matrix by coordinate (vector).
v.homogenize () ; // Some divisions.

+

Performance Measures
More descriptive: Vertices / Second

Easier for this analysis: CPU Instructions / Vertex
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utogpu-7 Vertex Transformation Code Analysis cputogpu

Computation requirements per vertex.
Last vertex test: 3 insn (load, comparison, conditional branch).
Vertex load: 4 loads.
Matrix mult: 4 mult, 12 multiply/add insn.
Homogenize: 1 divide, 3 multiplies.
Vertex store: 4 stores.

Total: 31 instructions.

Peak rate: 34—1 = 7.75 cycles per vertex.

Will CPU realize peak rate? Could something else be faster?
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utogpu-8 Vertex Transformation Code Analysis

Determine if 31 insn / vtx and 7.75 cyc / vtx achieved.
Compiled Code
First try: over 150 instructions per vertex.

With minor code changes compiler generated ~ 31 insn / vtx.

Execution on Simulated Processor
Achieves 1.8 IPC (insn / cycle), less than half of possible 4 TPC.
Lost performance because ROB (window) fills.
With 256-entry ROB: 3.3 IPC, but that’s impractically expensive.

Software pipelining may improve execution without larger ROB.
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utogpu-9 Vertex Transformation Code: Minor CPU Modifications cputogpu

Minor CPU Modifications
Since operating at close to full efficiency, not really needed.

A lower-precision, faster divide might ease coding (sw pipelining).
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togpu-10 Vertex Transformation Code: Alternative Design cputogpu

Plan

Examine parts of CPU implementation, looking at chip floorplan.
Eliminate parts that are not really needed.

Use free space for more of parts that are needed.
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togpu-11 cputogpu
SPARC64V floorplan:
FP unit is less than 3.2% of chip area.
Integer (FX) unit: 5.2% of chip area.
L1 data cache: 5.5%
L2 cache: 46%.
Dynamic scheduling: 15% (roughly).

Remainder: Buffering, memory management.
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togpu-12

Ideas for Chip just for VI'X Transformation

Plan A: Just FP Unit
Since 3.2% of area, can have over 31 FP units: 31x faster!

Could this work?

Plan B: Eliminate dynamic scheduling and L2 Cache

Reduction in area: L2 -46%, DS -15%: have 61% area to fill.

Could fit second core: 2x faster.
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