utogpu-1 3D Rendering Code on CPUs & Possible GPU Designs cputogpu

Goal: Find something better than CPU for 3D rendering pipeline code.
Plan:
By hand analysis find potential performance of rp (rendering pipeline) code.
Determine how closely CPU achieves potential.
Consider minor CPU modifications.

Consider new GPU design.

'Utong'] EE 7700-1 Lecture Transparency. Formatted 11:21, 11 February 2009 from set-cputogpu. Cputog pu

utogpu-2 Rendering Pipeline Software CPU Execution Analysis Cputogpu

Analysis Performed Using
CPU-only “Demo” routines from course.
Compiled for SPARCV9 with visual and multiply/add insn.
Use Sun Studio 12 compiler with aggressive optimizations.
Simulated execution on Fujitsu SPARC64 VI.

Use RSIML for simulation and PSE for visualization.

'U'l'ong'z EE 7700-1 Lecture Transparency. Formatted 11:21, 11 February 2009 from set-cputogpu. Cputog pu

utogpu-3 Rendering Pipeline Software CPU Execution Analysis cputogpu

SPARCVY9
RISC ISA, developed by Sun Microsystems.

Has 32 64-bit floating point registers.

SPARC64 VI
Four-way superscalar. (Can execute up to 4 insn / cycle.)
Dynamically scheduled. (Can execute insn out of prog. order.)
Can start two FP operations per cycle.

Can keep 64 insn in flight (32 int, 32 fp).

'Utong's EE 7700-1 Lecture Transparency. Formatted 11:21, 11 February 2009 from set-cputogpu. Cputog pu

utogpu-4 cputogpu
RSIML and PSE
RSIML used to simulate approximate model of SPARC64 VI.
PSE shows detailed results of simulations.

PSE will be used to find execution performance limiters.

'Utong'4 EE 7700-1 Lecture Transparency. Formatted 11:21, 11 February 2009 from set-cputogpu. Cputogpu

utogpu-5 RP Software Characteristics cputogpu

Important RP software characteristics to look for:
Substantial independence.
High floating-point density.

Relaxed FP precision requirements.

DUtOg pU'5 EE 7700-1 Lecture Transparency. Formatted 11:21, 11 February 2009 from set-cputogpu. Cputogpu

utogpu-6 Vertex Transformation Code Analysis

Start with something simple, vertex transformation.

for (pVertex_Iterator ci = vtx_list.begin(); ci < vtx_list.end(); ci++)

{
pVertex& v = **ci;
v *= transform; // Multiply matrix by coordinate (vector).
v.homogenize () ; // Some divisions.

+

Performance Measures
More descriptive: Vertices / Second

Easier for this analysis: CPU Instructions / Vertex

'utong'é EE 7700-1 Lecture Transparency. Formatted 11:21, 11 February 2009 from set-cputogpu.

cputogpu

cputogpu

utogpu-7 Vertex Transformation Code Analysis cputogpu

Computation requirements per vertex.
Last vertex test: 3 insn (load, comparison, conditional branch).
Vertex load: 4 loads.
Matrix mult: 4 mult, 12 multiply/add insn.
Homogenize: 1 divide, 3 multiplies.
Vertex store: 4 stores.

Total: 31 instructions.

Peak rate: 34—1 = 7.75 cycles per vertex.

Will CPU realize peak rate? Could something else be faster?

'Ui'ong'7 EE 7700-1 Lecture Transparency. Formatted 11:21, 11 February 2009 from set-cputogpu. Cputog pu

utogpu-8 Vertex Transformation Code Analysis

Determine if 31 insn / vtx and 7.75 cyc / vtx achieved.
Compiled Code
First try: over 150 instructions per vertex.

With minor code changes compiler generated ~ 31 insn / vtx.

Execution on Simulated Processor
Achieves 1.8 IPC (insn / cycle), less than half of possible 4 TPC.
Lost performance because ROB (window) fills.
With 256-entry ROB: 3.3 IPC, but that’s impractically expensive.

Software pipelining may improve execution without larger ROB.

'utong'a EE 7700-1 Lecture Transparency. Formatted 11:21, 11 February 2009 from set-cputogpu.

cputogpu

cputogpu

utogpu-9 Vertex Transformation Code: Minor CPU Modifications cputogpu

Minor CPU Modifications
Since operating at close to full efficiency, not really needed.

A lower-precision, faster divide might ease coding (sw pipelining).

DUtOg pU'9 EE 7700-1 Lecture Transparency. Formatted 11:21, 11 February 2009 from set-cputogpu. Cputogpu

togpu-10 Vertex Transformation Code: Alternative Design cputogpu

Plan

Examine parts of CPU implementation, looking at chip floorplan.
Eliminate parts that are not really needed.

Use free space for more of parts that are needed.

|1'0ng'] 0 EE 7700-1 Lecture Transparency. Formatted 11:21, 11 February 2009 from set-cputogpu. Cputogpu

togpu-11 cputogpu
SPARC64V floorplan:
FP unit is less than 3.2% of chip area.
Integer (FX) unit: 5.2% of chip area.
L1 data cache: 5.5%
L2 cache: 46%.
Dynamic scheduling: 15% (roughly).

Remainder: Buffering, memory management.

|ngpU']] EE 7700-1 Lecture Transparency. Formatted 11:21, 11 February 2009 from set-cputogpu. Cputog pu

togpu-12

Ideas for Chip just for VI'X Transformation

Plan A: Just FP Unit
Since 3.2% of area, can have over 31 FP units: 31x faster!

Could this work?

Plan B: Eliminate dynamic scheduling and L2 Cache

Reduction in area: L2 -46%, DS -15%: have 61% area to fill.

Could fit second core: 2x faster.

“’Og pu-] 2 EE 7700-1 Lecture Transparency. Formatted 11:21, 11 February 2009 from

set-cputogpu.

cputogpu

cputogpu

