
cputogpu­1 cputogpu­13D Rendering Code on CPUs & Possible GPU Designs

Goal: Find something better than CPU for 3D rendering pipeline code.

Plan:

By hand analysis find potential performance of rp (rendering pipeline) code.

Determine how closely CPU achieves potential.

Consider minor CPU modifications.

Consider new GPU design.

cputogpu­1 EE 7700-1 Lecture Transparency. Formatted 11:21, 11 February 2009 from set-cputogpu. cputogpu­1

cputogpu­2 cputogpu­2Rendering Pipeline Software CPU Execution Analysis

Analysis Performed Using

CPU-only “Demo” routines from course.

Compiled for SPARCV9 with visual and multiply/add insn.

Use Sun Studio 12 compiler with aggressive optimizations.

Simulated execution on Fujitsu SPARC64 VI.

Use RSIML for simulation and PSE for visualization.

cputogpu­2 EE 7700-1 Lecture Transparency. Formatted 11:21, 11 February 2009 from set-cputogpu. cputogpu­2

cputogpu­3 cputogpu­3Rendering Pipeline Software CPU Execution Analysis

SPARCV9

RISC ISA, developed by Sun Microsystems.

Has 32 64-bit floating point registers.

SPARC64 VI

Four-way superscalar. (Can execute up to 4 insn / cycle.)

Dynamically scheduled. (Can execute insn out of prog. order.)

Can start two FP operations per cycle.

Can keep 64 insn in flight (32 int, 32 fp).

cputogpu­3 EE 7700-1 Lecture Transparency. Formatted 11:21, 11 February 2009 from set-cputogpu. cputogpu­3

cputogpu­4 cputogpu­4

RSIML and PSE

RSIML used to simulate approximate model of SPARC64 VI.

PSE shows detailed results of simulations.

PSE will be used to find execution performance limiters.

cputogpu­4 EE 7700-1 Lecture Transparency. Formatted 11:21, 11 February 2009 from set-cputogpu. cputogpu­4

cputogpu­5 cputogpu­5RP Software Characteristics

Important RP software characteristics to look for:

Substantial independence.

High floating-point density.

Relaxed FP precision requirements.

cputogpu­5 EE 7700-1 Lecture Transparency. Formatted 11:21, 11 February 2009 from set-cputogpu. cputogpu­5

cputogpu­6 cputogpu­6Vertex Transformation Code Analysis

Start with something simple, vertex transformation.

for (pVertex_Iterator ci = vtx_list.begin(); ci < vtx_list.end(); ci++)

{

pVertex& v = **ci;

v *= transform; // Multiply matrix by coordinate (vector).

v.homogenize(); // Some divisions.

}

Performance Measures

More descriptive: Vertices / Second

Easier for this analysis: CPU Instructions / Vertex

cputogpu­6 EE 7700-1 Lecture Transparency. Formatted 11:21, 11 February 2009 from set-cputogpu. cputogpu­6

cputogpu­7 cputogpu­7Vertex Transformation Code Analysis

Computation requirements per vertex.

Last vertex test: 3 insn (load, comparison, conditional branch).

Vertex load: 4 loads.

Matrix mult: 4 mult, 12 multiply/add insn.

Homogenize: 1 divide, 3 multiplies.

Vertex store: 4 stores.

Total: 31 instructions.

Peak rate: 31

4
= 7.75 cycles per vertex.

Will CPU realize peak rate? Could something else be faster?

cputogpu­7 EE 7700-1 Lecture Transparency. Formatted 11:21, 11 February 2009 from set-cputogpu. cputogpu­7

cputogpu­8 cputogpu­8Vertex Transformation Code Analysis

Determine if 31 insn / vtx and 7.75 cyc / vtx achieved.

Compiled Code

First try: over 150 instructions per vertex.

With minor code changes compiler generated ≈ 31 insn / vtx.

Execution on Simulated Processor

Achieves 1.8 IPC (insn / cycle), less than half of possible 4 IPC.

Lost performance because ROB (window) fills.

With 256-entry ROB: 3.3 IPC, but that’s impractically expensive.

Software pipelining may improve execution without larger ROB.

cputogpu­8 EE 7700-1 Lecture Transparency. Formatted 11:21, 11 February 2009 from set-cputogpu. cputogpu­8

cputogpu­9 cputogpu­9Vertex Transformation Code: Minor CPU Modifications

Minor CPU Modifications

Since operating at close to full efficiency, not really needed.

A lower-precision, faster divide might ease coding (sw pipelining).

cputogpu­9 EE 7700-1 Lecture Transparency. Formatted 11:21, 11 February 2009 from set-cputogpu. cputogpu­9

cputogpu­10 cputogpu­10Vertex Transformation Code: Alternative Design

Plan

Examine parts of CPU implementation, looking at chip floorplan.

Eliminate parts that are not really needed.

Use free space for more of parts that are needed.

cputogpu­10 EE 7700-1 Lecture Transparency. Formatted 11:21, 11 February 2009 from set-cputogpu. cputogpu­10

cputogpu­11 cputogpu­11

SPARC64V floorplan:

FP unit is less than 3.2% of chip area.

Integer (FX) unit: 5.2% of chip area.

L1 data cache: 5.5%

L2 cache: 46%.

Dynamic scheduling: 15% (roughly).

Remainder: Buffering, memory management.

cputogpu­11 EE 7700-1 Lecture Transparency. Formatted 11:21, 11 February 2009 from set-cputogpu. cputogpu­11

cputogpu­12 cputogpu­12

Ideas for Chip just for VTX Transformation

Plan A: Just FP Unit

Since 3.2% of area, can have over 31 FP units: 31× faster!

Could this work?

Plan B: Eliminate dynamic scheduling and L2 Cache

Reduction in area: L2 -46%, DS -15%: have 61% area to fill.

Could fit second core: 2× faster.

cputogpu­12 EE 7700-1 Lecture Transparency. Formatted 11:21, 11 February 2009 from set-cputogpu. cputogpu­12

