
LSU EE 7722 Homework 4 Solution Due: 27 April 2018

Basic Setup
Follow the instructions for class account setup found on
http://www.ece.lsu.edu/gp/proc.html. This assignment uses code in the hw04 directory, file
hw04.cu is to be modified.

If the class account has been set up properly, the code can be built from within Emacs by
pressing F9 when visiting any file in the .../hw04 directory or when in an Emacs shell buffer

(which can be entered using Alt -x shell Enter). The code can be built from the command line

using the command make -j 4 (assuming .../hw04 is the current directory). The makefile builds
three versions of each program, named hw04, hw04-debug, and hw04-cuda-debug. The versions
with the -debug suffix are compiled with host optimization turned off, which facilitates debugging.
The hw04-cuda-debug version is compiled for CUDA kernel debugging, using cuda-gdb. It runs
without performance data (such as the data plotted under I/op) and is not optimized. Use hw04-
cuda-debug when using cuda-gdb to debug kernel code. Host code can be debugged that way too,
but execution is faster when gdb is used on hw04-debug.

Quickly check whether the build is successful with the command ./hw04.

The makefile will compile code for a GPU on the system it was run, favoring the GPU that’s
not connected to a display. Re-run make when moving to a different system. The Makefile should
automatically detect whether the GPU for which the executable was built matches the GPU on
the current system, and re-build if needed.

For this assignment edit code in hw04-kernel.cu.

Using hw04
Without any command-line arguments hw04 will run the radix sort for three different radices each
on five block sizes, choosing the number of blocks needed so that 32 warps will be resident per SM.

Problem 1: The values shown under the second I/W for high-radix, small block runs look too
large. Perhaps some activity done by the Pass 2 kernel is not being taken into account. Fix
the value shown under the second I/W column so that it correctly shows the number of executed
instructions per unit work.

To do so compute the amount of work per thread based on the tile size, radix and other factors
and use that value in the code. Do this for the original code.

While solving this problem you may discover that some parts of the pass 2 kernel were ineffi-
ciently written. Take this inefficiency in to account, but don’t try to fix the problem.

Examining the code we find that the amount of work assumed for pass 2 is N , the number of array elements. That
accounts only for moving the keys, it ignores the effort needed to compute the histogram and prefix sums.

Pass 2 performs the following actions: (1) Compute a global histogram, (2) compute a prefix sum for the block, (3)
compute a prefix sum for a tile, and (4) copy keys from their pass-1 location to their new locations.

The amount of work for (1), the global histogram is G2R, whereG is the grid size (number of blocks) and R = 2h

is the radix. This part should be performed efficiently, especially whenR ≥ B. The amount of work to compute the prefix
sum (2) for a block is hR steps per block assuming R ≥ B. The work per grid is GhR. One unit of this computation,
the block prefix sum, will take more instructions than one unit for the global histogram since this computation requires
multiple instructions and the use of syncthreads. Nevertheless, we’ll count both as one unit of work.

1

http://www.ece.lsu.edu/gp/
http://www.ece.lsu.edu/gp/proc.html

Let e denote the number of elements per thread. The amount of work to compute a prefix sum for one tile (3) is

hR steps, the number of tiles is N

eB
, so the total work is N

eB
hR. Finally, the amount of work to move the keys (4) is N .

The total amount of work is then

G
2
R+GhR+

N

eB
hR+N

.

Appearing below is the code needed to change this assumed amount of work for pass 2. In the repo it is in file
hw04-sol.cc.

const size_t rR = sort_radix_lg << sort_radix_lg; // Radix * lg Radix

const size_t work_per_round_pass_2 =

// Combine per-block histograms. Redundantly performed by each block.

grid_size * grid_size * sort_radix

// Compute per-block prefix sum from global histogram.

+ grid_size * rR

// Compute per-tile prefix sum.

+ num_tiles * rR

// Scatter keys.

+ array_size;

Problem 2: The performance of pass 1 is determined by the 1-bit split routine, and 1-bit split
frequently computes prefix sums. Modify the 1-bit split routine so that calls syncthreads fewer
times. Do so by computing a prefix for each warp (which can avoid syncthreads), then compute a
prefix of the sums in each warp. Try doing so using the ballot technique used in vtx-xform-sparse.
Also try using sync_shfl_up within a warp.

The solution has been checked into the repository. See file hw04-kernel-sol.cu. Two versions are present if
hardcoded variable use pop is set to true then the ballot sync intrinsic is used to compute a prefix sum for a warp
in constant time. If use pop is set to false, the default, then the prefix sum is computed in two steps. Each step avoids
a syncthreads, but syncthreads is used before and after the steps.

2

