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Problem 1: [35 pts] In class a GPU radix sort program was presented that operated in two passes per
digit. The first pass computed histograms and the second pass moved the elements to be sorted. See the
slides presented in class http://www.ece.lsu.edu/gp/notes/set-radix.pdf. The radix sort code itself is
in the repo in files cuda/sort/radix-sort-kernel.cu and cuda/sort/radix-sort.cc .

(a) In the analysis presented in the slides and in class the keys are written in both pass 1 and pass 2.
Suppose instead that in pass 1 the kernel only writes the block histogram (it no longer writes the keys or
tile histograms). To compute the block histogram it will still sort tiles and compute tile histograms, but it
won’t write the sorted tiles. The pass 2 kernel will load a tile of keys, sort them, write them out and update
the prefix sum for the next tile.

This variation performs less data transfer put more computation.

Re-do the data and computation analysis presented in the slides for this variation.

Assuming a computation to communication ratio of 55 instructions per 32-bit (integer) transfer, determine
a value of cs for which this variation will work better. State assumptions such as block size.
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(b) The analysis presented in the slides ignored request utilization. As a result it favored small block sizes (to
reduce tile sort time) and a large radix (to reduce the number of rounds). Modify the analysis to take into
account the request size. Make reasonable assumptions such as assuming keys are random but uniformly
distributed over the range 0 to 232 − 1.

Modify sort analysis taking into account request size.
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Problem 2: [30 pts] The code fragments below are based on the vtx-xform-sum used in class. Remember
that in this code each thread computes a value (in routine reduce_thread) and different methods are used
to compute a global sum (a sum over all threads).

extern "C" __global__ void reduce_thd_atomic_blk() {

const Elt_Type thd_sum = reduce_thread();

__shared__ Elt_Type our_sum;

if ( threadIdx.x == 0 ) our_sum = 0;

__syncthreads(); // The first syncthreads.

atomicAdd( &our_sum, thd_sum );

__syncthreads(); // The second syncthreads.

if ( threadIdx.x == 0 ) d_app.d_thd_sum[blockIdx.x] = our_sum;

}

(a) In the version above an atomic add operating on shared memory is used to compute a block-wide sum.
Explain what would happen if each syncthreads in the code were removed.

Describe how result might be wrong if first syncthreads removed.

Describe how result might be wrong if second syncthreads removed.

(b) Appearing below is the assembly code corresponding to the atomicAdd from the code above. The add
itself is performed by an ordinary add instruction, FADD.

/*0190*/ BAR.SYNC 0x0;

/*0198*/ PSETP.AND.AND P2, PT, !PT, PT, PT;

/*01a0*/ SSY ‘(.L_76);

.L_77: /*01c8*/ LDSLK P1, R2, [RZ];

/*01d0*/ @P1 FADD R2, R2, R9;

/*01d8*/ @P1 STSCUL P2, [RZ], R2;

/*01e0*/ @!P2 BRA ‘(.L_77);

/*01e8*/ NOP.S (*"TARGET= .L_76 "*);

.L_76: /*01f0*/ BAR.SYNC 0x0;

Explain how the other instructions ensure that the add is atomic.

Explain why this method of performing an atomic add has poor performance in the CUDA code above.
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Problem 2, continued: The code below is based on reduce_atomic_sum_grid, but there are three
options. Option 0 corresponds to the code used in class. Note that two of the three option lines need to be
commented out for the code to compile.

extern "C" __global__ void reduce_atomic_sum_grid() {

const Elt_Type thd_sum = reduce_thread();

const int idx = 0; // Option 0.

const int idx = blockIdx.x; // Option 1.

const int idx = threadIdx.x % gridDim.x; // Option 2.

atomicAdd( &d_app.d_thd_sum[idx], thd_sum );

}

Appearing below is the assembly code for the atomic add, with Option 0:

/*0170*/ MOV.S R2, c[0x3][0x78]

/*0178*/ MOV R3, c[0x3][0x7c];

/*0188*/ RED.E.ADD.F32.FTZ.RN [R2], R0;

/*0190*/ EXIT;

The table below shows the execution time of the three options, and for comparison the sum block code from
the previous problem and the tree reduction code (named reduce_thd_tree_blk). The data was collected
for a launch of 52 blocks on a GPU with 13 MPs, with an expected occupancy of 4 blocks per MP.

Kernel Time / µs

reduce_thd_atomic_blk 377.152

grid Option 0 337.312

grid Option 1 295.520

grid Option 2 213.888

reduce_thd_tree_blk 208.576

(c) Provide possible reasons for the performance differences.

Possible reason that Option 1 is faster than Option 0:

Possible reason that Option 2 is faster than Option 1:
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Problem 2, continued:

(d) Determine or estimate the amount of data transferred to and from the MPs for each of the five kernels
above for the global atomicAdd operation or the write to d_thd_sum. Don’t consider the data read or written
by routine reduce_thread. (The first and last should be simple.) In your answer use B for the block size,
G for the number of blocks, and M for the number of multiprocessors.

For the grid kernels, describe how you assume the hardware operates, then provide an estimate based on
that assumption.

Amount of data transferred for reduce thd atomic blk.

Amount of data transferred for reduce thd tree blk.

Describe assumed hardware implementing reduction.

Amount of data transferred for Option 0 (based on assumption).

Amount of data transferred for Option 1 (based on assumption).

Amount of data transferred for Option 2 (based on assumption).
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Problem 3: [10 pts] Suppose that most of the area and energy on a Phi chip were used by the vector
units and vector registers. Consider an alternative Phi that uses a 1024 b vectors instead of 512 b vectors,
but which has half the number of cores, 30 instead of 60. Assume that the alternative and original designs
have the same clock frequency and so the same peak FP rate.

(a) Suppose that the cores in the alternative design are the same as in the original design except for the vector
unit and registers. Doubling the vector size and halving the core count this way can hurt the performance
of some programs.

How might doubling the vector size reduce the performance of some programs?

How might halving the number of cores this way reduce the performance of some other programs? (The
performance loss should have a different cause than in the previous answer.)

(b) If the cores in the alternative design are the same except for the vector unit and registers, than the overall
cost of the alternative design will be less. Suggest several ways for the cores in the alternative design to be
changed to bring cost in line with the original design.

In the alternative design the best thing to do is increase . . .

In the alternative design one could also increase . . . but it would not be as good as the previous answer.
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Problem 4: [10 pts] Answer each question below.

(a) Why does the Phi need branch prediction, but not NVIDIA GPUs? Illustrate with a diagram.

Difference between NVIDIA GPUs and Phi that enables GPUs to omit branch prediction:

(b) In an NVIDIA CC 3.5 device each warp scheduler schedules at most 16 warps. But the block scheduler
schedules up to 231 − 1 blocks.

What would be the approximate cost and performance impact if the warp scheduler had to schedule from a
larger number, say 32 warps? (The number of schedulers doesn’t change.)

Why can the block scheduler schedule a much larger number of blocks? What makes the block
scheduler’s job easier?
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Problem 5: [15 pts] The code below uses indirection to load from an array named TPairfunc. Further
below, is Phi code for the loop body (actually several unrolled iterations).

for ( int i=0; i<npairs; i++ )

{

int othsite = plist[i];

ans += TPairfunc[othsite] * PsiInv[i];

}

..LN1679: vpaddd 652736(%rdx,%r15){uint16}, %zmm6, %zmm0 #52.11 c1

..L193: vgatherdpd (%rdi,%zmm0,8), %zmm2{%k1} #52.11

..LN1689: jkzd ..L192, %k1 # Prob 50% #52.11

..LN1690: vgatherdpd (%rdi,%zmm0,8), %zmm2{%k1} #52.11

..LN1691: jknzd ..L193, %k1 # Prob 50% #52.11

..L192: vfmadd231pd 2368(%rsi,%rcx,8), %zmm2, %zmm8 #52.4 c33

(a) The vpaddd instruction is doing two things that an NVIDIA ADD instruction can’t do. What are they.

Operations done by vpaddd that would require additional NVIDIA instructions.

(b) Explain how the set of four instructions starting at L193 works.

The four instructions . . .

(c) The equivalent NVIDIA assembler code for the instructions starting at L193 would use just use address
calculation instructions and one load instruction. Does that mean NVIDIA GPUs perform gathers faster
than Phi? Ignore address computation in your answer.

NVIDIA GPUs are faster or about the same speed. (Check one.)

Explain.
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