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Warning: This problem is harder than the rest. Read it, think about it a little, but solve the other problems

and then come back to this first one.

Problem 1: [25 pts] Read the Echelon/exascale paper, Villa 14, “Scaling the Power Wall,” and to help
clarify certain concepts, look at an earlier description of Echelon in Keckler 11, “GPUs and the Future of
Parallel Computing.” Both are linked to the course references page at
http://www.ece.lsu.edu/gp/gpu-descriptions.html and the papers can be accessed free on campus.

The paper describes a technique called temporal SIMT (TSIMT). Two benefits of TSIMT are described,
reduced branch divergence penalty and scalarization.

(a) Show an if/else example in which the TSIMT version has better performance than its execution on
something using warps in a way more like a CC 3.5 devices. The two systems must be similar enough to be
comparable. Note that the reduced divergence penalty considered in this problem is not due to the smaller
warp size, it’s due to TSIMT.

(b) Arguably, the divergence penalty can be reduced to zero with TSIMT. What’s the catch? In other words,
suppose a region of code diverges to the point that warps have only one active thread. Why might execution
slow down anyway? Hint: It has to do with the primary design limiter. Explain your answer, don’t just
state the cause.
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Problem 1, continued:

(c) The other benefit of TSIMT was scalarization. In the code below circle or otherwise identify parts that
might benefit from scalarization and explain why.

__global__ void sort_segments_1_bit_split() {

int elt_per_thread = 4;

int elt_per_block = elt_per_thread * blockDim.x;

int idx_block_start = elt_per_block * blockIdx.x;

int idx_start = idx_block_start + threadIdx.x;

for ( int i = 0; i < elt_per_thread; i++ ) {

const int sidx = threadIdx.x + i * blockDim.x;

s[ sidx ] = sort_in[ idx_block_start + sidx ];

}}

(d) The paper describes scalarization of instructions within a warp. But it would also be possible to scalarize
instructions in a block.

Is the code above a candidate for block-wide scalarization?

if the fragment above is a candidate for block-wide scalarization then provide an example of code that is
only a candidate for warp-wide scalarization. Otherwise, provide an example of code that isn’t a candidate
for warp-wide scalaraization but is a candidate for block-wide scalaraization.

(e) Explain why it would be much harder to exploit block-wide scalarization than warp-wide scalarization.

3



Problem 2: [20 pts] Answer the following questions about the structure below.

struct My_Struct {

float a;

char c;

int b;

double d;

};

My_Struct *my_structs;

(a) Consider the statement below, which refers to the structure above.

Accessing the array my structs in the usual way in CUDA, having each thread operate on component a

of a different element of my structs will be inefficient because of request underutilization. The problem

can be avoided by having, say, thread 0 do something with component a, thread 1 do something with

component c, thread 2 and 3 work with b and d, thread 4 with a of the next element of my structs,

and so on.

Explain why the technique for avoiding the problem is much harder to implement than it sounds.

4



Problem 2, continued:

(b) Consider the two routines below operating on My_Struct.

__global__ void ms_as_needed(My_Struct *din) {

const int tid = threadIdx.x + blockIdx.x * blockDim.x;

something(din[tid].a);

something_else(din[tid].b);

something_other_thing(din[tid].c);

something_final_thing(din[tid].d);

}

__global__ void ms_all_at_once(My_Struct *din) {

const int tid = threadIdx.x + blockIdx.x * blockDim.x;

My_Struct ms = din[tid];

something(ms.a);

something_else(ms.b);

something_other_thing(ms.c);

something_final_thing(ms.d);

}

Explain why the performance of the two routines will be the same on a Kepler-generation GPU.

Suppose that the size of the array were n elements. Ignoring the L2 cache, how much data will be moved from
device memory to the GPU when accessing the array. (The answer is not, of course, n×sizeof(My Struct).)

(c) Suppose the two routines were run on a CPU (after removing the __global__ and doing something about
threadIdx and blockIdx). One of the routines will run faster than the other. Suppose that the something
routines access memory.

Which one is faster and why is it faster?

5



Problem 3: [20 pts] Since My_Struct (from the previous problem) is not too large one solution is to buffer
it in shared memory.

(a) Modify the code below so that the structure elements are first copied to shared memory, then each thread
operates on its own element. Hint: Look at the type punning used in the solution to Homework 2 Problem 2

in which a 2D array was punned to a 1-D array.

struct My_Struct {

float a;

char c[4];

int b;

double d;

};

__global__ void ms_bufered(My_Struct *din) {

const int tid = threadIdx.x + blockIdx.x * blockDim.x;

My_Struct ms = din[tid];

something(ms.a);

something_else(ms.b);

something_other_thing(ms.c);

something_final_thing(ms.d);

}

(b) Suppose we solved the previous part correctly. Describe the difference in performance of the code above
with My_Struct as it is above, with the performance when double d in My_Struct is changed to float

d. Only consider the performance of the code after shared memory is initialized. Be as specific as possible
about how much longer it will take.
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Problem 4: [10 pts] Answer each question below.

(a) Suppose we were designing an NVIDIA-like GPU with the following specifications: Two schedulers, one
dispatch unit for each scheduler and a total of 32 functional units split between the schedulers. There is
only one kind of functional unit and all instructions use them. Operation latency is 20 cycles, even for loads.
Assume that on average there is one instruction between each pair of dependent instructions.

Choose the hardware limit on the number of resident warps. (If the answer is 1 million then we’ll build a
GPU having SMs that can have up to 1 million resident warps each.)

The number of warps an MP in our design should hold is:

Explain.

(b) A Fermi (CC 2.x) GPU has a 48 kiB L1 data cache that backs the global address space (Kepler and
Maxwell lack these). The size of a typical CPU L1 data cache is 64 kiB. Why would it be very misleading
to say that the Fermi cache is almost as large this CPU cache? Provide a quick code sample showing the
difference.
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Problem 5: [25 pts] The code below uses a small array in several different ways. When the kernel starts
some_array is properly initialized with the array, and the pointer sa_global is initialized to a pointer to
global memory which is pre-loaded with the same data. So some_array[x] and sa_global[x] will return
the same data, though not in the same amount of time.

(a) The routine below contains two fragments, Version A and Version B. Version B will contain twice as
many instructions. Explain why. Hint: The extra instructions are not add instructions.

const int SIZE = 128;

__constant__ float some_array[SIZE];

__constant__ float *sa_global; // Set to pointer to global space.

__global__ void short_answer(float *din, float *dout, int* offset) {

const int tid = threadIdx.x + blockIdx.x * blockDim.x;

float x = 0;

// Version A

for ( int i=0; i<SIZE; i++ ) x += some_array[i] * din[tid+i];

dout[tid] = x;

// Version B

const int off = offset[tid];

for ( int i=0; i<SIZE; i++ ) x += some_array[i+off] * din[tid+i];

dout[tid] = x;

}
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(b) Version A below uses constant-space storage and Version C copied the array from global to local storage.
Consider the execution on a CC 3.5 GPU.

const int SIZE = 128;

__constant__ float some_array[SIZE];

__constant__ float *sa_global; // Set to pointer to global space.

__global__ void short_answer(float *din, float *dout, int* offset) {

const int tid = threadIdx.x + blockIdx.x * blockDim.x;

float x = 0;

// Version A

for ( int i=0; i<SIZE; i++ ) x += some_array[i] * din[tid+i];

dout[tid] = x;

// Version C

float sa_local[SIZE];

for ( int i=0; i<SIZE; i++ ) sa_local[i] = sa_global[i];

for ( int i=0; i<SIZE; i++ ) x += sa_local[i] * din[tid+i];

dout[tid] = x;

}

For Version A, what is the maximum size of SIZE?

For Version A, at what value of SIZE will performance start to suffer?

Explain.

For Version C, what is the maximum size of SIZE?

For Version C, at what value of SIZE will performance start to suffer?

Explain.
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