
LSU EE 7722 Homework 2 Solution Due: 18 March 2016

Problem 0: Read the following information about the assignment package, and follow instructions
on course procedures page, http://www.ece.lsu.edu/gp//proc.html, for account setup and Pro-
gramming Homework Workflow. Try compiling and running the code and familiarize yourself with
the command line arguments described below.

The homework package is set to compile for an NVIDIA GPU of compute capability 3.5 (the
expensive Kepler). It is recommended that you run your code on such devices (including the
machines in the lab). An easy way to determine the CC of the GPU in a lab machine is to consult
the computer status Web page, http://www.ece.lsu.edu/koppel/gpup/sys-status.html. If you
must run on a less capable machine edit the makefile, changing sm_35 to the CC of your machine.

Each run of the code launches all of the kernels. A kernel may be launched once, or if the
second argument is 0 (see below) launched multiple times with different block sizes. The program
output starts with data about the GPUs that it will use:

Using GPU 0

GPU 0: Tesla K20c @ 0.71 GHz WITH 5119 MiB GLOBAL MEM

GPU 0: L2: 1310720 kiB MEM<->L2: 208.0 GB/s

GPU 0: CC: 3.5 MP: 13 CC/MP: 192 DP/MP: 64 TH/BL: 1024

GPU 0: SHARED: 49152 B CONST: 65536 B # REGS: 65536

GPU 0: PEAK: 1761 SP GFLOPS 587 DP GFLOPS COMP/COMM: 33.9 SP 22.6 DP

Using GPU 0

The execution rates shown above (GFLOPS) count a multiply-add as one operation. The
COMP/COMM line gives the computation to communication ratio in floating-point operations per
floating-point element transfers. The assignment code uses SP by default. Please don’t try using
DP in this assignment. The information above was collected in part using the runtime library’s
cudaGetDeviceProperties function.

The program will next print information about each kernel:

CUDA Kernel Resource Usage:

For lane_aligned:

0 shared, 64 const, 0 loc, 10 regs; 1024 max threads per block.

For scheduler_bm:

0 shared, 64 const, 0 loc, 7 regs; 1024 max threads per block.

Next the program prints the array size and launch configuration:

Launching with 13 blocks of up to 1024 threads for 1048576 elements.

If the second argument was non-zero then each kernel is run once. The number of warps used
to launch it is shown, along with execution time, and communication rate. The communication
rate is based on an ideal amount of off-chip data transfer.

K lane_aligned 2 wp 688.288 µs 12.188 GB/s

K scheduler_bm 2 wp 780.672 µs 10.745 GB/s

If the second argument is zero then each kernel is run multiple times and an ASCII-art bar
graph is printed.

The code takes three command-line arguments. The first indicates how many blocks to launch.
If the argument is zero then the number of blocks will be set to the number of multiprocessors (which
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is the default). If the argument is negative then the number of blocks will be aM , where a is the
argument value and M is the number of MPs.

The second argument is the number of threads per block to try to use to launch each kernel. If
the argument is omitted 1024 threads are tried. If the argument is omitted or positive, the actual
number of threads used in a launch is the minimum of this argument and the kernel’s maximum.
(For example, if the second argument is 512, but kernel foo has a limit of 256 threads, foo will
be launched with 256 threads.) If the second argument is zero then each kernel will be launched
multiple times starting with 4 warps, incrementing by 4 warps until the kernel maximum is reached.

The third argument indicates the number of input and output vectors in mibi-elements. If a3
is the value of the third argument, the number of array elements will be a32

20. The third argument
is read as a floating-point number, so “0.5” will result in a 219 vectors.

Here are some examples.
Running without arguments: hw01. This will use M blocks, where M is the number of mul-

tiprocessors, with up to 1024 threads per block. One could get the same result by running using
hw01 0 1024 or hw01 M 1024 where M is replaced by whatever the number of multiprocessors is.

Run with 256 threads per block: hw01 0 256. Run with 256 threads per block and 10 blocks:
hw01 10 256. Run each kernel multiple times: hw01 0 0.

Problem 1: In mxv_g_only the matrix is in constant memory. In this problem lets try device
memory in mxv_g_only_g.

(a) Modify hw02.cu so that kernel mxv_g_only_g reads the matrix from global memory rather than
constant memory.

See the checked in code.

(b) How does the performance differ for the default matrix size, 16× 16?
The performance is worse. On a K20c, the best execution time is 5115µs versus 3297µs for the original code.

(c) If the compiler were to use registers to hold the matrix elements, above some matrix size
the performance of mvx_g_only_g would drop in comparison to mvx_g_only. Describe what the
problem might be. Note: The original problem did not mention registers.

There would not be enough registers. Note that this only applies to solutions in which the matrix elements were
loaded from global memory into registers and kept in registers for multiple h loop iterations. This does not apply to the
checked in solution.

(d) Determine if in fact the expected change occurs. Inspect the SASS code to find changes in
instructions and check performance above and below the threshold size. Comment on the number
of instructions needed.

If the registers were used then problems would occur when there were not enough registers, which would be for a
small matrix size.

Problem 2: In mxv_g_only the matrix is in constant memory. In this problem lets try shared
memory in mxv_g_only_s.

(a) Modify hw02.cu so that kernel mxv_g_only_s initially reads the matrix from constant memory
and places it in shared memory, then accesses it from shared memory when performing matrix/
vector multiplications.

See the checked in code.

(b) How does the performance differ for the default matrix size, 16× 16?
On a Kepler K20c (CC 3.5) the code using shared memory is slightly slower. The best speed for the original global

code is 3294µs while the shared code is 3761µs.
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(c) Comment on the difference in the number of instructions and the impact that might have on
the peak execution time.

The unrolled loop in the shared code includes all of the instructions in the global code, with the addition of lds.128
instructions. Each loads four matrix elements. There is one such instruction for each four FFMA instructions. The number
of FFMA instructions should be NM, the loop should also have N loads and M stores. So by using shared memory there
is a bit less than a 25% increase in the number of instructions. If the code were instruction bandwidth-limited we would
expect execution time to be 5

4
3294µs = 4085µs, which is worse than it actually performs. For the default values we

expect the code to be memory bandwidth limited so the increased time for instruction issue is partially hidden waiting for
data to arrive and to be sent.

(d) Above some matrix size the performance of mvx_g_only_s should be much better than mvx_g_only.
Explain why this might happen.

That will happen when the matrix no longer fits in the constant memory cache, at 8 kiB. Shared memory is larger,
at 48 kiB, so the shared memory code should outperform.

(e) Determine if in fact the expected change occurs in mvx_g_only. Inspect the SASS code to find
changes in instructions and check performance above and below the threshold size.

The performance of the shared code is not better. At a matrix size of 64 × 64, which is too big for the constant
cache, the compiler will not completely unroll the loop nest. Worse, it will load each input vector element multiple times.
This huge increase in memory traffic masks the differences due to the matrix because the matrix is the same for all threads.
It so happens that it unrolls r loop in the global code to a degree of two but does not unroll r loop in the shared code.
For that reason the global code has a slight edge.

Problem 3: The kernels in this assignment make inefficient use of memory requests when loading
and storing vectors.

The problem can be solved by interleaving the vectors. If the array is interleaved degree d
then the first d elements of d_in and d_out will be the first component (say, vx) of the first d
vectors. Without interleaving, the program stores vectors contiguously in arrays d_in and d_out.
For example, the contents of d_in for N = 2 might start: v0,x, v0,y, v1,x, v1,y, v2,x, v2,y, v3,x, . . .,
where v0,x, v0,y are the x and y components of the first vector.

If instead the arrays were interleaved degree 3 we would have: v0,x, v1,x, v2,x, v0,y, v1,y, v2,y, v3,x, . . ..

(a) Modify the code so that mvx_g_only_interleave reads data with a degree-IF interleave factor.
Note that IF is declared at the top of the file.

• Add new input and output arrays to App for use by the kernel.

• Modify main so that the interleaved array is based on d in.

• Modify main so that the data read from the GPU for mvx g only interleaved is put back
in uninterleaved order, so that it can be checked for correctness.

• Modify mvx g only interleaved so that it operates on the interleaved data.

See the checked in code.

(b) Comment on the performance of the routine. Determine how close you come to saturating FP
and data transfer.

Much better. With IF set to 16, data transfer reached 157GB/s, coming respectably close to the peak of
208GB/s. Since the default matrix size is data-limited FP could not be saturated.
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