LSUEE 7722 Homework 1 Due: 23 March 2015

Problem 0: Read the following information about the assignment package, and follow instructions
on course procedures page, http://wuw.ece.lsu.edu/gp//proc.html|, for account setup and Pro-
gramming Homework Workflow. Try compiling and running the code and familiarize yourself with
the command line arguments described below.

The homework package is set to compile for an NVIDIA GPU of compute capability 3.5 (the
expensive Kepler). It is recommended that you run your code on such devices (including the
machines in the lab). An easy way to determine the CC of the GPU in a lab machine is to consult
the computer status Web page, http://www.ece.lsu.edu/koppel/gpup/sys-status.html|. If you
must run on a less capable machine edit the makefile, changing sm_35 to the CC of your machine.

The code in hwO1.cu launches a series of kernels, each one reads an S-element input array
of N-element vectors v(0),v(1),...v(S — 1) and writes an S-element output array of M-element
vectors u(0),u(1),...u(S — 1) with u(h) = Av(h) for 0 < h < S, where A is an M x N matrix.
The vector and matrix elements are of type float.

Of course, everyone reading this knows that u, = Zi\’;ol Ay cve, where u,, 0 < r < M are
the components of vector U. The total computation for each vector is M N multiply-adds, and
the total computation for each kernel is SMN. The number of operations needed to complete
this computation is larger since instructions are needed to bring operands to the multiply-add
instructions and send results back to memory. For half-decent code we can expect the number of
instructions to be twice as much (meaning one “overhead” instruction for each multiply-add).

Assuming that nothing is read from global memory twice, the total communication is S(M +N)
elements, for the homework code that would be 4S5(M + N) bytes. The computation to communi-
cation ratio is M N/(M + N) floating-point operations per floating-point element transfer.

For this assignment assume S is on the order of a million (the default in the code is 22°) and that
M and N are in the range 4 to 100. For smaller values the computation will be communication
limited, and for larger values the computation will be compute limited. An NVIDIA K20c¢ can
perform 33.9 single-precision multiply-adds for each float read or written. So for this device the
computation will be communication-bound for, say, M = N = 8 because 64/16 < 33.9. Letting
M = N and solving N2?/2N = 33.9 sets the border at N = 68.

For performance reasons the values of M and N are given as compile-time constants. In
particular, using #define statements. This makes it easier for the compiler to unroll loops and
reduce the amount of overhead.

The assignment file has several different versions of the kernel. In kernels mxv_g_only, mvx_i_lbuf J]
and mvx_o_lbuf each matrix-vector multiply is computed by one thread. In mxv_o_per_thd M
threads cooperate computing a matrix-vector multiplication. In all cases each thread computes
many matrix-vector products.

As we discussed in class, memory is accessed inefficiently by kernels mxv_g_only, mvx_i_lbuf,
mvx_o_lbuf, and mxv_o_per_thd. The first three kernels typically waste 7/8 of each global memory
read and write request. Kernel mxv_o_per_thd is efficient with writes, but is just as wasteful as
the other with loads.

Kernel mvx_sh uses shared memory to help improve global memory read and write efficiency.
Kernel mvx_sh_ochunk is initially identical to mvx_sh, but is to be modified as part of this assign-
ment.

Each run of the code launches all of the kernels. A kernel may be launched once, or if the
second argument is 0 (see below) launched for different block sizes. The program output starts
with data about the GPUs that it will use:

Using GPU O



http://www.ece.lsu.edu/gp/
http://www.ece.lsu.edu/gp//proc.html
http://www.ece.lsu.edu/koppel/gpup/sys-status.html

GPU 0: Tesla K20c @ 0.71 GHz WITH 5119 MiB GLOBAL MEM

GPU 0: L2: 1310720 kiB  MEM<->L2: 208.0 GB/s

GPU 0: CC: 3.5 MP: 13 CC/MP: 192 DP/MP: 64 TH/BL: 1024

GPU O: SHARED: 49152 B CONST: 65536 B # REGS: 65536

GPU 0: PEAK: 1761 SP GFLOPS 587 DP GFLOPS COMP/COMM: 33.9 SP 22.6 DP
Using GPU O

The execution rates shown above (GFLOPS) count a multiply-add as one operation. The
COMP/COMM line gives the computation to communication ratio in floating-point operations per
floating-point element transfers. The assignment code uses SP by default. Please don’t try using
DP in this assignment. The information above was collected in part using the runtime library’s
cudaGetDeviceProperties function.

The program will next print information about each kernel:

CUDA Kernel Resource Usage:
For mxv_g_only:
0 shared, 16448 const, 0 loc, 40 regs; 1024 max threads per block.
For mxv_i_lbuf:
0 shared, 16448 const, 0 loc, 81 regs; 640 max threads per block.
For mxv_o_1lbuf:
0 shared, 16448 const, 0 loc, 97 regs; 512 max threads per block.
For mxv_o_per_thd:
0 shared, 16448 const, 0 loc, 33 regs; 1024 max threads per block.
For mxv_sh:
36864 shared, 16448 const, 256 loc, 52 regs; 1024 max threads per block.
For mxv_sh_ochunk:
4096 shared, 16448 const, 1176 loc, 255 regs; 256 max threads per block.

Next the program prints the vector sizes and launch configuration:

Matrix size: 64 x 64. Vectors: 1048576. 13 blocks of 1024 thds.
Launching with 13 blocks of up to 1024 threads.

If the second argument was non-zero then each kernel is run once. The number of warps
used to launch it is shown, along with execution time, and computation and communication rate.
The computation and communication rates are based on the assumed number of floating-point
operations and an ideal amount of off-chip data transfer.

K mxv_g_only 32 wp 1483544.312 s 2.895 GFLOPS 0.362 GB/s
K mxv_i_lbuf 20 wp 39803.745 s 107.904 GFLOPS 13.488 GB/s
K mxv_o_lbuf 16 wp  136011.078 s 31.578 GFLOPS 3.947 GB/s
K mxv_o_per_thd 32 wp  543146.545 s 7.908 GFLOPS 0.988 GB/s
K mxv_sh 32 wp 77260.353 s 55.591 GFLOPS 6.949 GB/s
K mxv_sh_ochunk 8 wp  227258.881 s 18.899 GFLOPS 2.362 GB/s

If the second argument is zero then each kernel is run multiple times and an ASCII art bar
graph is printed. The output below just shows two kernels:

Kernel mxv_i_lbuf:

4 wp 75914 s 57 GF 7 GB/s k%%

8 wp 50625 s 85 GF 11 GB/s *kkskkskkskokxk

12 wp 41198 s 104 GF 13 GB/s *kkskkskkskkkkk
16 wp 38542 s 111 GF 14 GB/s kkxskskokskskskokokkk
20 wp 39875 s 108 GF 13 GB/s s *kkkskkokkkokkk



Kernel mxv_o_lbuf:

4 wp 287669 s 15 GF 2 GB/s *

8 wp 171621 s 25 GF 3 GB/s *x
12 wp 146592 s 29 GF 4 GB/s **x
16 wp 136087 s 32 GF 4 GB/s **x

The code takes three command-line arguments. The first indicates how many blocks to launch.
If the argument is zero then the number of blocks will be set to the number of multiprocessors (which
is the default). The second argument is the number of threads per block to try to use to launch each
kernel. If the argument is omitted 1024 threads are tried. If the argument is omitted or positive,
the actual number of threads used in a launch is the minimum of this argument and the kernel’s
maximum. (For example, if the second argument is 512, but kernel foo has a limit of 256 threads,
foo will be launched with 256 threads.) If the second argument is zero then each kernel will be
launched multiple times starting with 4 warps, incrementing by 4 warps until the kernel maximum
is reached. The third argument indicates the number of input and output vectors in mibi-elements.
If a3 is the value of the third argument, the number of vectors will be a32?°. The third argument
is read as a floating point number, so “0.5” will result in a 2! vectors.

The size of the input and output vectors (N and M) is hard-coded and cannot be set using
a command-line argument. To change N and M edit hwO1.cu and re-compile. (With dynamic
compilation one could set N and M on the command line (or in an input file) and still have the
benefit of high-quality code.)

Here are some examples.

Running without arguments: hwO1. This will use P blocks, where P is the number of mul-
tiprocessors, with up to 1024 threads per block. One could get the same result by running using
hwO1 O 1024 or hwO1 P 1024 where P is replaced by whatever the number of multiprocessors is.

Run with 256 threads per block: hwO1 0 256. Run with 256 threads per block and 10 blocks:
hw01 10 256. Run each kernel multiple times: hwO1 0 0.

Code notes:

The exact amount of CUDA global memory needed for the output array is 4SM bytes, but
4(S + B)M bytes is allocated. The extra 4BM bytes is called the overrun area, and it is okay if
the kernel writes it. There is also an 4BN byte overrun area on the input array, it is okay if the
kernel reads it. In some cases the presence of an overrun area enables simpler and faster code by
eliminating the need for symmetry-busting end-of-data checks.

Problem 1: GPUs rely on lots of threads to hide latency. But how many threads do we need?

(a) Why might mxv_i_1buf require fewer threads to hide latency than mxv_o_per_thd? Note: The
original assignment said “more threads” rather than “fewer threads.”

(b) Run the code and see how the two kernels perform with different block sizes. (Of course, do
this by setting the second argument to 0.) Try this for smaller and larger vector sizes.

Problem 2: Kernel mxv_sh uses shared memory so that input vector elements can be read ef-
ficiently and then distributed to the thread that needs them, the same is done for the output
elements.

(a) Kernel mxv_sh_ochunk is initially identical to mxv_sh. Modify it so that CS (use a value of 8)
threads compute a single matrix-vector multiply. The CS threads handling a vector should read
input vector elements and redistribute them to other threads computing the same vector. The
threads would use these values to partially compute the output elements, and then repeat the
process, until the entire input vector is read. Then each thread should write its elements of the
output vector.



Try to achieve the following:
e The code should work correctly for values of M and N that are multiples of 8.

e Try to get the code working for other values of M and N.
e When threads write the output vector, memory requests should be completely used.

e Try to minimize the number of synchreads needed.

(b) Describe how your kernel works at different input and output vector sizes. Indicate whether
you think it should go faster. Indicate whether the results agree with your expectations, and if not
provide a possible reason.

When characterizing the performance pay attention to the amount of local memory used by
your thread (the number to the left of “loc” in the output showing kernel resource usage). Local
memory usage will often result in bad performance.



