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Problem 1: [25 pts] Appearing below is code based on the solution to pre-final Problem 3, which is based
on Homework 1.

In this problem analyze the execution of the code below on an Kepler-like system with the following charac-
teristics. Global memory loads have a latency of 200 cycles and all other instructions have a latency of 12
cycles. Instructions issue at a rate of one warp per cycle.

In your analyses consider only instructions performing floating-point calculations and those used to load or
store from global and shared memory. Ignore instructions used to compute indices, memory addresses and
so on.

Base the analysis on the high level code, NOT on the assembly language. Assume that the compiler will do
a reasonable job scheduling (rearranging) instructions to hide latency. Hint: This was ignored by many in

the pre-final.

extern "C" __global__ void mxv_sh_ochunk() {

const int CS = 8; // Chunk Size: Number of input vector elts to read.

const int num_threads = blockDim.x * gridDim.x;

const int bl_start = blockIdx.x * blockDim.x / CS;

const int stop = d_app.num_vecs;

const int inc = num_threads / CS;

const int thd_c_offset = threadIdx.x % CS;

const int thd_r_offset = threadIdx.x % CS;

const int thd_v_offset = threadIdx.x / CS;

const int MAX_BLOCK_SIZE = 1024;

__shared__ Elt_Type vxfer[MAX_BLOCK_SIZE];

// Number of output vector components assigned to each thread.

const int ML = M / CS;

for ( int hb = bl_start; hb<stop; hb += inc ) {

// Vector number assigned to this thread and its CS-1 partners.

const int vec_num = hb + thd_v_offset;

// Initialize storage for output vector components.

Elt_Type vout[ML];

for ( int rl=0; rl<ML; rl++ ) vout[rl] = 0;

/// Compute Output Vector

// Each iteration of the c loop uses CS input vector components

// to update ML output vector components (per thread).

//

for ( int c=0; c<N; c += CS ) {

// Read in 1 component of input vector and place in shared memory.

vxfer[threadIdx.x] = d_app.d_in[ vec_num * N + c + thd_c_offset ];

// Transfer the CS (8) components just read to local memory.

Elt_Type vin[CS];

for ( int cc=0; cc<CS; cc++ )

vin[cc] = vxfer[ thd_v_offset * CS + cc ];

// Using the CS components just read, update our ML output

// vector components.

for ( int rr=0; rr<ML; rr++ )
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for ( int cc=0; cc<CS; cc++ )

vout[rr] += d_app.matrix[ rr*CS + thd_r_offset ][c+cc] * vin[cc]; }

/// Write Output Vector

for ( int rr=0; rr<ML; rr++ )

d_app.d_out[ vec_num * M + rr * CS + thd_r_offset ] = vout[rr];

}}

(a) Estimate the latency of one iteration of the hb loop. Show the latency in terms of N , M , and C (in
mathematical expressions use C instead of CS).

Assume that there are an unlimited number of registers and so decreasing or increasing CS will not cause a
radical change in code due to register exhaustion. Also assume an unlimited amount of off-chip bandwidth.

Assume that the compiler will schedule (re-arrange) instructions to minimize latency, but will not change the
order of operations. (In the next problem re-arrangement will be considered.) When considering scheduling
look especially at the rr/cc loop nest.

(b) Based on the analysis in the previous part estimate the number of instructions in one iteration of the hb

loop. Show the number in terms of N , M , and C (in mathematical expressions use C instead of CS).

(c) Using the answers from the previous two parts, compute the number of threads needed to saturate the
following system.

There are four warp schedulers, and each can issue one instruction from one warp per cycle. There are 128
functional units of every type.

(d) Based on the answer to the previous parts, which value of CS will give the best throughput, measured in
vectors per cycle?
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Problem 2: [20 pts] Continue to consider the code and system from the previous problem. There when
analyzing latency we were to assume that the compiler could not change the order of operations. That is, if
the program specified x = a + b + c the compiler would need to perform the additions in this order: add

r1, a, b; add x, r1, c. It could not do additions in this order: add r1, b, c; add x, r1, a. The two
orders are algebraically equivalent but can produce different results due to floating point rounding.

In this problem we will allow the compiler to re-arrange the order of operations.

(a) Recompute the latency of an iteration of the hb loop assuming that the compiler can re-arrange operations
as described above. In particular, focus on the loop nest below.

for ( int rr=0; rr<ML; rr++ )

for ( int cc=0; cc<CS; cc++ )

vout[rr] += d_app.matrix[ rr*CS + thd_r_offset ][c+cc] * vin[cc]; }

(b) Compute the number of threads needed when the compiler can reorder operations. Do this for the same
system as used in the previous problem.

(c) Here’s the interesting part. Your answer to the last question should show that fewer threads are needed to
saturate instruction issue when the compiler can re-arrange operations. How do you think that the number
of registers per thread will change compared to the analysis in the last problem? The change in the number
of registers will be due to how the calculation in the loop nest was changed.
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Problem 3: [10 pts] The Homework 1 code used shared memory to pass vertex components to threads in
a chunk. A shortened version of the code appears below.

The number of shared memory banks on a Kepler device is 32. Suppose we could change the number of
banks in a design (perhaps for a future GPU design). What is the minimum number of banks needed to
avoid bank conflict in the code below? Your answer should be in terms of C (CS). Explain your answer. A
correct answer without an explanation will only get partial credit.

extern "C" __global__ void shared_conflicts() {

const int CS = 8; // Chunk Size: Number of input vector elts to read.

const int num_threads = blockDim.x * gridDim.x;

const int bl_start = blockIdx.x * blockDim.x / CS;

const int stop = d_app.num_vecs;

const int inc = num_threads / CS;

const int thd_c_offset = threadIdx.x % CS;

const int thd_v_offset = threadIdx.x / CS;

__shared__ Elt_Type vxfer[1024];

for ( int hb = bl_start; hb<stop; hb += inc ) {

const int vec_num = hb + thd_v_offset;

for ( int c=0; c<N; c += CS ) {

vxfer[threadIdx.x] = d_app.d_in[ vec_num * N + c + thd_c_offset ];

Elt_Type vin[CS];

for ( int cc=0; cc<CS; cc++ )

vin[cc] = vxfer[ thd_v_offset * CS + cc ];
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Problem 4: [15 pts] Phi arithmetic instructions can optionally swizzle the lanes in one of its source
operands, this is performed by the VC1 and VC2 stages of the pipeline. In the example below the values in
certain lanes of zmm2 are swapped the result is added to zmm1 and stored in zmm3.

vaddpd %zmm3 = %zmm2{badc}, %zmm1

(a) There is no single Kepler instruction that can do the same thing. The CUDA kernel below performs
the equivalent of the Phi instruction above without the swizzle. (The CUDA code also loads and stores
operands, ignore that for now.) Modify the CUDA kernel below to perform the same operation as the Phi
instruction above. Note that variable names have been chosen to match the Phi register names above.

extern "C" __global__ void phi_equiv() {

const int idx = threadIdx.x + blockIdx.x * blockDim.x;

double zmm1 = a[idx];

double zmm2 = b[idx];

double zmm3 = zmm1 + zmm2;

c[idx] = zmm3;

}
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(b) The Phi VC1 and VC2 stages are not just used for register swizzling. What is it that they do that might
come in handy in the code below. The code examples below do not require swizzling. Show how the Phi
code can be modified to take advantage of those stages.

// CUDA Code.

//

extern "C" __global__ void simple_add() {

const int idx = threadIdx.x + blockIdx.x * blockDim.x;

double zmm1 = a[idx];

double zmm2 = b[idx];

double zmm3 = zmm1 + zmm2;

c[idx] = zmm3;

}

// Roughly Equivalent Phi Assembly Code Fragment

vmovapd %zmm1 = 0(%r8,%rax,8) # zmm1 = Mem[ r8 + rax * 8]

vmovapd %zmm2 = 0(%r9,%rax,8) # zmm2 = Mem[ r9 + rax * 8]

vaddpd %zmm3 = %zmm2, %zmm1

vmovapd 0(%r10,%rax,8), %zmm3

(c) The Phi code above would need to be embedded in a loop. Which register would have to be incremented
for the next iteration, and by how much?
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Problem 5: [15 pts] Consider again CUDA and Phi code samples:

// CUDA Code.

//

extern "C" __global__ void simple_add() {

const int idx = threadIdx.x + blockIdx.x * blockDim.x;

double zmm1 = a[idx];

double zmm2 = b[idx];

double zmm3 = zmm1 + zmm2;

c[idx] = zmm3;

}

// Roughly Equivalent Phi Assembly Code Fragment

vmovapd %zmm1 = 0(%r8,%rax,8) # zmm1 = Mem[ r8 + rax * 8]

vmovapd %zmm2 = 0(%r9,%rax,8) # zmm2 = Mem[ r9 + rax * 8]

vaddpd %zmm3 = %zmm2, %zmm1

vmovapd 0(%r10,%rax,8), %zmm3

(a) The Phi code above assumes that r8, r9, and r10 are aligned addresses. The CUDA code does not
exactly have an equivalent concept, and the code will run fine as long as the address is a multiple of 8 bytes
(which is the element size, not the warp size). Nevertheless the CUDA code will suffer a performance penalty
if the array address used by, say, thread 0 is not a multiple of something. What is that performance penalty,
be as precise as possible.

(b) How would the Phi routine be modified if we could not guarantee that the addresses would be aligned?
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(c) Appearing is the Kepler assembly code for the CUDA code above. Which instructions perform duplicate
work that would not be duplicated on the Phi.

/*0008*/ MOV R1, c[0x0][0x44];

/*0010*/ S2R R3, SR_TID.X;

/*0018*/ MOV32I R7, 0x8;

/*0020*/ S2R R0, SR_CTAID.X;

/*0028*/ IMAD R0, R0, c[0x0][0x28], R3;

/*0030*/ IMAD R8.CC, R0, R7, c[0x0][0x140];

/*0038*/ IMAD.HI.X R9, R0, R7, c[0x0][0x144];

/*0048*/ IMAD R10.CC, R0, R7, c[0x0][0x148];

/*0050*/ IMAD.HI.X R11, R0, R7, c[0x0][0x14c];

/*0058*/ LD.E.64 R4, [R8];

/*0060*/ LD.E.64 R2, [R10];

/*0068*/ IMAD R6.CC, R0, R7, c[0x0][0x150];

/*0070*/ IMAD.HI.X R7, R0, R7, c[0x0][0x154];

/*0078*/ DADD R2, R4, R2;

/*0088*/ ST.E.64 [R6], R2;

/*0090*/ EXIT;
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Problem 6: [15 pts] Based on reverse-engineering we discovered that Kepler load instructions can have a
32-bit signed offset. Thirty-two bits! The CUDA code below can almost take advantage of these large offsets
in two ways.

__constant__ int size;

void calling_routine() {

const int stride = 48611;

const int num_blocks = 13;

const int thd_per_block = 1024;

const int gap = 16 * stride;

const int size_h = thd_per_block * num_blocks * 12345;

cudaMemcpyToSymbol

( size, &size_h, sizeof(size_h), 0, cudaMemcpyHostToDevice );

double *a_d, *c_d;

const size_t size_bytes = ( 2 * size_h + gap ) * sizeof(a_d[0]);

cudaMalloc( &a_d, size_bytes * 2 );

c_d = &a_d[size_h+gap];

init_array(a_d);

loops<<<num_blocks,thd_per_block>>>(a_d, c_d, stride);

}

extern "C" __global__ void loops(double *a, double *c, int stride) {

const int tid = threadIdx.x + blockIdx.x * blockDim.x;

const int num_threads = blockDim.x * gridDim.x;

for ( int idx = tid; idx < size; idx += num_threads )

{

double x = 0;

for ( int j=0; j<16; j++ ) x += a[ idx + j * stride ];

c[idx] = x;

}

}

(a) Identify and fix the problems. Hint: One concerns code in the j loop and one concerns code outside the

j loop.

(b) A correct answer to the question above should have reduced instruction count due to the use of offsets.
However, overall performance would not have improved much on current GPUs. Explain why. Is there a
way to re-write the code to avoid the problem? If yes, provide some ideas on how to do it.
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